Path Planning for Variable Resolution Minimal-Energy Curves of Constant Length

M. Moll and L. E. Kavraki, “Path Planning for Variable Resolution Minimal-Energy Curves of Constant Length,” in Proc. 2005 IEEE Intl. Conf. on Robotics and Automation, Barcelona, Spain, 2005, pp. 2143–2147.

Abstract

We present a new approach to path planning for flexible wires. We introduce a method for computing stable configurations of a wire subject to manipulation constraints. These configurations correspond to minimal-energy curves. The representation is adaptive in the sense that the number of parameters automatically varies with the complexity of the underlying curve. We introduce a planner that computes paths from one minimal-energy curve to another such that all intermediate curves are also minimal-energy curves. Using a simplified model for obstacles, we can find minimal-energy curves of fixed length that pass through specified tangents at given control points. Our work has applications in motion planning for surgical suturing and snake-like robots.

Publisher: http://dx.doi.org/10.1109/ROBOT.2005.1570428

PDF preprint: http://kavrakilab.org/publications/moll-kavraki2005path-planning-for.pdf