Understanding the challenges of protein flexibility in drug design

D. A. Antunes, D. Devaurs, and L. E. Kavraki, “Understanding the challenges of protein flexibility in drug design,” Expert Opinion on Drug Discovery, vol. 10, no. 12, pp. 1301–1313, 2015.

Abstract

Protein-ligand interactions play key roles in various metabolic pathways, and the proteins involved in these interactions represent major targets for drug discovery. Molecular docking is widely used to predict the structure of protein-ligand complexes, and protein flexibility stands out as one of the most important and challenging issues for binding mode prediction. Various docking methods accounting for protein flexibility have been proposed, tackling problems of ever-increasing dimensionality. This paper presents an overview of conformational sampling methods treating target flexibility during molecular docking. Special attention is given to approaches considering full protein flexibility. Contrary to what is frequently done, this review does not rely on classical biomolecular recognition models to classify existing docking methods. Instead, it applies algorithmic considerations, focusing on the level of flexibility accounted for. This review also discusses the diversity of docking applications, from virtual screening of small drug-like compounds to geometry prediction of protein-peptide complexes. Considering the diversity of docking methods presented here, deciding which one is the best at treating protein flexibility depends on the system under study and the research application. In virtual screening experiments, ensemble docking can be used to implicitly account for large-scale conformational changes, and selective docking can additionally consider local binding-site rearrangements. In other cases, on-the-fly exploration of the whole protein-ligand complex might be needed for accurate geometry prediction of the binding mode. Among other things, future methods are expected to provide alternative binding modes, which will better reflect the dynamic nature of protein-ligand interactions.

Publisher: http://dx.doi.org/10.1517/17460441.2015.1094458

PDF preprint: http://kavrakilab.org/publications/antunes-15-eodd.pdf