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ABSTRACT

Motivation: Conformational searches in molecular
docking are a time-consuming process with wide range
of applications. Favorable conformations of the ligands
that successfully bind with receptors are sought to form
stable ligand-receptor complexes. Usually a large num-
ber of conformations are generated and their binding
energies are examined. We propose adding a geometric
screening phase before an energy minimization proce-
dure so that only conformations that geometrically fit
in the binding site will be prompted for energy calcula-
tion.
Results: Geometric screening can drastically reduce
the number of conformations to be examined from mil-
lions (or higher) to thousands (or lower). The method
can also handle cases when there are more variables
than geometric constraints. An early-stage implemen-
tation is able to finish the geometric filtering of confor-
mations for molecules with up to nine variables in one
minute. To the best of our knowledge, this is the first
time such results are reported deterministically.
Contact: mzhang@mdanderson.org

INTRODUCTION

The properties and possible interactions of molecules
are intimately related to their accessible conformations.
Conformational searches seek to solve the problem of
identifying reachable conformations of molecules with

low energy. Such conformations determine molecular
flexibility and hence functionality, which are important
in understanding a variety of biological phenomena at
the molecular level. Deep understanding of molecular
flexibility will greatly help the design of synthetic ma-
terials, the synthesis of drugs, the mechanism of sur-
face catalysis, and the development of biological sensors
(Cavasotto & Abagyan 2004; Perola & Charifson 2004;
Henry & Ozkabak 1998; Lengauer 2002).

Conformational searches are common in many appli-
cations involving pharmacophore modeling, molecular
docking, protein folding, and three-dimensional quan-
titative structure-activity relationships (Baker & Sali
2001; Diller & Merz 2001; Klebe 2000; Samudrala 2000;
Song 2002). In this paper, we investigate a new ge-
ometric screening method to improve conformational
searches in computer-assisted drug design.

Most drug discovery programs start from identifi-
cation of a biomolecular target of potential therapeu-
tic value. Drug-like compounds (leads) binding to the
molecular target and interfering with its activity as a re-
ceptor or an enzyme are then sought. High throughput
screening is usually performed on molecular libraries of
known or constructed compounds. The resulting leads
then undergo a cycle of chemical refinement and testing
until a drug is developed for clinical trials.

When the structure of the biomolecular target is
known, the most common virtual screening approach
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is molecular docking. In a successful ligand-receptor
docking, the molecules exhibit geometric and chemi-
cal complementarity, which are essential for successful
drug activity. Very often the binding site is specified
by a pharmacophore, a set of 3-dimensional features.
The features can be specific atoms, centers of (ben-
zene) rings, positive or negative charges, hydrophobic
or hydrophilic centers, hydrogen bond donors or accep-
tors. The pharmacophore reflects the prevailing idea
in computer-assisted drug design that ligand binding is
due primarily to the interaction between the features of
the ligand and the complementary features of the recep-
tor (Lavalle et al. 2000; Rarey et al. 1996). Identifying
the conformations of the ligands whose features reach
the target positions while still maintaining low energies
gives rise to conformational search problems.

Earlier work The methods currently available for
conformational searches fall into two categories: for-
ward searches and inverse searches. Forward search
methods are mostly energy oriented. That is, a large
number of conformations are generated and their ener-
gies are examined. These methods assign values to the
variables (torsional angles) systematically, randomly, or
deterministically, and then the energies of these confor-
mations are calculated (Bursulaya et al. 2003; Brooi-
jmans & Kuntz 2003). Systematic search algorithms
are based on grid values for each variable. The num-
ber of conformations to be examined increases expo-
nentially when the number of variables increases. An
example of a systematic search is the incremental con-
struction algorithm (Ewing et al. 2001; Kramer 1999).
Randomized search algorithms assign random values to
the variables, thus avoid examining all conformations
in the huge conformational space. One of the major
concerns with randomized searches is the uncertainty
of convergence. Usually multiple and independent runs
are performed to improve the convergence. Examples
of randomized searches are Monte Carlo (MC) methods
and evolutionary algorithms (Jones et al. 1997; Lavalle
et al. 2000). For deterministic searches, in each step, the
current state determines the next state, whose energy
(scoring function) is no more than that of the current
state. Deterministic searches starting from the same
point will always produce the same final state. Deter-
ministic algorithms, on the other hand, may often get
trapped in local minima that are surrounded by energy
barriers. Examples of deterministic methods are molec-
ular dynamics (MD) simulations (Nakajima et al. 1997;
Pak & Wang 2000).

Inverse search methods try to solve systems of poly-
nomial equations derived from the constraints in order
to compute the values for the variables. Only the so-
lutions of these equations generate conformations that
are geometrically favorable for the binding. Usually

the conformational space has a high dimension, but ge-
ometrically favorable conformations form only a low-
dimensional locus. Thus the conformational space is
dominated (almost everywhere) by geometrically unfa-
vorable conformations. While forward search methods
may suffer either from the huge number of possible con-
figurations to be examined, or from the uncertainty of
convergence, or from getting trapped in local minima
(Verkhivker et al. 2000; Vieth et al. 1998), these con-
cerns are irrelevant for inverse search methods. How-
ever, for inverse searches solving the system of derived
equations, either analytically or numerically, is itself a
difficult problem with immense computational complex-
ity, especially when the number of solutions is infinite.
There has been dramatically increased research on this
topic in the past two decades (Aubry et al. 2002; Cout-
sias et al. 2004; Emiris & Mourrain 1999; Pedersen et

al. 1993; Rojas 2000; Zhang & White 2003), though the
algorithms developed are still far from practical. Solv-
ing systems of polynomial equations with more than
six variables is still considered beyond the capabilities
of modern computer algebra packages. Currently there
are no good, general solvers to solve multi-variable (non-
linear) polynomial equations (Manocha 1998; Press et

al. 1990).

Our approach We present a new approximation
approach aiming to fill the gap between the capabilities
of available conformational search algorithms and the
demand of real applications. Our approach adds a ge-
ometric screening phase before a standard energy mini-
mization procedure to improve conformational searches.
Unlike current inverse search methods, the geometric
screening phase approximates the solutions rather than
solving for the solutions themselves and hence reports
approximations of the geometrically favorable confor-
mations. A subsequent minimization procedure can
quickly identify the conformations favorable to ligand-
receptor docking.

Contributions and significance There are several
advantages of this approximation approach compared
with currently available search methods: (1) The num-
ber of conformations to be examined for energy consid-
eration is drastically reduced from millions (or higher)
to thousands (or lower). Moreover, this reduction also
prevents energy minimization techniques from getting
trapped in local minima on the energy landscape. (2)
Since only approximations are sought in the geometric
screening, the computational time is much lower than
that of computing the exact solutions. (3) The geomet-
ric screening phase no longer needs the assumption (as
in most inverse search methods) that the number of the
solutions to the equations is finite. In molecular dock-
ing, it is frequently seen that the number of variables
(degrees of freedom) is more than the number of the
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equations in the system. Solving for the exact solutions
in this case is too difficult to be practical. Geometric
screening reports approximations of solutions and thus
avoids this difficulty. (4) The geometric screening is in-
dependent from the energy minimization process, and
the method can be readily integrated into various con-
formational search packages currently available.

An early-stage implementation of the geometric
screening method is able to finish the geometric filtering
of conformations for molecules with up to nine variables
in one minute. All the computations are carried on a
2GHz personal computer running Linux. To the best of
our knowledge, this is the first time that all geometri-
cally favorable conformations of such molecules can be
deterministically reported in a timely manner.

SYSTEMS AND METHODS

In most molecular kinematics studies, the van der
Waals radii, electric charges, bond lengths, and bond
angles are assumed constant, while the torsional angles
are allowed to change (Finn & Kavraki 1999; Henry
& Ozkabak 1998). We follow this assumption here, but
the algorithm developed in this paper generalizes to cir-
cumstances where other parameters may vary.

We further partition atoms into atom-groups. An
atom-group is a set of connected atoms such that none
of the bonds inside the atom-group rotate. Using atom-
groups instead of individual atoms can considerably
speed up the calculation of molecular conformations
(Zhang & Kavraki 2002). Moreover, with atom-groups,
we can focus on the interesting part (i.e., more rotat-
able bonds are present) using small atom-groups and
put the less interesting part (i.e., all bonds are consid-
ered rigid such as a side chain) into big atom-groups.
For simplicity, we also assume that there are no cycles
of atom-groups in the molecule. When one atom-group
is chosen as the root (anchor), the molecule becomes a
tree with the atom-groups at the nodes.

Molecular Equations

Let us start by deriving the equations which describe
atom positions.

First, we attach local frames (coordinate systems) to
atom-groups to facilitate calculating atom positions. As
in Figure 1(a), a local frame Fi = {Qi;ui,vi,wi} is at-
tached to atom-group gi as follows: Qi is the atom of
bond bi in gi; wi is the unit vector along bond bi point-
ing toward gi−1; ui is an arbitrary unit vector perpen-
dicular to wi; vi is perpendicular to wi and ui (cross
product).

(b)

vi−1

bi

ui

giQi

gi−1

Qi−1

wi−1

bi−1

ui−1

vi

θi

giQi

gi−1

(a)

ui vi

bi

wi
wi

Figure 1: (a) Local frame Fi = {Qi;ui,vi,wi} at atom-
group gi. (b) Local frames Fi = {Qi;ui,vi,wi} at
atom-group gi and Fi−1 = {Qi−1;ui−1,vi−1,wi−1} at
atom-group gi−1. θi is the torsional angle of bond bi.

Next we derive the relations between neighboring lo-
cal frames which will be used to calculate atom posi-
tions. Suppose the frame at atom-group gi is Fi =
{Qi;ui,vi,wi} and the frame at its parent atom-group
gi−1 is Fi−1 = {Qi−1;ui−1,vi−1,wi−1}. Let the tor-
sional angle of bond bi be θi (Figure 1(b)). For each
atom A in atom-group gi, the coordinates (xi, yi, zi) in
Fi and the coordinates (xi−1, yi−1, zi−1) in Fi−1 are re-
lated by

(xi−1 yi−1 zi−1 1)
t
= Ri · (xi yi zi 1)

t
,

where Ri is the product
0

B

B

@

ui−1 · ui ui−1 · vi ui−1 ·wi ui−1 · (Qi − Qi−1)
vi−1 · ui vi−1 · vi vi−1 ·wi vi−1 · (Qi − Qi−1)
wi−1 · ui wi−1 · vi wi−1 ·wi wi−1 · (Qi − Qi−1)

0 0 0 1

1

C

C

A

·









cos θi − sin θi 0 0
sin θi cos θi 0 0

0 0 1 0
0 0 0 1









.

We then calculate the position of any atom A in
atom-group gi from the values of the rotatable bonds.
Suppose gi, gi−1, . . . , g0 is a sequence of atom-groups,
where gj is the parent atom-group of gj+1, 0 ≤ j ≤ i−1,
and g0 is the root atom-group. Then the position of A
in atom-group gi is

(x y z 1)
t
= R1 · · ·Ri · (xi yi zi 1)

t
,

where (xi, yi, zi) are the (constant) coordinates of A in
the local frame at atom-group gi, and (x, y, z) are the
coordinates of A in the global coordinate system.

Now we can formulate the conformational search
problem analytically. Given (i) a molecule in an initial
conformation, and (ii) the target positions (ai, bi, ci) of
some features, solve for the values of all the torsional an-
gles so that the features in the final conformation reach
their target positions.
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For each feature Ai, if the target position is
(ai, bi, ci), then

(ai bi ci 1)
t
= R1 · · ·Ri · (xi yi zi 1)

t
, (1)

where (xi, yi, zi) are the local coordinates of feature Ai.

There are three equations in (1) — one for each rect-
angular coordinate (x, y, z); the last coordinate gives
the identity 1 = 1. Each of the three equations in (1) is
linear in cos θj , sin θj , j = 1, . . . , i. Instead of working
with the trigonometric functions directly, we convert the
cosine and sine functions into rational functions using
the standard transformation

cos θj =
1− t2j
1 + t2j

, sin θj =
2tj

1 + t2j
, (2)

where tj = tan(θj/2). Multiplying both sides of these
equations by the common divisors, we obtain three poly-
nomial equations in t1, . . . , ti. Each of these equations
is quadratic in each of the variables. We call these poly-
nomial equations the molecular equations.

Bernstein Bases

The molecular equations derived from the geomet-
ric constraints are represented using monomial bases.
We are going to rewrite these polynomial equations us-
ing Bernstein bases to facilitate approximating the so-
lutions of the molecular equations.

The Bernstein bases are a standard tool in computer
graphics and computer aided design (Goldman 2002).
Since the molecular equations are quadratic in each vari-
able, we shall use the multi-quadratic Bernstein bases.

Definition The multi-quadratic Bernstein bases are
the functions

Bi1(t1) · · ·Bin
(tn), 0 ≤ i1, . . . , in ≤ 2,

where

B0(tk) = (1− tk)2

B1(tk) = 2tk(1− tk), 1 ≤ k ≤ n.
B2(tk) = t2k

Any multi-quadratic polynomial p(t1, . . . , tn) (of de-
gree ≤ 2 in each variable) can be written uniquely as

p(t1, . . . , tn) =
∑

0≤i1,...,in≤2

ci1,...,in
·Bi1(t1) · · ·Bin

(tn),

where the ci1,...,in
’s are constant coefficients.

These Bernstein bases have the following two impor-
tant properties:

(1) When all the parameters t1, . . . , tn are in the
range of [0, 1], all the Bernstein basis functions
are non-negative. Therefore, if the coefficients
of a polynomial are all negative (or all positive),
the polynomial has no solutions in the parameter
space [0, 1]n.

(2) The sum of all the Bernstein basis functions is
identically one. Thus the value of any polynomial
(all parameters in [0, 1]) will lie in the convex hull
of the Bernstein coefficients. Therefore, if the con-
vex hull is small enough, the value of the polyno-
mial (parameters in [0, 1]) can be approximated
by the coefficients.

Since these two properties of Bernstein bases rely on
the fact that all the parameters lie in [0, 1], we need
to make changes to the molecular equations derived so
that the parameter space is [0, 1]n. This is easily done
by shifting the search space [−r, r]n (r is the search ra-
dius) to [0, 2r]n and then shrinking the range to [0, 1]n.

Subdivision

We now use the Bernstein bases to perform subdivi-
sion, aiming to approximate the solutions of the molec-
ular equations. First let us illustrate the subdivision
scheme using a simple example.

Example Suppose

P (t) = P0 ·B0(t) + P1 ·B1(t) + P2 ·B2(t), 0 ≤ t ≤ 1,

is a curve (Figure 2).

R1

L0 = P0 P2 = R2

P1

L1

L2 = R0

Figure 2: Illustration of simple subdivision. (P0, P1, P2)
are coefficients of P (t). The left “wing” (L0, L1, L2)
are the coefficients of PL(t) and the right “wing”
(R0, R1, R2) are the coefficients of PR(t).

Let

PL(t) = L0 ·B0(t) + L1 ·B1(t) + L2 ·B2(t),

PR(t) = R0 ·B0(t) + R1 ·B1(t) + R2 ·B2(t),

where

L0 = P0, R0 = L2,
L1 = (P0 + P1)/2, R1 = (P1 + P2)/2,
L2 = (P0 + 2P1 + P2)/4, R2 = P2.
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Then

PL(t) = P (
t

2
), PR(t) = P (

t + 1

2
).

That is, PL(t), 0 ≤ t ≤ 1, is the left half of the polyno-
mial P (t) — from P (0) to P (1/2), and PR(t), 0 ≤ t ≤ 1,
is the right half of P (t) — from P (1/2) to P (1).

Note that after subdivision, the parameter t of PL(t)
and PR(t) can take any value in [0, 1] (which is necessary
to perform further subdivisions using Bernstein bases).
However, the parameter ranges of PL(t) and PR(t) cor-
respond to half of the parameter range of P (t): [0, 1/2]
and [1/2, 1]. Thus in subdivision process, the parameter
range of a polynomial is usually referred to the corre-
sponding sub-range of the original polynomial.

For any multi-quadratic polynomial p(t1, . . . , tn), the
subdivision can be performed as follows. Subdivide
p(t1, . . . , tn) with respect to t1 (while t2, . . . , tn are re-
garded as constants) and two polynomials are obtained
as in the above example. Subdivide these two polyno-
mials with respect to t2 (while t1, t3, . . . , tn are regarded
as constants) and four polynomials are obtained. Keep
this process till subdivision is carried with respect to tn

and 2n polynomials are obtained.

Therefore, a polynomial p(t1, . . . , tn), whose pa-
rameter space is [0, 1]n, can be subdivided into 2n

polynomials, whose parameter spaces (in the original
[0, 1]n) are small cubes [ i1

2 , i1+1
2 ] × . . . × [ in

2 , in+1
2 ], 0 ≤

i1, . . . , in ≤ 1. Each of the 2n resulting polynomials can
be further subdivided into 2n polynomials with even
smaller parameter cubes [ i1

4 , i1+1
4 ]× . . .× [ in

4 , in+1
4 ], 0 ≤

i1, . . . , in ≤ 3. A k-level subdivision is generated by re-
peating this process k times. A subdivision tree is illus-
trated in Figure 3.

The root node of the subdivision tree contains the
original polynomial, whose parameter space is [0, 1]n –
we refer to this cube as the root cube. At level 1 of the
subdivision, there are 2n nodes. These 2n small param-
eter cubes do not overlap but they may share a face, an
edge, or a vertex. The union of these small cubes is the
root cube [0, 1]n. At level j, there are 2n×j cubes with
size 1/2j – the root cube has size 1. The union of all
level j small cubes is the root cube.

Each node of the subdivision tree is examined to see
whether the corresponding small cube contains possible
solutions of the original polynomial. A simple criterion
is that if the coefficients are all negative (or all posi-
tive), then the small cube definitely does not contain
any solution of the original polynomial. Such cubes are
called empty cubes. Empty cubes are immediately elim-
inated from further subdivision and the branch below
is pruned in the subdivision tree. Therefore, identifying
as many as possible empty cubes as early as possible is
critical to reduce the size of the subdivision tree.

The geometric constraints on the feature atoms gen-
erate a set of polynomial equations. We place all these
polynomials at the root of the subdivision tree and carry
on the subdivision process. A small cube in the subdi-
vision tree will be identified as an empty cube if any
one of the polynomials does not have solutions within
the cube. Thus more polynomials help to prune the
subdivision tree.

This subdivision algorithm does not need the as-
sumption that the number of solutions of the molecular
equations is finite. Many inverse search methods need
this assumption and hence require that the number of
variables does not exceed the number of equations. In
molecular docking, frequently there are more variables
than equations, and the number of solutions is infinite.
The subdivision algorithm can handle conformational
searches in such cases.

The small cubes at the bottom level of the subdivi-
sion tree have size 1/2k. When k is big enough, say
6, i.e., after 6 levels of subdivision, the small cubes be-
come small enough that any point in the small cube can
be regarded as an approximation to the possible solu-
tions within the small cube. Therefore, this algorithm
reports the small non-empty cubes at the bottom of
the subdivision tree as approximations to the solutions
of the original molecular equations. These approxima-
tions are converted back into approximate values of the
variables of the ligand molecules. Thus the output of
the geometric screening process generate conformations
satisfying the geometric constraints that can be input
to a subsequent energy minimization procedure.

ALGORITHM

The geometric screening method is illustrated with
the following pseudo code.

(1) Generate equations from the geometric con-
straints on features (c.f. Equation (1)).

(2) Convert these trigonometric equations into molec-
ular equations (c.f. Equation (2)).

(3) Rewrite these molecular equations from monomial
bases to Bernstein bases using

1 = B0(tk) + B1(tk) + B2(tk),

tk = 0.5 ·B1(tk) + B2(tk),

t2k = B2(tk).

Let P = all molecular equations in Bernstein
bases and set subdivision level of P to 0.

(4) Subdivide P recursively and report approximate
solutions. Set max-subd-level to, for example, 6.
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Root

Level 1

Level k

Level 2

Figure 3: An illustration of the subdivision tree. The root node represents the original cube [0, 1]n. Each node at
level j represents a small cube of size 1/2j along with the associated molecular polynomials. Shaded cubes contain
possible solutions of the original polynomials, while unshaded cubes (empty cubes) contain no solutions inside. All
children nodes of empty cubes are empty cubes.

Screening(P) {
if subdivision level < max-subd-level

if for all p ∈ P the coefficients are mixed (i.e.,
positive and negative)

subdivide P into P1, . . . , P2n ;
add subdivision level of P1, . . . , P2n by 1;
Screening(P1), . . ., Screening(P2n)

if subdivision level ≥ max-subd-level

if for all p ∈ P the coefficients are mixed,
report the corresponding cube

}

DISCUSSION

Complexity Estimate The output of the geometric
screening is a set of small cubes covering the solutions
of the molecular equations. It is easy to see that the
more levels of subdivision we perform, the more nodes
the subdivision tree has. It is also easy to see that the
number of non-empty cubes at the bottom of the subdi-
vision tree is equal to the number of isolated solutions
if each such cube contains a single isolated solution. So
the computational complexity of the geometric screen-
ing mainly depends on the number of the levels of sub-
division and isolated solutions.

If the number of solutions is infinite, for example,
when there are more variables than constraints, the so-
lutions may form a curve or hyper-surface. Then the
number of small cubes covering the solutions increases
exponentially as the level of subdivision increases. In

this case, the level of subdivision will be limited to a
smaller number so that relatively bigger cubes (coarse
approximations) are reported in a timely manner.

Another factor to the complexity is the steepness of
molecular equations near the solutions. If the molecu-
lar equations are steep around a solution, only a small
number of cubes will be reported. Otherwise, a large
number of cubes near the solution will be reported when
the values of the molecular equations in these cubes are
under a pre-defined threshold (and hence regarded as 0).
It follows that non-empty cubes at the bottom of the
subdivision tree may not necessarily contain solutions of
the molecular equations, though they may provide good
starting points for the subsequent energy minimization
process.

Thus the computational complexity (in the worst
case) is exponential on the level of subdivision and num-
ber of variables when the number of solutions is infinite
or the molecular equations are “flat” near the solutions.

Results We have implemented the above subdivision
algorithm to approximate solutions of the molecular
equations. The program has been tested on molecules
with up to 9 degrees of freedom [c.f. Figure 4]. (Note
that each ellipse in Figure 4 represents an atom-group
rather than an atom.)

Our program correctly reports the approximate real
solutions of the molecular equations. (Verification is
simple: conformations generated from these approxi-
mations should have their features near their target po-
sitions.) For 3 molecular equations, the execution time
is less than 0.1 seconds; for 6 equations, the execution
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time is less than 10 seconds; for 9 equations, the execu-
tion time is less than 1 minute. We also run the program
with 9 variables but 8 or less equations. The execution
time can go up to 10 minutes to report a much larger
number of cubes. All the computations are carried on
a 2GHz personal computer running Linux.

feature feature

(a)

feature

feature

feature

(b)

feature

feature

feature
feature

(c)

Figure 4: Schematic illustration of conformational
searches with 3, 6, 9 rotatable bonds. Each ellipse repre-
sents an atom-group. The black ellipses represent atom-
groups where a feature lies. One feature is chosen as the
anchor and always remains fixed, while other features
have pre-specified target positions. There are 3, 6, 9
equations generated respectively from (a), (b), (c).

The example molecular equations are too big to be
included in this paper, but are available at the web-
site “http://odin.mdacc.tmc.edu/∼ming/invermatics”.
These systems of equations are generated by specify-
ing reachable target positions for the features – thus
real solutions exist. We have circulated these equations
around and no other group is able to report all the
real solutions. A molecule that was used to generate
9 molecular equations is shown in Figure 5.

Figure 5: An example molecule used to generate 9
molecular equations. Nine bonds are allowed to rotate

while the others are rigid. The part at the top is chosen
as the anchor atom-group and remains fixed. The ini-
tial conformation is shown at the left hand side and one
valid conformation satisfying the geometric constraints
is shown at the right hand side.

Applicability Usually the ligands in drug design
are small molecules. Figure 6 shows a histogram of the
number of rotatable bonds of compounds in a screen-
ing library from Specs, which is representative of other
chemical database suppliers (Baurin et al. 2004). Most
of the compounds (> 80%) have no more than 9 rotat-
able bonds and can be handled by geometric screening
at the current implementation.
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Figure 6: Distribution of number of rotatable bonds of
screening compounds in the Specs library released in
May 2004 (www.specs.net). The values were calculated
with the “dbanalyze” command available in the Unity
package of Sybyl.

For compounds with more variables, a combination
of geometric screening and other conformational search
methods can be used: geometric screening can be used
with respect to 9 of the variables while the values of the
rest variables can be determined by other systematic,
randomized, or deterministic search methods. Also im-
proving geometric screening to handle more variables
with collision checking and more accurate empty cube
detection (to help pruning the subdivision tree) is under
investigation.

For conformational search methods, an interested
user may consider the following table based on the num-
ber of rotatable bonds of the ligand.

≤ 3 systematic enumeration
4–9 geometric screening followed by energy

minimization
> 9 combination of geometric screening and

forward searches; but no good method
performing complete searches yet

Table 1: Recommended conformational search methods
based on number of rotatable bonds.
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Parameter Space The values of the rotatable
bonds are the torsional angles while the solutions to
the molecular equations are the tangent of half an-
gles. If a torsional angle θ is in [−π/2, π/2], the map-
ping from tangent to angle is straightforward: θ =
2 · arctan(tan(θ/2)). If θ is also in [π/2, 3π/2], let
θ′ = θ − π and θ′ is in the range [−π/2, π/2]. The
molecular equations will be re-written as polynomials
in tan(θ′/2). Thus the value of θ in [π/2, 3π/2] can be
readily recovered from θ′.

If there are k angles have values beyond [−π/2, π/2],
one system of molecular equations becomes 2k sys-
tems of molecular equations where all angles are within
[−π/2, π/2]. The union of solutions of these 2k systems
of molecular equations are the solutions of the original
molecular equations.

The geometric screening uniformly exploits the pa-
rameter space of the tangent of half angles, not the
space of the angles. Thus at the subsequent energy min-
imization process, torsional angles near 0 (or π)will be
perturbed in a narrower neighborhood, while torsional
angles near −π/2 or π/2 will be examined in a wider
neighborhood.

Improvements The improvement of geometric
screening on conformational searches has two folds.
First, geometric screening reduces the computational
time as the number of conformations to be examined is
reduced. Second, geometric screening performs a com-
plete search in the conformational space with respect to
the geometric constraints: if a solution exists, it will be
reported. Moreover, the improvement is independent
on the energy minimization process.

Conclusion Using subdivision scheme, geometric
screening can efficiently isolate and locate all real so-
lutions of the molecular equations, hence compute all
the geometrically favorable conformations for ligand-
receptor docking. To the best of our knowledge, this is
the first time that all real solutions of such systems (up
to nine variables) have been deterministically reported
and in a timely manner.
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