2008 IEEE/RSJ International Conference on Intelligent Robots and Systems

Acropolis Convention Center
Nice, France, Sept, 22-26, 2008

Replanning: A powerful planning strategy for hard kinodynamic problems

Konstantinos I. Tsianos and Lydia E. Kavraki

Abstract— A series of kinodynamic sampling-based planners
have appeared over the last decade to deal with high dimen-
sional problems for robots with realistic motion constraints. Yet,
offline sampling-based planners only work in static and known
environments, suffer from unbounded memory requirements
and the produced paths tend to contain a lot of unnecessary
maneuvers. This paper describes an online replanning algo-
rithm which is flexible and extensible. Our results show that
using a sampling-based planner in a loop, we can guide the
robot to its goal using a low dimensional navigation function.
We obtain higher success rates and shorter solution paths in a
series of problems using only bounded memory.

I. INTRODUCTION

Motion is essential for any autonomous robot to be able
to perform useful tasks. The simplest case is path planning,
where a collision-free kinematic path that takes a robot from
an initial to a final configuration is sought. A more interesting
class of problems is that of kinodynamic motion planning.
These problems are harder because they take into account
the physical limitations of a robot by including accelera-
tion constraints and non-integrable velocity constraints. The
complexity of motion planning even for the kinematic case,
renders complete algorithm intractable but for the simplest
cases [14]. A breakthrough in the area was achieved in the
last two decades with the development of sampling-based
planners that tradeoff completeness for computational effi-
ciency [5]. With the appearance of sampling-based planners,
researchers became more interested in problems with many
degrees of freedom and problems that are more realistic.
Realism in motion is driven both from robotic applications
but also from other areas, like the computer game industry.

So far, there have been some important steps towards
solving hard and realistic problems using (kinodynamic)
sampling-based planners [17]. In [11] the kinodynamic ver-
sion of Rapidly exploring Random Tree (RRT) can plan
for hovercrafts and satellites. Other encouraging results are
found in [3] and the Expansive Space Tree (EST) [4]. Path
Directed Subdivision Tree (PDST) [8], [10] is a recent algo-
rithm that introduced the idea of using a physics simulator
with the sampling-based planner. In this way it is possible to
incorporate realistic physical constraints such as gravity and
friction.

Despite all the recent successes, there are still a lot
of issues that need to be addressed. Some are related to
performance. In most cases, (kinodynamic) sampling-based
planners are designed to be and are generally thought of as
offline planners. The problems studied in our experiments

This work was supported by NSF IIS 0713623, CNS 0454333, and CNS

0421109. The authors are with the Computer Science Department, Rice
University, Houston, TX,77005, USA konstantinos,kavraki@rice.edu

978-1-4244-2058-2/08/$25.00 ©2008 IEEE.

Motion Generation Motion selection

Kmodynamlc L| select next Upd'ate.
sampling-based i navigation
) motion plan A
I function
plan n-1— Execute plan n-1 plan n
Fig. 1. Replanning: During replanning period n, the algorithm computes

the next motion plan while the robot executes the plan computed in the
previous replanning period.

section expose some important concerns related to offline
planning. For high dimensional problems, planners such as
RRT and PDST tend to require large amounts of time and
memory to compute a solution. This is more pronounced in
kinodynamic problems where the robot has a much more lim-
ited set of allowable motions. Moreover, from our experience
even when the solution is found, the paths to the goal tend
to be very long and contain a lot of unnecessary maneuvers.
Finally, an offline algorithm needs complete knowledge of
the workspace and approaches the motion planning problem
in isolation. There is no room for interfacing the planner with
other modules such as task planning, learning and sensing.

This paper follows a sampling-based approach but pro-
poses a new way of using the planner. Our algorithmic frame-
work tries to utilize the power of modern sampling-based
planners while dealing with the issues mentioned above.
The underlying idea is to use a kinodynamic sampling-based
planner in a closed loop and call it periodically (see Fig. 1).
Planning is an online incremental process where the robot
computes its future plan as it moves. Every plan hopefully
brings the robot closer to its goal and the total solution is
found after a series of consecutive replanning steps. The
tradeoffs when using such an approach will be discussed
later in the paper.

The idea of replanning is well established in the area of
artificial intelligence [6], [12] and there have been some
extensions for sampling-based planners both for kinematic
[2] and kinodynamic problems [1]. All these papers justify
the use of replanning by the fact that in unknown environ-
ments and in environments with moving obstacles offline
planning is not applicable. Although our ultimate goal is to
address such problems, this paper is an intermediate step and
contains a detailed study of the benefits that replanning can
yield in hard motion planning problems, even for cases where
offline planning is applicable. For the problems we examined,
we show experimentally that the replanning versions of
state-of-the-art sampling-based planners like RRT and PDST,

1667

are more effective than the offline versions, while using
only bounded amounts of memory. Moreover, even in cases
where the offline planners compute the solution faster, the
replanning algorithms produce shorter paths and the robot
takes much less time to actually move to its goal location.

The basic modules of our algorithm are described in
section II. Section III contains our simulated experiments.
The concluding section IV discusses the ongoing and future
extentions of this work.

II. ALGORITHM

The overall algorithm is a combination of modules with
distinct responsibilities. A block diagram is shown in Fig.
1. The planning process is broken down to replanning
periods Py, P;, P ... of equal duration. There are two major
steps within each replanning period; Motion Generation and
Motion Selection. Their purpose is to compute the robot’s
next motion. Computation takes place while the actual robot
is in motion, executing the plan computed in the previous
replanning period. During replanning period P,, the robot
executes the motion plan that was computed in period P,
and computes the plan that will be executed in period P, 1.
This is reasonable under the assumption that there is no
motion uncertainty and thus the state of the robot after
executing a motion can be computed in advance.

The rest of this section is devoted to describing the
modules within a replanning period in more detail.

A. Motion Generation

Given the state at which the robot will be after executing
the current plan, a motion generation phase is responsible for
computing a set of possible future motions. Those motions
can be thought of as possible future actions for the robot.
This paper focuses on the use of a kinodynamic sampling-
based planner.

A typical sampling-based kinodynamic planner proceeds
as follows. First a sample is selected. Then, a set of random
controls are sampled. Finally, those controls are applied on
a simulated model of the robot. Starting from the state
indicated by the selected sample, a new sample is generated
by integrating the robot model forward in time. By repeating
those steps, the planner produces a kinodynamic tree of
samples. With the information stored on the samples, each
path down the tree represents a possible future motion. By
extracting all the paths of the tree that describe motions of
durations of at least one replanning period we obtain the
desired discrete set of feasible motions that will be passed
on to the Motion Selection module.

The kinodynamic planner is called once in every a re-
planning period and has only limited time to run. For this
reason, we allow the kinodynamic planner to search only a
small part of the space around the robot’s state. Contrary to
offline kinodynamic planning, this is acceptable here since
each motion is not expected to have long term effects; our
replanning periods typically need to last from 0.5 to 1 second

or less!. Experiments examining the effect of the varying the
replanning period duration are given in section III-E below.
Within its time budget, it is important that the kinodynamic
planner achieves a fairly good local coverage of the space
around the robot to provide motion options in all directions.

Motion Generation is one of the most computationally
intensive steps and it is desirable to have an efficient imple-
mentation. An important step that can improve performance
of the kinodynamic planner in a replanning framework is
tree retainment. When the real robot executes a motion,
it is moving down on a specific path of the kinodynamic
tree. Consequently, the subtree that follows that path is still
usable and can be retained to be used as a starting point for
the kinodynamic planner in the next replanning period. In
systems with complicated dynamics this allows the planner to
have some available motion options for the imminent future
even when sampling fails a lot to extend the tree.

B. Motion Selection

Given a set of feasible motions, this module is responsible
for making the best motion selection that will take the robot
closer to its goal. In order to make this selection, we use a
navigation function to evaluate motions.

1) Navigation function: The Motion Selection module
needs to have a sense of direction and the ability to quickly
answer what is the best possible motion towards the goal
from any state. A navigation function with a single global
minimum at the goal that captures the true distance from
any state to the goal would be a perfect candidate [7],
[15]. Yet, designing such navigation functions can be a hard
and computationally expensive task for the kinodynamic
problems we are interested in. We resort to a discrete
navigation function on the 2D or 3D workspace, computed
with a wavefront propagation algorithm. The cells that are
covered by an obstacle take a value of infinity and don’t
participate in the computation. The rest of the cells get an
integer value representing the distance (in number of cells)
to the goal. The navigation function encodes all the possible
paths from any location to the goal. Fig. 2 shows an example
for a robot on a plane that needs to go from the bottom left
corner to the top left. In Fig. 2a, the darker the color, the
farther that cell is from the goal. As a result, the preferred
route is R1 through the narrow passage. There is also route
R2 which initially appears longer. In Fig. 2b the navigation
function is drawn as a 3D surface with the height at each
point being the value of the corresponding cell.

Given the navigation function, we evaluate all the can-
didate motion plans produced by Motion Generation. For
each motion plan we find inside which cell that motion ends.
The motion plan is assigned the value of that cell. Motion
Selection chooses the motion with the minimum value since
this will take the robot closer to its goal.

The caveat of computing the navigation function on the
workspace is that it can be misleading. Route R1 in Fig. 2a

'One can also imagine scenarios of an unknown or unpredictable envi-
ronment where it is not safe to search outside the sensing range of the robot,
but this case is beyond the scope of this paper.

1668

a. b.

Fig. 2. a. Navigation function on a 2D workspace. Darker means further
away. b. A 3D illustration of the navigations surface.

leads to the goal through a narrow passage. A point robot can
follow the series of cells with decreasing values indicated by
R1 to reach the goal. A real robot can easily get stuck in
front of a narrow passage through which it cannot fit, even
if there is a solution via another route (route R2 in Fig. 2a).
To resolve this issue the navigation function is updated as
the robot moves.

2) Updating the navigation function: The intuition is that
a robot advancing to its goal should not go through the same
area many times. If that happens, this is an indication that the
robot is moving in circles and/or has difficulty moving in the
direction suggested by the navigation function. It also means
that it may be worth exploring other alternative routes to the
goal before spending more time in this region - possibly a
hard narrow passage. To make such a decision, one needs
to detect the lack of progress. We capture it by keeping a
penalty value for each cell, representing how much it has
been visited. The navigation function computation is shown
in algorithm 1. The penalty values for all cells are initially
Zero.

Algorithm 1 NavigationFunction(cgoa)

I: Cgoal = 0

2: Q.push(cgoar)

3: while (Q # 0) do

4 ¢ =Q.pop()

5: for all ¢ € Neighborhood(c) do

6: if ¢’ # Obstacle and ¢’ has no value then
7: c walue = c.value + ¢ .penalty + 1

If a region of cells is penalized enough, the navigation
function landscape changes and the robot naturally tries to
go another way. Fig. 3a shows the effect of the updates. The
robot tried repeatedly to follow route R1 without success.
After spending some time in front of the narrow passage,
the navigation function changed due to penalization. This is
reflected by the dark cells around the narrow passage of R1
(Fig. 3a). As a result, the robot was lead to take route R2
(In Fig. 3b, route R2 is now lower than R1). We emphasize
the fact that the penalization process does not introduce local
minima to the navigation function as this would render the
whole approach problematic.

Probabilistic completeness: Most offline sampling-based
planners are probabilistically complete. If a solution exists

a. b.

Fig. 3. a. After some updates, the penalization around the narrow passage
of route R1 makes this route less preferable b. A 3D illustration. Now route
R2 is a better option.

the planner will find it given enough time. In a replanning
framework the kinodynamic planner runs under strict time
limitations, and probabilistic completeness is lost. Although
in our experiments we have never observed our algorithm
getting stuck in one part of the space, it is an open question
whether our updating technique can effectively restore prob-
abilistic completeness. Note also that probabilistic complete-
ness is only meaningful in static environments. Replanning
is eventually intended for planning in changing and partially
known environments where probabilistic completeness may
need to be redefined as a concept.

III. EXPERIMENTS
A. Experimental setup

Robots: This section presents a series of experiments
on two autonomous robots; a segway and a blimp. Both
robots present significant difficulties to planners because they
are high dimensional, underactuated and have kinodynamic
constraints. The segway moves on a plane and its state can
be fully described by seven parameters (z,y, 6, o, &, v, 9) T
and y provide the location and 6 the orientation. « provides
the segway’s tilting angle and the last three parameters are
velocities. The segway is controlled only by two torques
applied on its two wheels. The blimp is a model for a
balloon and moves in a 3D workspace. Its states are described
by parameters (z, y, 2,0, Viwdaz: Viwdy, Vz,w). Its location is
given by (z,y, z) and its orientation is 6. Its linear velocity
has two components V4, and V4, that are parallel to the
ground and one vertical V. There is also a rotational velocity
w describing the rate of change of orientation. A blimp has
three controls. One force along the axis (cos(f), sin(6),0),
a second vertical force along (0,0,1) and a torque around
(0,0,1) 2. All forces and torques for both models are
bounded and the robots are affected by gravity and ground
friction (for the segway). To simulate the behavior of the
robots the ODE open source physics simulator was used [16].
Algorithms: For our experiments, we used two kinodynamic
planners. A variant of the PDST algorithm and RRT. In
the rest of this Section, PDST and RRT stand for the
offline planners, while RPDST and PRRT are the replanning
versions. RRT is described in [11]. The bias used, was 7%

2For an extensive illustration of the segway dynamic model see [13]. The
blimp model is given in more detail in [9].

1669

a. b.

Fig. 4. a. The block environment, b. The door environment.

for the offline version and 3% for the replanning version.
The distance metrics were hand-tuned weighted Euclidean
distances for both the segway and the blimp. For the segway
the weights were w, = w, = 035wy = 0.1,w, =
0.1, wg = w, = wy = 0.033. For the blimp the weights were
Wz = wy = w, = 0.32,ws = 0.0009, Wyeiocities = 0.009.

The basic PDST implementation is given in [10]. The
algorithm follows the steps described in section I1I-A. PDST
uses a space subdivision scheme to bias the search towards
empty unexplored areas and every sample knows the volume
of the part of the space it lies in. To allow for backtrack-
ing, each sample also has a priority value which increases
exponentially everytime the sample is selected. Each sample
is assigned a score computed as score = % In every
selection step the sample with the minimum score is selected.
It is clear that basic PDST has no biasing towards the
goal as RRT does. For fairness of comparison, we have
added a simple bias using the navigation function. In our
implementation sample scores are computed as [V * %
where N is the distance estimation given by the navigation
function. In this way, samples that are closer to the goal
(lower N) have lower scores and have more chances of
being selected for future propagation attempts. To plan for
the robots described above, subdivision was done on the
x,y, 0, a dimensions for the segway and on z, y, z, 6 for the
blimp.

Finally, for the replanning versions in all our experiments
the duration of the replanning period was set to 0.5 sec.
Environments: The environments for our experiments were
designed to test the above algorithms in a variety of narrow
passages and cases of a misleading navigation function. The
block environment (Fig. 4a) is a structured and symmetric
environment with multiple ways to reach the goal. The door
environment (Fig. 4b) contains an interesting and slightly
unusual narrow passage. The segway needs to go under a
door. Given the door’s height, this is only possible if the
segway is tilted enough, which in turn requires the segway
to be moving fast enough. The third segway environment is
the building (Fig. 5a). The shortest route to the goal leads
through a passage that is too narrow for the segway. The goal
is reachable via two longer routes. The blimp was tested on
one environment (Fig. 5b). The blimp has to fly through a
window and then hover between two parallel plates to reach
its goal.

Setup: All experiments were performed on one core of an

b.

Fig. 5.
blimp

a. The indoor building environment, b. The environment for the

desktop machine with an Intel Core 2 duo processor and 4
gigabytes of memory. All experiments have a time limit of
10 minutes, and are averages over 50 runs.

B. PDST vs RRT

First, we are interested in comparing performance of the
offline planners. Since RRT is a well-known standardized
algorithm, this will help us confirm that PDST is also pow-
erful state-of-the-art planner. The comparison was performed
on the building and door environments. In building, PDST
solved the problem 95% of the time and took on average
40.2 sec. RRT succeeded only 12% of the time and runtimes
averaged to 433.1 sec. In door we ran experiments of
incremental difficulty by lowering the height of the door.
Table I shows the results for four height values. The left
column states how tilted the segway must be to be able
to go under the door. The segway’s maximum tilting angle
is 25 degrees. In both environments RRT requires more
time and fails more often, so PDST is indeed a powerful
kinodynamic planner. The difference in performance could
also be indicating that using the navigation function to bias
PDST can be very powerful.

Difficulty (deg) PDST RRT
Very Easy : (8.8 — 25) 1.5 sec | 100% 68.9 sec 99%
Easy : (12.13 — 25) 2.1 sec | 100% 87.9 sec 98%
Medium : (16.26 — 25) | 16.5 sec | 100% | 171.53 sec | 19%
Hard : (21 — 25) N/A 0% N/A 0%
Very Hard : (23 — 25) N/A 0% N/A 0%
TABLE I

C. Replanning vs Offline planning

This is an important set of experiments, that exhibit
the beneficial effect of replanning. Due to the decreased
performance of RRT, our experiments are limited to pdst,
RPDST and RRRT.

Segway: Of interest is the behavior of the algorithms as the
difficulty of a problem increases. In block we set five goals
that are increasingly far from the starting location. In door

30f course, this may not be the true difference between the algorithms,
since RRT can be handtuned to have better performance. Note though, that
most powerful versions use a bidirectional tree. Since we use a physics
simulator and allow the segway to slip, it is not possible to use those versions
since they require the ability to integrate backwards in time.

1670

= RPDST
“*RRRT

-©-PDST planning
*7PDST total

Average time to solve(sec)
n
S

G1 G2 G3 G4 G5
Problem difficulty
b.
. x1o’ ‘
a [—
2 “ERPDST
£ “©RRRT
& 1.5 FPDST |
S
*
2
s 1
o
o
©
S
> 0.5
o
£
2 °
1 G4 G5

G3
Problem difficulty

Fig. 6. a. Time to plan and solve increasingly hard problems in block using
PDST , RPDST and PRRT , b. Average memory requirements.

we have five goals by decreasing the height of the door as
described in the previous subsection.

Figures 7a and 6a plot the time it takes to solve each
problem. PDST uses its “global” view of the space to find
the solution faster that the replanning algorithms. Faster
planning though comes at price in memory as shown in
figures 7b and 6b. As the problems get harder, especially in
door, the memory requirements explode. Replanning finds
the solution as concatenation of small partial paths. As
expected, the memory requirements are practically constant
with RPDST being more memory intensive over PRRT (by
a constant factor). The increasing demand in memory has
severe negative effects. In door, there is no data for PDST
beyond G3 since the planner never solved the problem within
the 10 minutes time limit. This is probably because the data
structures become very slow when lookups and updates are
needed on large numbers of samples. Allowing for more
time would eventually lead to memory exhaustion forcing
the algorithm to terminate. On the other hand, the replanning
algorithms only use bounded memory and can thus run
indefinitely.

Looking back at the time plots in Figures 7a and 6a
an interesting observation can be made. When solving a
planning problem, the time needed for the real robot to
execute the plan and move to its final location is a factor to
consider. For the replanning algorithms this time is the same
as the planning time. PDST runs offline so we also plot the
total time which is the planning time plus the time it takes
to execute the plan. Notice that the replanning algorithms
are doing much better in block and equally good in door
until G3. This means that the paths produced by replanning
tend to be shorter. This is a interesting finding. Replanning
is in a sense, a divide and conquer greedy strategy. The
total problem is broken down into smaller ones, and in each

BRPDST 2
250 RRRT
-©-PDST planning
% PDST total

Average time to solve (sec)

1 G2 G3
Problem difficulty

’ b.
x 10

& RPDST|

©RRRT

PDST

Memory usage (avg # of samples)
»

G3
Problem difficulty

Fig. 7. a. Time to plan and solve increasingly hard problems in door using
PDST, R-PDST and R-RRT, b. Average memory requirements.

step, the robot executes the best possible motion. Guided by
the navigation function, this strategy can yield much shorter
paths.

Notice also, that although RRT was shown to have sig-

nificant difficulties in the problems at hand, its replanning
version is very competitive, and in some cases even slightly
better than PDST. This is explained by the fact that RRT and
PDST were compared in results for solving the full problem.
When we run RRT and PDST for the duration of a replanning
period, the differences become insignificant.
Blimp: Our results so far, were based on experiments with
the segway. The experiments we have for the blimp also
confirm our findings. All planners solved the problem on
all runs. PDST solved the problem at an average of 37.65
sec just for planning and 190.26 sec total when the execution
time is added. On the other hand, RPDST ’s average runtime
was 153.02 sec and PRRT ’s 125.06 sec. Again the offline
planner find the solution much faster. Yet, PDST required
on average 30 times more memory than RPDST and about
300 more than PRRT . Furthermore, the paths computed by
PDST are much longer than those of RPDST and PRRT as
indicated by the total times above.

D. Effect of Updating the Navigation Function

Up to now PRRT and RPDST were tested on problems
where the navigation funtion was not misleading. Recall that
in building the navigation function leads through a passage
that is too narrow. As mentioned in Section II, to detect
such cases, the navigation function is updated as the robot
moves. In this experiment, each cell got a penalty of 0.05
every time it was used. The results are encouraging as both
replanning algorithms found the solution in 100% of the
attempts. RPDST took 47.7 sec in average while PRRT took
69.95 sec. To compare, PDST ’s planning time was reported

1671

RP(sec) | success
L 0.1 96 %
7 a0 0.25 100 %
¢ aw 05 | 100 %
E 250 1 88 %
M 1.5 68 %
g 200
= 2 53 %
g 25 44 %
g 1w 3 40 %
5 1 2 3 4 5 3.5 28 %
Replanning period (sec) 425 17 %

Fig. 8. Time it takes RPDST to solve G4 in door for replanning periods
of different duration and the success ratios for finding the solution in 10
minutes.

in ITI-B to be 40.2 sec and the average fotal time was 98.51
sec.

E. Duration of replanning period

Our final set of experiments, investigates the effect of
the duration of a replanning period (RP). Notice that if
the replanning period is very small the algorithms tend to
become more “reactive”, while as the replanning period gets
longer the algorithms get closer to offline planners. Figure
8 shows the time it takes to solve G4 in door for different
replanning periods. Interestingly, as the periods get longer,
performance deteriotes. The time to solve increases, and the
success ratio drops. The results seem to indicate that the
replanning period must be set to the shortest possible value,
that is still long enough for the motion generation phase to
be meaningful.

IV. CONCLUSIONS

Recently there has been an increased interest towards
high dimensional and more realistic motion planning prob-
lems. Some significant progress was made with the use of
kinodynamic sampling-based motion planners. Yet, offline
kinodynamic planners still face difficulties for some hard and
interesting problems. They use significant amounts of time
and memory resources and the computed solutions tend to
contain a lot of redundant and unecessary motions for the
robot. In this paper, we presented a set of problems that
expose these issues.

Our proposed solution is to use an online replanning
strategy. Using sampling-based kinodynamic planners in a
closed loop in combination with a guiding navigation func-
tion has allowed us to address the time and memory issues
mentioned above. Our experiments with two state-of-the-art
sampling-based planners show significant improvements in
terms of total runtime and success rates for online replanning
against their offline counterparts. Furthermore, the algorithms
run using only bounded memory resources. Sampling-based
planners are excellent at doing a local search and solving
narrow passages but also tend to lose time searching un-
interesting parts of the space. Within our framework, the
planner uses the navigation function to focus on the critical
parts of the space. The ability to backtrack and search

alternative possibilities is achieved by constantly updating
the navigation function.

This paper is a study of the benefits of replanning in
problems with static and known environments. While this
may be the limit for offline planners, it is only the starting
point for replanning algorithms. Replanning is by default
adaptive and captures the fact that knowledge about the
robot’s environment might change in time. Our current and
future work focuses on addressing problems with dynamic
and partially known environments, adding a higher level
tasks planner in the replanning loop to deal with more
complex tasks and augmenting the loop with an estimation
module that deals with motion uncertainty.

REFERENCES

[1] Kostas E. Bekris and Lydia E. Kavraki. Greedy but safe replanning
under kinodynamic constraints. In IEEE International Conference on
Robotics and Automation, pages 704-710, Rome, Italy, April 2007.
IEEE press.

[2] Dave Ferguson, Nidhi Kalra, and Anthony Stentz. Replanning with
RRTs. In IEEE International Conference on Robotics and Automation,
pages 1243— 1248, 2006.

[3] Emilio Frazzoli, Munther A. Dahleh, and Eric Feron. Real-time
motion planning for agile autonomous vehicles. In American Control
Conference, volume 1, pages 43-49, 2001.

[4] David Hsu, Roben Kindel, Jean-Claude Latombe, and Stephen Rock.
Randomized kinodynamic motion planning with moving obstacles.
International Journal of Robotics Research, 21(3):233-255, 2002.

[5] Lydia E. Kavraki, Petr Svestka, Jean-Claude Latombe, and Mark H.
Overmars. Probabilistic roadmaps for path planning in high dimen-
sional configuration spaces. [EEE Transactions on Robotics and
Automation, 12(4):566-580, August 1996.

[6] Sven Koenig and Maxim Likhachev. Improved fast replanning for

robot navigation in unknown terrain. In /EEE International Conference

on Robotics and Automation, volume 1, pages 968— 975, 2002.

Prashanth Konkimalla and Steven M. LaValle. Efficient computation

of optimal navigation functions for nonholonomic planning. In

Proceedings of the First Workshop on Robot Motion and Control,

pages 187-192, 1999.

[8] Andrew M. Ladd. Direct Motion Planning over Simulation of Rigid
Body Dynamics with Contact. PhD thesis, Rice University, Houston,
Texas, December 2006.

[9] Andrew. M. Ladd and Lydia. E. Kavraki. Fast tree-based exploration
of state space for robots with dynamics. In M. Erdmann, D. Hsu,
M. Overmars, and A. F. van der Stappen, editors, Algorithmic Foun-
dations of Robotics VI, pages 297-312. Springer, STAR 17, 2005.

[10] Andrew M. Ladd and Lydia E. Kavraki. Motion planning in the
presence of drift, underactuation and discrete system changes. In
Robotics: Science and Systems, pages 233-241, Boston, MA, June
2005. MIT Press.

[11] Steven M. LaValle and James J. Kuffner. Randomized kinodynamic
planning. International Journal of Robotics Research, 20(5):378-400,
May 2001.

[12] Maxim Likhachev, Dave Ferguson, Geoff Gordon, Anthony Stentz,
and Sebastian Thrun. Anytime dynamic a*: An anytime, replanning
algorithm. In Proceedings of the International Conference on Auto-
mated Planning and Scheduling (ICAPS), June 2005.

[13] Kuaustubb Pathak, Jaume Franch, and Sunil K. Agrawal. Velocity and
position control of a wheeled inverted pendulum by partial feedback
linearization. In /IEEE Transactions on Robotics, 2005.

[14] John H. Reif. Complexity of the mover’s problem and generalizations.
In IEEE Symposium on Foundations of Computer Science, pages 421—
427, 1979.

[15] Elon Rimon and Daniel E. Koditschek. Exact robot navigation
using artificial potential functions. IEEE Transactions onRobotics and
Automation, 8:501-518, 1992.

[16] Russell Smith. Open dynamics engine.
September 7, 2007.

[17] Konstantinos I. Tsianos, Ioan A. Sucan, and Lydia E. Kavraki.
Sampling-based robot motion planning: Towards realistic applications.
Computer Science Review, 1(1):2-11, August 2007.

[7

—

http://www.ode.org. seen

1672

