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Abstract: In automated assembly, before parts can be put
together, they often have to be appropriately oriented and po-
sitioned. The device performing this task is generally referred
to as a part feeder. A new class of devices for non-prehensile
distributed manipulation, such as MEMS actuator arrays, vi-
brating plates, etc., provide an alternative to traditional me-
chanical platforms for part feeding. These devices can be ab-
stracted as programmable vector fields. Manipulation plans
for these devices can therefore be considered as strategies for
applying a sequence of fields to bring parts to some desired
configurations. Typically, to uniquely orient and position a
part, several fields have to be sequentially employed. Re-
cently, it has been proven that there exists a combination of
the unit radial field and a constant field that induces a unique
stable equilibrium for almost any part. However, that work
focuses mainly on an existential proof and fails to address
how to compute the field for a given part. We propose in this
paper a radically different field with a proof confirming that
the field induces a unique stable equilibrium for almost any
part. This proof leads us to a method for computing a single
field for orienting a given part, together with the correspond-
ing stable equilibrium configuration of the part.

1 Introduction

In automated assembly, before parts can be put together,
they often have to be appropriately oriented and positioned.
The device performing this task is generally referred to as
a part feeder. The traditional and mostly used automated
part feeder is the vibratory bowl feeder [8]. Vibratory bowl
feeders are designed to orient a single part shape, therefore
they have to be re-designed and re-built to handle different
shapes. Some recent research attempts to develop system-
atic approaches for designing and analyzing vibratory bowl
feeders [2], while the mainstream research in manufacturing
has focused in developing more flexible and more robust plat-
forms, such as programmable part feeders. This type of part
feeder can be programmed to handle different parts without
the need for hardware modification (e.g., [9, 12, 10, 1, 7]).

A new direction in programmable part feeding that has re-
cently gained attention in research is the use of a new class
of devices for non-prehensile distributed manipulation. Ex-

amples are, in microscale, the use of MEMS actuators arrays
[4], and in macroscale, the use of mechanical devices [15],
vibrating plates [7], or air jets actuators [3]. The analysis of
the capabilities of these devices is based on the abstraction of
these devices as programmable vector fields. This analytical
approach is pioneered by [4, 5], where programmable vec-
tor fields are used to represent MEMS actuator array, and the
properties of certain force fields are discussed. The underly-
ing idea is that a part lying in a force field is driven toward a
stable equilibrium by the resultant force and torque induced
by the field at the planar contact. This basic idea allows a
manipulation task to be considered as a strategy for apply-
ing a sequence of fields to bring a part from one equilibrium
to another until it reaches a desired configuration. In [4], it
has been shown that polygonal parts can be oriented by a se-
quence of squeeze fields. The sequence is planned using an
algorithm similar to the one in [12] for orienting polygonal
parts with a sensorless parallel jaw gripper. The number of
steps in the sequence depends on the complexity of the geom-
etry of the convex hull of the oriented part and the uniqueness
of the final orientation is only upto modulo ������� . Another
research direction attempting to apply force fields to the po-
sitioning problem aims at inventing a single force field that
can induce a unique stable equilibrium for any part. Such
a field would be able to orient any part in one step without
any sensor or any sequencing control. Along this avenue, the
elliptical force field that induces two stable equilibria was in-
troduced in [13]. Further progress was presented recently in
[6] with a proof confirming the conjecture in [4], namely, that
there exists a combination of the unit radial field and a small
constant field capable of uniquely orienting and positioning
parts. The proof is based on characterization of local minima
of the lifted potential function induced by the field. Unfortu-
nately, due to the nature of the proof, this work cannot address
how to compute a finite magnitude of the small constant field
that satisfies the proof. Therefore it is impossible to explicitly
specify the field for a given part. Instead, the determination
of the value of the constant field value is done experimentally
using a standard search procedure.

In this paper, we will introduce a force field that induces
a unique stable equilibrium for almost any part with uniform
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support. This proposed field is a combination of a linear ra-
dial force field and a constant force field. A linear radial force
field is simply a radial force field for which the magnitude of
the force at a point is a linear function of the distance from
the point to the center of the field. The proposed field is there-
fore defined by the parameters consisting of the magnitude of
the constant force field and the coefficients defining the lin-
ear function associated with the linear radial force field. The
main goal of this paper is to prove that, for a given part, we
can specify the parameters of the proposed field such that the
part has a unique stable equilibrium when it is placed under
this parameterized field. The proof relies on geometric rela-
tionship between the proposed field and the inducing force
and torque. This relationship will be presented in Section 4
and the main proof will be presented in Section 5. The proof
begins by specifying the parameters of the field according to
the geometry of a given part. For this parameterized field, the
proof then continues with the following two steps. The first
step applies some geometric properties of constant fields and
linear radial fields, which will be presented in Section 4, to
show that there are at most two possible equilibrium configu-
rations. Then, based on the potential function concept which
will be discussed in Section 3, the second step determines that
only one of the two equilibria is stable. Unlike [6], the values
of all parameters of the field for orienting a given part can be
determined. The determination requires the computation of a
unique point of the part which we will call a pivot point. This
computation is presented in [18].

The rest of the paper is organized as follows. We will be-
gin by giving some background and necessary notations in
Section 2. Then, the concept of potential function which will
be used for determining stability will be presented in Section
3. In Section 4, some properties of constant fields and linear
radial force fields which are the foundation of the proof of
the main result will be presented. Then, in Section 5, we will
present Lemma 5 which constitutes the main result describ-
ing the proposed field with a proof verifying that it induces a
unique stable equilibrium for almost any given part. Through-
out this paper, when we mention the main result, we refer to
Lemma 5 and likewise when we mention the main proof, we
refer to the proof of Lemma 5. We will then conclude the
paper with some discussion in Section 6.

2 Background

We consider a two dimensional part with a uniform mass
and area

�
that is placed in the plane of a force field. We

attach the world frame ��������� to this plane.
The part is in equilibrium under the field 	
��������� when the

resultant force 
 and torque � vanish. More precisely, an
equilibrium is achieved if and only if


�� ��� 	�������������������� �������

� � ����� ��! #" 	������������������$� ���
where both integrations are performed over the plane region
occupied by the part. Note that the lateral force modeling
used here results in first order dynamics of the motion of parts
under force fields. This is a commonly used hypothesis in part
orientation with force fields [5, 4, 13].

In this paper, we deal with only two types of force fields:
constant fields and radial fields [5]. A constant field is a force
field with the same force at every point and a radial field is
a force field for which all forces point toward a single center
and the magnitude of the force at a point depends only on the
distance between the point and the center. It is clear from the
definition above that the resultant force induced by a radial
field must pass through the center of the field (this simple
property will become useful later on). We denote by a tuple%'& �)(*�,+���- a radial field with center

&
and the force at any point. be the unit force in the direction from . to

&
, scaled by (*�'+/�

where + is the distance between . and
&
. Note that a linear

radial field is a radial field for which the function ( is linear in+ . We also use a pictorial representation to illustrate a radial
field. Figure 1 shows an example.

c
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Figure 1: Pictorial representation of the radial field 0�1�2�3/465�798 , with3/465�7;:=< . The arrows depict the direction of the forces.

We define the pivot point1 of a part under a radial field
to be a fixed point in the part’s coordinate frame situated at
the center of the field when an equilibrium is achieved (see
Lemma 4 for the uniqueness of the pivot point under some
radial fields).

3 Potential Function

Consider a two dimensional part with a uniform mass that
is placed in the plane of a force field. Under this force field,
let >#? IR @BAC IR be a potential function of a particle in the
plane ��������� . From mechanics [14, 17], the force exerted on
the particle under this potential function is ��DFEHGEJI �KDLEHGEHM �ON .
Because a rigid part is essentially a system of particles, its
potential energy is thus the summation of the potential ener-

gies of all the particles. Given that
�!PQ  is the position in

the world frame ��������� of a reference point in the part frame
and R is the orientation of the part frame with respect to the
world frame, the potential energy of the part at a configuration

1We borrow this term from [4] where it is defined only for the unit radial
field.



� � � P � Q ��R�� can be written as

� � � ��� � � >*����������������� �
where the integration is performed over the plane region oc-
cupied by the part at the configuration � . To distinguish from
the potential function of a particle, we call

� ? IR @ " ��� AC IR
the lifted potential function (after [6]). It can be shown [6]
(using continuity of > and the compactness of the part) that

�
is a continuous function of class � � and (using commutativ-
ity of the integral and differential operators) that the wrench���	���
�	� �
� �ON exerted on the part can be written as:

� � � � � � D�� ��� � P �� � � � � � D�� ��� � Q ��� �� � � ��� D�� ��� �/R�� (1)

In other words, we may consider the part as a particle rolling
on the hyper-surface

�
under the influence of the force de-

rived from the surface’s negative gradient. Clearly, when this
particle is at a critical point of the surface, the surface’s gradi-
ent becomes zero and as a result the part is in an equilibrium
because the force vanishes. From the type of the associated
critical point (i.e., local minima, local maxima, saddle points
[16]), we can also determine the stability of the equilibrium .
It is well known that only local minima correspond to stable
equilibrium configurations.

It is important to keep in mind that every smooth force
field has an associated potential function counterpart. This
allows us to apply the concept mentioned above to investigate
the stability of an equilibrium configuration in the second step
of the main proof.

4 Geometry of Force Fields
As mentioned earlier, the proposed force field is a combi-

nation of a linear radial field and a constant field. This section
studies some properties of these two types of fields that are
helpful for deriving the main proof. Instead of purely analyz-
ing the fields algebraically, we seek geometric explanations.
As we will see soon, this approach nicely yields intuitive in-
sight about the fields.

We will begin with the following lemma which is a crucial
part of the work in this paper. It demonstrates how to decom-
pose a constant field into two radial fields. Its significance is
that the resulting two radial fields can be freely translated and
the distance between their centers can be varied. This free-
dom allows geometric manipulation of the fields as we can
choose to place the two fields in such a way that our analysis
can be simplified. This benefit will become clearer in the next
section where this strategy is thoroughly used.

Lemma 1 The constant field
� D��

�  is equivalent to the

combination of two radial fields � �������� % ���(  ����+�- and

� @ ������ % ���! �(  �JD"��+�- , where ��� �#� (Figure 2).
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Figure 2: Decomposing a constant field into two radial fields.

PROOF: Clearly, at an arbitrary point
��$%  , the force

induced by � � is � � � D $(LD %  and the force induced by

� @ is D"� ���& � D $(LD %  (see Figure 3). Thus, the resul-

tant force from both fields at the point
� $ %  is given by

� ��� D $ D � D �  '$(LD % D (  %  � D"� � �
�  .
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Figure 3: An arbitrary point

(#)*,+
with respect to the two radial

fields’ centers.

The following two lemmas express the relationship be-
tween the resultant forces induced by the fields and the vec-
tors from the pivot points to the centers of the fields. This
geometric relationship is very helpful as we can use it to vi-
sualize the effect of the fields on a part at different configura-
tions. In the main result, Lemmas 2,3 provide important con-
straints for identifying possible locations of two pivot points
at an equilibrium configuration.

Lemma 2 For the resultant force 
 induced by the radial

field � ������ %.- �
/  ��+/- on a part, it is true that 
10 D C. -'2 �
and 3 
43 2 �53 . - 3 � , where constants / �
�76 � and . denote
the position of the pivot point of the part under the field �
(Figure 4).
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Figure 4: The resultant force 8 induced by the radial field 0:9/2<;"=> 5�8 .
The proof of this lemma can be found in the Appendix.

Lemma 3 The resultant force induced by the radial field%.- ����+�- on a part is � D C. - � , where . denotes the position of
the centroid of the part (Figure 5).
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Figure 5: The force 8 induced by the radial field 0:9/2 > 5�8 .
The proof of this lemma is similar to that of Lemma 2 and

is omitted here . The key idea is that the pivot point under
the field

%.- �
��+/- is the centroid of the part. This fact follows
immediately from the definition of the centroid [17].

Lemma 4 A part under the non-zero radial field � � ����%.- ��/  � +�- � / ��� 2 � has a unique pivot point.

The proof of this lemma can again be found in the Appendix.
In the main result, this lemma is used together with Lemmas
2 and 3 to identify all possible equilibrium configurations.

5 The Proposed Field

The following lemma presents the main result. In the proof
of the lemma, we put together the material we have discussed
so far to show that a combination of the radial field � � and
the constant field � � induces a unique stable equilibrium for
almost any part. The proof consists of two steps. The ob-
jective of the first step is to identify all possible equilibrium
configurations. We transform the constant field � � into two
radial fields (Lemma 1), one of which is placed to coincide
and combine with the radial field � � . The analysis is then
performed on the arrangement of the pivot points under the
two resulting radial fields with respect to the centers of the
fields. Based mainly on Lemmas 2 and 3, there are two such
arrangements possible at equilibrium. In the second step of
the proof, using the potential function concept, we show that
one of the two arrangements corresponds to an unstable con-
figuration, while the other corresponds to a stable equilibrium
configuration.

Lemma 5 Let / ��� and � be arbitrary positive constants, and
let � be the distance between the centroid and the pivot point

of a part under the radial field
� ������ % - ��/  � �  � ��+�- . If � 6

� , then the part has a unique stable equilibrium configuration

under the combination of the radial field � � ������ % - ��/  ��� �  
� ��+�- and the constant field � � � ���� � D"���

�  . This stable

equilibrium occurs when the part is in the configuration such
that its pivot point under

�
is positioned at

-
and its centroid

is positioned at
- D � �

�  .

Before proceeding to the proof, note that determining the
distance � for a given part requires the computation of the
part’s centroid and the part’s pivot point under the radial field�

. Because the centroid of a part is essentially the center of

the distribution of the part’s area, it can therefore be com-
puted, in general, using a numerical integration method. The
pivot point can be computed using a numerical optimization
of the corresponding potential function. We present in detail
in [18] a variation of this optimization approach for comput-
ing the pivot point under a linear radial field that is of the
same type as that of

�
.

PROOF STEP 1: Identifying Possible Equilibria Without

loss of generality, let us assume that
- � � �

�  . From

Lemma 1, the constant field � � is equivalent to the combina-

tion of two radial fields
% -�� � � D �

�  �
��+/- and
%.- �KD"� +�- .

Combining these two radial fields with � � yields two radial

fields
� � � ���� %.- � �
��+/- and

� ������ % - ��/  ��� �  � ��+FD ��+/- �%.- ��/  �.�  � ��+/- . Now let us consider the fields
� �

and
�

and
denote respectively by 
 � and 
 their inducing forces. At an
equilibrium, it is necessary that the line of action of the force
 � coincides with the x-axis (otherwise, a non-zero moment
will result). For the line of action of the force 
 � to coincide
with the x-axis, following Lemma 3, the centroid must be on
the x-axis.

At an equilibrium configuration, let us denote by . � �� �
�  the position of the centroid (the pivot point under

� �
),

and by . the position of the pivot point under
�

. We consider
two cases:
� case

�
	 �
Since the distance between . and . � is defined to be � , we can

write . � . �  � ����
������� � �  � ���& � ��
����� ��� � �  , where
�

is

the angle between
DJC. � . and the x-axis. Straightforwardly, we

obtain 3 . - 3 @ D#3 . � -�� 3 @ ����� � � ��
���� D � � , which implies that3 . - 3 2 3 . � - � 3 (when
��	 � ). From Lemma 3, we can write3 
 � 3 � �53 . � - � 3 � and from Lemma 2, we can write 3 
43 2�.�  � � 3 . - 3 � . We then obtain

3 
43 D 3 
 � 3 2�� � �
3 . - 3 D 3 . � - � 3 �  � 3 . - 3�� � �
Clearly, at an equilibrium, it is necessary that 3 
43)D73 
 � 3�� � .
This condition implies that the right side of the above in-
equality must be zero. Because 3 . - 3 2 3 . � - � 3 , as estab-
lished earlier, this can occur only at a configuration for which3 . - 3*� 3 . � - � 3*� � . From the fact that the centroid and the
pivot point under

�
are unique (Lemma 4), when � 6 � (i.e.,. �� . � ), it is obvious that this configuration is unique. In fact,

it is an equilibrium configuration because both pivot points
are situated at their centers and therefore 
 � � 
 � � (Fig-
ure 6).

� case
� 6 �

Let us assume that the part is in equilibrium when
� � �!� 6 � .

From Lemma 1, we can write the constant field � � as a
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Figure 6: The equilibrium configuration with the two pivot points
at the corresponding centers (����� 9 � and ��� 9 ).

combination of the radial fields
% - � � �

�  � ���	�
 +/- and%
� � � � � �
�  �KD ���	 
 +/- . Combining these two fields with � �

yields two radial fields � ������ % - ��/  ��� �  � ��+  ���	 
 +/- and

� � ������ %�� � �KD ���	 
 +/- . When the centroid is positioned at
� �

, the
resultant force induced by � � is zero. An equilibrium can be
achieved only when the resultant force induced by � is also
zero. This occurs when the pivot point under � is positioned
at
-

. By Lemma 4, this configuration is unique. That is, we
have shown that for a given

� �
, the associated equilibrium is

unique. It is also easy to see that
� �

is unique as we can reduce
the proof of the uniqueness of

� �
to the proof of the previous

case (
� 	 � ) by replacing

�
with � and

� �
with � � . As a

result, we can conclude that if an equilibrium exists in this
case, it is unique.

STEP 2: Analyzing Stability In the previous step, we have
shown that there are at most two equilibrium configurations.
Here, we will first show that the possible equilibrium found
in the case

� 6 � is unstable. Then we will prove the exis-
tence of a local minimum of the lifted potential function of
the proposed field (the combination of the field � � and the
field � � ). This will deduce that the equilibrium configuration
found in the case

�
	 � is the unique stable equilibrium.
Consider the part under the field � � alone. Let us denote by��� 
 the associated lifted potential function. Because � � is ro-

tational symmetric about the center, it is sufficient to consider
the part at a fixed orientation. For convenience, let the cen-
troid be the reference point of the part frame. For the fixed
orientation, this setup deduces that the configuration of the
part is the position of the centroid and the equilibrium con-
figuration under � � is the position of the center of the field� � (because the part is in equilibrium when the position of
the centroid is at the center of � � ). From Lemma 3, the re-
sultant force always points in the direction from the center
of � � to the centroid. Following Equation 1, this means that
the gradient of

��� 
 always points toward the equilibrium con-
figuration, and therefore, the lifted potential function

��� 
 is
maximized there.

Now let us consider the part under both fields � and � � and
denote by

�
the associated lifted potential function. Let � be

the set of all configurations for which the pivot point under� is positioned at the center of � (this set is homeomorphic2

2topologically equivalent

to
�!�

). Obviously, � exerts a zero force on the part at any
configuration in the set � . Therefore, the gradient of

�
at any

configuration in the set � is essentially the gradient of
��� 


at the same configuration and the lifted potential function
�

on the set � is simply a copy of the lifted potential function��� 
 (with a constant shift). Clearly, the set � contains the
possible equilibrium configuration found in the case

� 6 � .
At this configuration, the centroid is positioned at the center
of the field � � , which maximizes the lifted potential function� � 
 as established in the previous paragraph. This means that
the lifted potential function

�
of this configuration is greater

than that of other configurations in the set � . Since � is con-
nected, we can conclude that this configuration is not a local
minimum, and therefore is unstable.

We have shown that if there exists an equilibrium accord-
ing to the case

� 6 � (existence is not proven), it is unstable.
To ensure that the equilibrium according to the case

� 	 � is
stable, in the following paragraph, we will prove the existence
of a local minimum of the lifted potential function associated
with the proposed field.

Let us denote by
�

the lifted potential function of the pro-
posed field (the combination of the field � � and the field � � ).
Straightforwardly, the function

�
is induced from the poten-

tial function >*��������� � �����  /�� � @  � @  @ �����@ �6� @  � @ � ,
where

� ��  is a position in the plane of the proposed field

(coordinates of the world frame). When the part is at an ar-
bitrarily fixed orientation R , it is obvious that as the config-
uration of the part diverges (in any direction), the potential
energy increases toward infinity. Together with the fact that
the function

�
is smooth, this implies that for the given fixed

orientation R , the function
�

has a local minimum. Let us
denote by

� � �6R�� the potential energy of the local minimum
at the orientation R and consider the curve � of

� � ��R � forR�� �!� . The curve � corresponds to all the configurations for
which the force components � � and �	� are zero. At a critical
point of � , we also have zero moment because � ��� �/RB� � .
This means that a critical point of � corresponds to an equi-
librium configuration. Because the lifted potential function�

is smooth, R�� ��� and the number of equilibria is at most
two, the curve � has a local minimum (this also means that� has a local maxima and in turn implies the existence of the
unstable equilibrium). This is clearly also a local minimum
of
�

and completes the proof.
Now, let us discuss about the set of parts proven to have a

unique stable equilibrium under the proposed field. As men-
tioned explicitly in Lemma 5, these are the parts having the
pivot point under the radial field

�
apart from the centroid.

Note that this set is the same as the set of parts proven to have
a unique stable equilibrium in [6], which are the parts whose
the centroid does not coincide with the pivot point under the
unit radial field [11]. The equivalence can be shown using
Lemma 4. Clearly, most parts assuming arbitrarily general
shapes are included in this set. Some particular classes of



parts, however, are not, e.g., parts with at least two axes of
symmetry.

6 Conclusion

Although a fully programmable continuous force field de-
vice does not currently exist, the research aiming at develop-
ing this technology has advanced so rapidly that it would be
at no surprise if such a device appeared in the near future.
While waiting for an arrival of the new technology, we find it
interesting and useful to investigate properties of some force
fields. The main contribution of this paper is a force field
with a unique stable equilibrium configuration for most parts.
The field is proposed to be used for orienting and position-
ing parts in the plane. The use of force fields as a modeling
tool for physical force field devices is a common practice be-
cause it usually leads to tractable analytical results. Although
this modeling scheme is considered reasonable, it does not
capture the discretization nature of a force filed implementa-
tion and some real-world effects such as friction and surface
tension. This limitation exposes the scheme to some legiti-
mate questions, for example: Will the part stop at the com-
puted equilibrium if friction is considered?, What is the con-
vergence rate of a part under the field?, and so on. Without
considering a specific implementation and the corresponding
dynamics, it is generally impossible to answer these ques-
tions. This may lead to future work targeting at filling the
gap between available theories and new technologies as they
arrive. Our specific research plans include identifying other
interesting fields and their properties, and investigating dis-
cretized force fields.
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Appendix
Proof of Lemma 2 Without loss of generality, let us assume

that
- � � �

�  , and rewrite the field � as the combination

of two radial fields � � � ���� %.- �
� +�- and � @ � ���� % - ��/�- . Let us
denote by

� � � � @ ? IR @ AC IR @ the functions that map point
positions in the world frame to the forces at the positions in-
duced by � � and � @ correspondingly. Also, let us denote by�

the pivot point under � and by � an arbitrary point of the

part. Let . and � � � ��  denote the positions of
�

and

� in the world frame when the part is at a configuration � .
By setting 	��)��� � � � �����!� D � �)��� D . � , for � � ��� � ,

we can write the resultant force at � as
� ���!� � � � ��� �  � @ ���!��� � � ��� D . �  � @ ��� D . �  	 � ��� �  	 @ ��� � and

we can write the resultant force 
 exerted on the part at the
configuration � as

�	� � � ���!�  � @ ���!������������	� � � ��� D . �  � @ ��� D . ���������  �	� 	 � ��� ���������  �	� 	 @ ��� ��������� � (2)

with all the integrations performed over the plane region oc-
cupied by the part at the configuration � . It is easy to see that
the first term of the right side of Equation 2 vanishes. This is
because

� � ��� D . �  � @ ��� D . � is essentially the force at
the point � when the part is at the configuration such that the
pivot point

�
is positioned at the field’s center

-
and the ori-

entation of the part is the same as that of the configuration � .
We therefore need to consider only the second and the third
terms.

Consider the second term of the right side of Equation 2.
¿From the definition, we have 	 � ��� � � � � ���!��D � � ��� D. � ���OD"�
�!� D �OD"� ��� D . ��� ��D"� . � � D C. - � As a result,
we obtain

�	� 	 � ��� �����������#� D C. - � .
Now consider the third term of the right side of Equation

2. Let � � 3 . � 3 , � � 3 - � 3 , 
=��� . � -
, and

�
be the angle

between D'D C� . and the x-axis (Figure 7) . We can write

� @ ���!� � / � ��
�� � �  
*���� � � �  
*�  �
� @ ��� D . � � / � ��
������� � �  �. � �  �

� ��
����
��� � �  ��� �- � �  �

� ��
�� � �  
*���� � � �  
*�  �

We thus obtain after some simplification	 @ ���!� 0 D C. - ��/ ���  � � � � D ��
�� 
*� �
which implies � � � 	 @ ���!����������� 0 D C. - 2 ���
As a result, we have

3 
 3 2 3 � � 	 � ���!�O�������53 � �53 . - 3 � � ��� �

 0 D C. - � � � � 	 � ��� �  	 @ ���!� ��������� 0 D C. - 2 ���

o

b
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φ

Figure 7: Arrangement of point � with respect to the pivot point
and the center.

Proof of Lemma 4 For / 6 ����� � � , this is reduced to the
case of the unit radial field for which a proof is given in [5, 6].
For / �
� 6 � , let us assume that

� � �� � @ are two pivot points
of � . By definition, when

� � is positioned at the center
-

,
the part is in an equilibrium. Now let us translate the part
such that

� @ is positioned at
-

. By Lemma 2, the magnitude
of the resultant force induced by � is 3 
 3 2 �53 . � - 3 � 6 � ,
where . � is the position of

� � . Therefore the part cannot be
in an equilibrium and the assumption is contradicted. The
uniqueness of the pivot point is thus guaranteed.

To prove the existence of the pivot point, consider the part
at a fixed orientation R and the lifted potential energy

��� � P � Q �
of the field � at the fixed orientation as a function of the posi-
tion � P � Q ��N of the part. Since the function

���
is induced from

the potential function >;�6������� � /�� � @  � @  � @ �6� @  � @ � ,
it is obvious that as the position � P � Q � diverges,

� � � P � Q � in-
creases toward infinity. Because

� �
is continuous, this im-

plies that there exists a critical point where � �=� E����E � � �
and � � � E����E � � � . This also implies an equilibrium because
zero force results in zero moment for every radial field (the
line of action of the resultant force induced by a radial field
always passes through the center of the field).

Note that the proof of Lemma 2 only relies only on the
definition of the pivot point, not on the uniqueness property,
therefore the reference to Lemma 2 in the proof of Lemma 4
does not create an invalid reasoning loop.


