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Abstract— This paper introduces the concept of a task motion
multigraph, a data structure that can be used to reveal a
difficulty specific to mobile manipulation: the possibility of
planning in different state spaces in order to achieve the same
goal. The different options reflect the mobile manipulator’s
ability to use different hardware components to perform a
required task. For instance, a humanoid robot can open a
door with its left arm or with its right arm. Thus, motion
planning can be performed in the left arm’s state space or in
the right arm’s state space. Given the specification of a task, it is
shown how to encode the available motion planning options in a
task motion multigraph. An algorithm that computes sequences
of motion plans for mobile manipulators using the newly
introduced notion is presented and evaluated. The algorithm
makes use of information from the task motion multigraph
to prioritize the spaces for which motion plans are computed.
Experimental results show that reduced planning times can be
obtained when considering the available planning options.

I. INTRODUCTION

Mobile manipulation is a problem that has benefited from
increasing interest over the last decade [1]–[7]. For the
purposes of this paper we consider mobile manipulators
to be robotic devices that have one or more arms and a
means to move their base within the environment [8]–[10].
Such robotic systems can be used as service robots, assistive
robots, search and rescue robots, etc.

A simple typical task for such a robotic system is fetching
a cup of coffee or placing a book on a shelf. These example
tasks, even though very simple, require the robot to reason
about the sequence of actions it needs to perform in order to
achieve its goal. For instance, when fetching a cup of coffee,
the robot knows the map, its initial position, the location of
the coffee cup and the desired destination for the coffee cup.
The task can thus be decomposed into reaching, grasping
and delivering the cup. The reaching and delivering actions
may require moving the base of the robot as well, if, for
instance, the arm is not sufficiently long to reach the cup. The
reaching sub-task is further complicated by the fact that the
cup can be grasped in multiple ways. This leads to questions
such as whether there is a grasping pose that is better than
others, or which grasping pose the robot should attempt to
use. If we now consider the problem of placing a book on a
shelf, there are again a number of possible ways to grasp
a book. However, not all of these grasping modes allow
placing the book on the shelf. Thus, the way the reaching
action is performed influences whether the delivery action
is even feasible. One could imagine several ways to address
this problem; for example, if the system has multiple arms, it
could attempt re-grasping. To make the scenario even more

complex, there could be objects that need to be moved out
of the way, for the task to be performed successfully.

The scenarios above represent instances of mobile ma-
nipulation tasks, a term that is used widely today but still
lacks a formal definition [11]. For mobile manipulation in
particular, motion planning is complicated by the availability
of multiple planning options: e.g., the robot can choose to
simply use its arm to grasp an object, it can choose to use
its base to move closer and then use the arm, but it can also
choose to use both its arm and its base at the same time.

Contributions and Structure of the Paper. In order to state
our contributions we first need to clarify some terms. Task
planning is the process of computing a high level plan
(task plan), or sequence of actions, that the robot needs to
perform in order to achieve its goal. Motion planning is the
computation of lower level plans to be used by controllers.
Many of the actions from the higher level task plan are
actually computation of motion plans. A grasp reasoning
system is a system capable of proposing grasping poses for
objects we are interested in manipulating.

This paper presents an approach which computes se-
quences of motion plans that solve a given task. Related work
is discussed in Section II. Our work needs as input a task
graph, as generated by a task planner [12]–[14]. The nodes
of this graph can be annotated, when appropriate, with one or
more grasping poses of the robotic system. These poses can
be computed by a grasp reasoning system (e.g., [15]). We
ignore issues that arise from uncertainty. All the assumptions
we make are detailed later in Section III-A.

First, we introduce the notion of a task motion multigraph
and show how it can be used to represent information
pertinent to mobile manipulation (Section III). This is a
formalization of available motion planning options when
solving a task – a representation of the robot’s capabilities
in a form that can be used by motion planning.

Second, we present an algorithm that uses task motion
multigraphs to compute a sequence of motion plans for
solving a given task (Section IV). This algorithm attempts to
reduce the total time spent planning motions by leveraging
information from the task motion multigraph. Considering
multiple planning options is computationally possible due
to the advances in speed of computation for sampling-based
motion planners [16], [17]. To demonstrate the utility of task
motion multigraphs we apply the introduced algorithm to
planning sequences of motions for the PR2 from Willow
Garage, and compare it with a version of itself that only
uses graphs. Conclusions follow in Section V.
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II. RELATED WORK

There has been a significant amount of research in motion
planning (e.g., [16], [17]), grasping (e.g., [15], [18]), task
planning (e.g., [12], [13]) and manipulation planning (e.g.,
[19]–[21]) that has lead to the current state of the art in
mobile manipulation. In this section we discuss two lines of
work and attempt to synthesize a pattern for each.

a) Work that builds upon the notion of manipulation
graph. The methods included here combine motion and task
planning to produce a system that solves given tasks by
reducing them to a sequence of transit and transfer paths
(e.g., [1]–[7], [19]–[22]). These paths are defined as two
different types of edges in a manipulation graph [19]:

• Transit path: path executed by the robot without car-
rying any objects, avoiding collisions with the environ-
ment and with itself.

• Transfer path: path executed by the robot while carrying
an object. The object is considered fixed to the robot
along such a path and is treated as part of the robot for
collision avoidance purposes.

b) Work that relies on the idea of guiding continuous
exploration with discrete paths. This line of work performs
motion planning in the state space of the robot and uses
paths in the task graph as discrete guides (e.g., [23], [24]).
The idea of considering discrete plans in the computation
of lower level plans is used in the algorithm we propose.
Similar concepts have been used for planning foot steps for
humanoid robots (e.g., [25]) and climbing robots (e.g., [26]).

The line of work mentioned in a) is closer to our work.
Each of the systems that falls under that category employs
a representation of a task graph that encodes sequences of
actions the robot could possibly perform to achieve its goal
(see Figure 1-Left for an example). Typically, nodes in this
graph denote states, and edges denote actions. Many of these
actions require motion planning – computation of a transit or
a transfer path. For our work, the distinction between transfer
and transit paths is not important. We refer to it only for a
more clear connection to previous work.

One of the most complex systems that follows the pattern
described in a) is aSyMov [4]. We present this system in
more detail, as it is representative. Planning can be performed
for multiple robots, with potentially different capabilities,
under symbolic and geometric constraints in an environment
with movable objects. This is a very general form of the
problem and allows for solving complex tasks. aSyMov uses
a STRIPS-like [12] language to represent tasks. Because
probabilistically complete [16] motion planners are used,
maximum runtime bounds are imposed in order to make
the algorithm terminate. Although performance is good for
tasks that involve one robot operating on one object, the
aSyMov paper shows the success rate of the method drops
to 15% for tasks that involve two robots moving two objects,
and computation can take more than a hundred seconds
on current modern machines [4]. Even though the latter
task is seemingly still simple, the number of sub-tasks and

individual motion plans that have to be computed is high,
which increases the running time.

The approach aSyMov follows is based on constructing
Probabilistic RoadMaps (PRMs) [16], [27] for every robot
and every movable object in the environment. A roadmap
R1 is connected to a roadmap R2 by identifying a milestone
in R1 and creating a corresponding milestone in R2. Use of
these connected roadmaps effectively allows the extraction
of transit and transfer paths.

aSyMov is not the only system capable of task and motion
planning. Over the years, a number of other systems were
proposed (e.g., [1]–[3], [5]–[7], [19]–[22]), with varying
levels of interaction between task and motion planning. In
[1], motion planning is used as a subroutine and information
about its progress is not used at the task planning level. In
[2], roadmaps are used in a similar fashion to [4]: they are
connected by explicitly sampling the intersection of the state
spaces they correspond to.

The work in [6] uses a hierarchical representation of tasks.
At the lowest level of the hierarchy there are primitive
actions. Among these actions there can also be algorithms
that compute motion plans. This hierarchical representation
speeds up the search at the task level. Information about the
length of the paths produced by motion planning is used
to provide optimal solutions, at the task level. A hierarchical
representation for performing motion planning with temporal
goals is shown in [28].

One of the contributions of [20] is that of showing how
to compute a sequence of motion plans along a path from
an input manipulation graph, in a manner that reduces
computation along the path segments that are hard to plan for.
This idea is further explored and generalized in this paper.

III. REPRESENTING MOTION PLANNING OPTIONS

This section introduces the concept of a task motion
multigraph, a data structure that represents explicitly the
state spaces in which motion planning can be performed
for a mobile manipulator in order to achieve its goal. This
data structure is defined in terms of an intermediate notion,
namely task motion graphs. A core issue not captured when
representing tasks as graphs rather than multigraphs is that
there are multiple ways of performing the same operation
when the manipulator is mobile. For example, the robot can
use its manipulator alone, it can move its base and then
use its manipulator, or it can move both its base and its
manipulator simultaneously. The experiments included in this
paper show that it is possible to use information from task
motion multigraphs and produce fast algorithms that compute
sequences of motion plans necessary for solving given tasks.

A. Assumptions

We consider a single mobile manipulator – a robotic
system with a mobile base and one or more arms.

We assume a task specification is available, in any of the
variants suggested by previous work (LTL [29], STRIPS-
like [12], etc.). Based on this specification, a task planner
can construct an explicit task graph – a directed acyclic



graph that encodes the low level sub-tasks (actions) the
robot performs. Since many variants of such graphs are
present in the literature, we describe a generic version here.
The graph has one root that represents the robot’s initial
state. Leaves of the graph are goals of the task planner. In
some cases, the explicit construction is possible only if the
horizon of possible actions is bounded. We believe this is a
reasonable assumption for mobile manipulators operating in
human environments. For simplicity, assume the only actions
the robot can perform are grip (close gripper), release
(open gripper) and move to (plan a motion). The grip
and release actions are very simple ones and do not
include the computation of grasp poses. It is assumed that
if grasp poses are necessary (which is typically the case), a
grasp reasoning system (e.g., [15]) is employed at the time
the task graph is generated and grasp poses are included
in the graph’s nodes. It is further assumed that such grasp
poses, when specified, can be converted to states, or sets
of states. Such computation can be performed, for instance,
with inverse kinematics [30], [31].

B. Motion Planning Actions
Figure 1-Left shows an example task graph. This example

encodes the task of delivering a book, while accounting for
the possibility of having to move a cup of coffee out of the
way, if delivering the book directly is not possible. In this
paper, the move to actions are of special interest since these
are the ones that require motion planning. Contracting the
edges that correspond to grip and release actions in the
task graph leads to a simplification as shown in Figure 1-
Right. We refer to this simplification as the task motion
graph. This does not mean that the grip and release
actions are not going to be performed in the execution of
the task plan. Removing these edges is only a simplification
that allows us to focus on the motion planning actions. The
task motion graph encodes the different sequences of motions
that would lead the robot to its goal. This is an intermediate
notion used to define task motion multigraphs.

C. Task Motion Graphs and Task Motion Multigraphs
Let the mobile manipulator consist of a set of joints J .

This implicitly defines a state space XJ . All motion planning
actions in the task motion graph are performed in some
projection of XJ .

Definition 3.1: Task Motion Graphs.
A task motion graph (TMG) for mobile manipulation is a

directed, acyclic graph G = (V,E) such that:
• V = {v|Q(v) ⊂ XJ}. Every vertex v is associated with

a set of states Q(v) ⊂ XJ . Q(v) can be explicitly specified as
a set of states or implicitly specified in a manner that allows
computation of states in Q(v) (e.g., end-effector poses, which
can be converted to states using inverse kinematics [30]).
• E = {e = (vi, vj)|vi 6= vj , vi, vj ∈ V }, and there exists

an edge labeling function label(e) = (Act,Enve,Ae). Act
specifies an action that requires motion planning. For the
purposes of this paper, Act is always move to. At the start
of the action, the robot is at a state x ∈ Q(vi) and at the
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Fig. 1. Left: The task graph for delivering a book. It may be necessary for
a cup of coffee to be moved out of the way to deliver the book. Right: The
task motion graph – only actions that require motion planning are kept.

end of the action, the robot is at a state x′ ∈ Q(vj). Enve
defines the environment in which motion plans for edge e are
to be computed. Ae = {Ae,1, . . . , Ae,k|Ae,· ⊆ J, k ≤ 2|J|}
defines the possible sets of joints to plan for when computing
motion plans along edge e.

It is important to note that there can be multiple sets
of joints that can be planned for when computing motion
plans along an edge e. Ae is an input specified by the user.
For example, if moving an arm’s end-effector is intended,
Ae,1 can be defined to be the minimal set of joints usually
required to perform the operation: the joints in the actual arm.
For more complex problems, it may be necessary to move
the robot’s base as well. For this reason, additional sets of
joints (Ae,2, . . . ) can be included in Ae. The intention is that
planning can be attempted in any state space XL (projection
of XJ ), for L =

⋃
j∈A j, A ⊆ Ae.

Example: Consider a mobile manipulator with an arm with 7
joints and an omni-directional base that moves in plane. We
define Jarm to be the set of joints in the arm and Jbase to be a
virtual joint with 3 degrees of freedom that corresponds to the
SE(2) state space (XJbase

= SE(2)). We thus have XJarm
7-

dimensional, XJbase
3-dimensional and XJ 10-dimensional,

J = Jarm ∪ Jbase. A simple TMG G = (V,E) can have
V = {vstart, vgoal}, Q(vstart) = {xstart}, Q(vgoal) =
{xgoal}, defines the two vertices of the TMG: a start state
and a goal state. E = {e = (vstart, vgoal)}, label(e) =
(move to, Env, {Jarm, Jbase}). This specification defines a
TMG that requires the computation of a motion plan from
a specified start state xstart ∈ XJ to a state xgoal ∈ XJ .
The motion plan is to be computed in either XJarm

, XJbase

or XJarm∪Jbase
. Planning may not be feasible for all possi-

ble spaces. Env represents the environment considered for
determining the validity of states (e.g., collision checking).



Definition 3.2: Task Motion Multigraphs.
Given a TMG, G = (V,E), we define a task motion

multigraph (TMM), GM = (VM , EM ) as follows:
• VM = V
• for every e = (vi, vj) ∈ E,

label(e) = (Act,Enve,Ae), let EM,e be a multiset,
EM,e = {em,k = (vi, vj)|k ∈ {1, . . . , 2|Ae|}} and
labelM (em,k) = (Act,Enve, Je,k), for
Je,k =

⋃
j∈a(k) j, a : {1, . . . , 2|Ae|} → 2Ae is a

bijection, 2Ae is the power set of Ae.
• EM =

⋃
e∈E EM,e.

In essence, a TMM is a TMG where all possible sets of
joints used in motion planning are explicitly specified for
each edge. The conversion, which can be done automatically,
is fairly straightforward and only requires addition of edges.
See Figure 2 for an example. The TMM reveals an additional
layer of complexity for mobile manipulation: the need to
decide which state spaces to plan in. This is a different type
of decision to be made, in addition to other decisions such
as selection of grasping poses. We introduce TMMs in an
attempt to expose the need to consider which state spaces to
plan in. This observation has been made in previous work
as well [2], [4], but we present the first formalization. Since
there is a combinatorial explosion in the construction of a
TMM from a TMG (in terms of number of edges), it is
desirable that the TMG is defined in a manner amenable
to the robotic system this notion is used for. For instance,
a robotic system with a mobile base and two arms may
define three sets of joints to be used for planning: Jleft,
Jright, Jbase, corresponding to the joints in the respective
arms and the base. Edges in the TMG could then use Ae =
{Jleft, Jright, Jbase}. The definition of Ae implies that the
option of planning in the full state space, XJleft∪Jright∪Jbase

,
is included in the edges of the TMM, allowing in this case
even the use of control theoretic techniques, if available.

Definition 3.3: A motion plan for a TMM.
A motion plan for a TMM G = (V,E) is an ordered

sequence of edges P = {e1, . . . , ek}, P ⊆ E such that for
every edge e = (va, vb) ∈ P there exists a motion plan
between some state xa ∈ Q(va) and some state xb ∈ Q(vb).
Furthermore, the motion plans for any two consecutive edges
ei, ei+1, 1 ≤ i < k from P can be connected. The two
motion plans are said to be connected if there exists a well-
defined method (e.g., a controller) to move from the last
state xi,L of the motion plan for ei to the first state xi+1,F

of the motion plan for ei+1. For the purposes of this work
the condition xi,L = xi+1,F was imposed for connectivity
to be achieved.

A motion plan P = {e1, . . . , ek} is a solution in a TMM
G = (V,E) if vb ∈ V is a leaf in G, with ek = (va, vb).

Remark: Given a motion plan in a TMM, it is easy to see
that a task plan in the original task graph can be constructed:
the actions from the task graph that are not present in the
TMM do not require motion planning. Only grip and
release actions (closing and opening the end-effector)
need to be re-inserted.

Start State

Grasped Book

Ae = {arm, base}

Grasped Coffee

Ae = {arm, base}

Released Book

Ae = {arm, base}

Released Coffee

Ae = {arm, base}

Ae = {arm, base}

Start State

Grasped Book

Je = base Je = arm Je = arm+base

Grasped Coffee

Je = base Je = arm Je = arm+base

Released Book

Je = base Je = armJe = arm+base

Released Coffee

Je = baseJe = arm Je = arm+base

Je = arm Je = arm+base Je = base

Fig. 2. Top: The task motion graph for delivering a book, defining the
groups of joints Ae. Bottom: The task motion multigraph. Edges define Je.

IV. COMPUTING MOTION PLANS ON TASK MOTION
MULTIGRAPHS

A. Intended Use
The intended use scenario of task motion multigraphs is

as follows. The task planner generates a task graph with
bounded horizon. This work does not concern itself with
how this task planner operates or how the task graph is
constructed: the existence of these components is assumed
(e.g., [14]). A corresponding TMG is then constructed by
discarding the actions that do not require motion planning.
The TMG is converted to a TMM and a motion plan is
computed for the TMM.

This paper provides a formalization of the available motion
planning options in a manner that can aid with computation.
The following section shows an example method that uses
information contained in the TMM to compute motion plans.
The availability of the TMM at the time of motion plan
computation helps with the identification of less expensive
but feasible sequences of motion plans. This information is
used to attempt to reduce the amount of time spent planning
motions.

B. Algorithm
Computing motions plans for certain edges may be more

time consuming than for others: the complexity of the
environments can vary, the set of joints Je to plan for (and
implicitly, the dimensionality of XJe ) may also vary. Plan-
ning motions along some edges may not even be feasible.
These considerations make it obvious that computing the
sequence of motion plans for some paths in the TMM can
be much more computationally intensive than for others. To
address this issue, we attempt to compute motion plans for
the path that appears to be the cheapest. Which path appears
to be the cheapest changes as the computation progresses.



The cost of a path is the sum of the costs of its edges. The
cost of an edge e, label(e) = (Act,Enve, Je) is:

cost(e) = exp

(
1 +

dim(XJe
)

maxJ dim(XJ)

)
· scost(e)

scost(e) =

{
1 if sol

s · (1 + t) ·
(

1 + dL(e)
dR(e)+dL(e)

)
if not sol,

where dim(XJe
) is the dimension of the state space to

be used for planning along edge e, maxJ dim(XJ) is the
dimension of the largest state space considered by the TMM,
s represents the number of times e was selected for motion
planning (starts at 1), t is the number of seconds already
spent planning motions along e, dL(e) represents the number
of edges from e to the nearest leaf, and dR(e) represents the
number of edges from e to the root. If motion plans along
edge e are already available (sol is true), the cost of e relates
only to the dimensionality of the state space, thus making
edges that actuate fewer joints preferable. If no motion plans
for e are available (sol is false), the cost of e is increased
proportionally to the number of times e was selected for
planning. Furthermore, the closer e is to a possible goal
(a leaf), the fraction dL(e)/(dR(e) + dL(e)) decreases, thus
decreasing the cost of edges closer to possible goals.

The definition for the cost of an edge is heuristically de-
termined, with the purpose of approximating how expensive
paths are. The provided formula is intended as a guide and
represents what worked well in our experiments. This is a
topic for further investigation and several other approaches
may be applicable (e.g., [20]). Determining better edge costs
is an open issue that can further affect performance.

The computation of a task plan in a TMM proceeds as
described in Algorithm 1. The body of the algorithm is an
iterative process that runs motion planners on different edges
of the TMM for short periods of time.

At every iteration, the set of segments that make up
the path of least cost from the root to a leaf in GM

is computed using Dijkstra’s algorithm (line 4). The edge
along this path that is closest to the goal and that has no
motion plan associated to it is then selected deterministically
by selectEdgeFromPath() (line 5). Such an edge will exist
as long as no complete solution has been found for the
TMM. Motion planning is performed on the selected edge
for a short duration (line 6). Repeated selections of the
same edge continue the computation of the motion plan
rather than restart it. Unless a motion corresponding to the
selected edge is successfully computed, motion planning is
executed on another edge, one selected from the remaining
set of edges in the TMM (lines 8, 9). With low probability
(10% in our work) selectEdge() selects an edge randomly;
otherwise, priority is given to edges that have fewest number
of computed motions, then to edges that have lowest cost.
The intention is to be greedy and follow the path of least
cost to the goal but at the same time allow the exploration
of other options. Planning is performed for short durations
∆t to allow updating edge costs more often.

For a vertex v ∈ V , let the reached states in Q(v) be
denoted by R(v) ⊆ Q(v). A state x is reached if there exists

Fig. 3. Diagram showing a computed motion along edge e = (v1, v2).
The motion starts at state x′ ∈ Q(v1), reaches a state in R(v2) and there
exists a means to connect to x′ from x ∈ R(v1).

Algorithm 1 TMM-Computation(GM = (VM , EM ))
1: done = false
2: noProgressIter = 0
3: while not done and noProgressIter < H do
4: P = shortestPath(GM )
5: edge = selectEdgeFromPath(P )
6: solved = motionPlan(edge, ∆t)
7: if not solved then
8: nextEdge = selectEdge(EM\{edge})
9: solved = motionPlan(nextEdge, ∆t)

10: if solved then
11: noProgressIter = 0
12: else
13: noProgressIter++
14: done = haveCompleteSolution(GM )
15: if done then
16: return extractSolution(GM )
17: else
18: return nil

a motion plan in the TMM that ends at x (see Definition 3.3).
Initially, R(v) = ∅ for all vertices, except for the root:
R(root) = Q(root). For a new motion plan to be computed
for an edge e = (v1, v2), a starting state needs to be identified
in Q(v1). A state x′ ∈ Q(v1) can be used as a starting state
for a motion plan along e if some state x ∈ R(v1) has been
previously reached by a motion plan in the TMM, and x can
be connected to x′ using a well-defined means (in this work,
x = x′). When a motion plan for an edge e is computed, the
reached state in Q(v2) is added to R(v2). A diagram showing
the computation of a motion is in Figure 3. If R(v1) = ∅,
no motion plan is computed for e. This is done to avoid
computing motion plans that start at unreachable states.

Termination for the algorithm is possible in two ways:
either done becomes true (line 14) and a solution is found,
or sufficiently many iterations pass without any motion plan
being computed (lines 3, 10–13), in which case the algorithm
returns failure. We chose to limit the number of consecutive
iterations that produce no motion plans to H = 5 in this
paper. Similarly, an upper limit on computation time could
have been imposed as well.

C. Experimental Results
In order to show the usefulness of TMMs, we compare

the algorithm described in Section IV-B with a version of
itself that only uses graphs. To obtain the graph version of
the algorithm, we construct a TMM−. The only change is
that in Definition 3.2, instead of adding a multiset of edges



EM,e to the TMM− for every edge in the TMG e, label(e) =
(Act,Enve,Ae), a single edge is added to the TMM−: e′,
label(e′) = (Act,Enve, Je), Je =

⋃
A∈Ae

A. On one hand,
the graph version of the algorithm needs to consider the worst
case scenario – plan for all the possible degrees of freedom
– in order to offer the same generality as the multigraph
version. On the other hand, the graph version of the algorithm
has much fewer constructed edges.

We consider the task of moving two objects from their ini-
tial states to specified goal states using the method described
in Section IV-B, in an environment with obstacles. Each
object can be grasped in four different ways (see Figure 4 for
a graphical representation). The robotic system we consider
is the PR2 from Willow Garage. This robot includes two
7 degree-of-freedom (DOF) arms and an omni-directional
mobile base. The PR2 needs to move from its initial position
to grasp object1 or object2 with either of its arms.
The PR2 then moves to the corresponding destination of
the grasped object (dest-object1 or dest-object2)
and releases the object. The next step is to go back to
the remaining object (object1 or object2), grasp it,
take it to its corresponding destination (dest-object1 or
dest-object2), and release it. Let Jleft and Jright be the
sets of joints in the respective arms and Jbase be a virtual
joint corresponding to the SE(2) state space.

The sets of states for the nodes in the task graph are
defined in terms of end-effector poses. Using inverse kine-
matics, each of these poses is converted to a number of states
(the arm is 7-DOF, so there are multiple inverse kinematics
solutions for a given pose). The poses are supplied by hand
in this experiment, but in practice grasp reasoning systems
that can propose such poses exist [15], [18].

Fig. 4. Left: The used robot (PR2). Right: An environment with two objects
that can each be grasped in four ways (in red) and the destinations of the
objects (in green). The simulation is done using ROS.

Figure 5 represents the TMG for the problem described
above. As actions can be performed with either the left or
the right arm, Ae = {Jleft, Jright, Jbase} for all edges.
While the TMG is sufficiently simple to produce by hand, the
automatically constructed TMM is too large to include1. The
motion planner used to solve this task (implementation of the
motionPlan() routine) is the Probabilistic RoadMap (PRM)
[27]. PRM is a proven technique for computing motion plans
in high-dimensional spaces and has also been the choice of

1The TMM defines 160 (20 · 23) distinct motion planning instances. The
interested reader can view this TMM using our online resources:
http://kavrakilab.org/data/ICRA2011TMM/

Start State

object1-L1 object2-L1object1-R1 object2-R1

dest1-L1 dest2-L1dest1-R1 dest2-R1

object2-R2 object2-L2 object1-R2 object1-L2

dest2-R2 dest2-L2 dest1-R2 dest1-L2

Fig. 5. The TMG for the task described in Section IV-C. Each edge is
a move to edge. “objecti-Aj” denotes object i (1 or 2) being grasped by
arm A (L=left, R=right) as the jth object (first or second). desti-Aj denotes
object i being placed at its destination using arm A, as the jth object.

previous related work. The implementation of PRM we used
is from OMPL [32]. Table I shows the runtime of Algorithm 1,
averaged over 30 runs, for the environment in Figure 4,
with and without using a multigraph. The only parameter we
vary between runs is the time allowed for motion planning
along edges (∆t seconds). As we can see, the version of the
algorithm using a TMM is faster by 20% or more, finding
solutions in as low as 0.40 seconds (on average). The success
rate was 100% for both the TMM and the graph version,
when ∆t = 0.5s, ∆t = 0.2s, ∆t = 0.1s. For ∆t = 0.05s,
the success rate was 93% for the TMM version and 83%
for the graph version. Due to the probabilistic nature of the
algorithms used to plan motions along edges in the TMM,
time outs will be reached when no solutions exist. As TMMs
encode multiple options for performing the same action,
more planer instances will need to time out, thus increasing
the time taken to report failure.

For very small values of ∆t it is possible for the algorithm
to give up the search for a solution even though one exists.
This can occur since the probability of having H consecutive
iterations that produce no motion plan for any edge increases
as ∆t decreases. For very low values of ∆t it may be
necessary to increase the value of H in the algorithm (used as
5 in this paper). For practical applications of this system, it is
probable an adaptive scheme for selecting ∆t is appropriate.

Increasing the value of ∆t has no significant influence over
runtime when a solution exists. This is to be expected since
the motionPlan() routine returns when a solution is found
(does not wait for ∆t to elapse).

TABLE I
RUNTIME (IN SECONDS) FOR COMPUTING A MOTION PLAN FOR THE

TMG IN FIGURE 5 IN THE ENVIRONMENTS FROM FIGURE 4.

∆t = 0.05s ∆t = 0.1s ∆t = 0.2s ∆t = 0.5s

TMM graph TMM graph TMM graph TMM graph
0.51 0.63 0.52 0.66 0.50 0.68 0.40 0.70

The main factor that allows reducing total planning times
is that all motion planning options can be considered si-
multaneously. This information is available in the TMM.
Having this information at the motion planning level creates
the opportunity of quickly switching the sequence of motion
plans that is presumed to solve the task, without having to
compute complete motion plans for all edges in the TMM.
Once a sequence of motion plans is computed entirely, a
solution has been found.



It is important to remark that no effort was made to
tune the algorithm using TMMs and no problem specific
knowledge was used. For every edge in the TMG, 23 edges
were created in the TMM, although it is certainly possible
to use fewer options. Furthermore, faster algorithms that are
not probabilistically complete (such as decoupled planners)
could be used as well. If knowledge about the task to be
solved is known in advance, this can be used to bias the
search for paths in the TMM. In effect, a multitude of
avenues exist to improve the results presented in this work.

V. CONCLUSIONS

In this paper, we introduced the notion of a task motion
multigraph (TMM). TMMs are used to formalize an inherent
difficulty of mobile manipulation and encode it in a form
that can be used when computing motion plans. Mobile
manipulators have the ability to perform tasks in multiple
ways, using different hardware components. This implies that
motion planning can be performed in different state spaces –
projections of the complete state space of the robot – leading
to the same goal.

We have also presented an algorithm that can quickly
compute sequences of motion plans using information from
the TMM. We have shown that even with simple definitions
of costs assigned to the edges of the TMM, the use of
multigraphs leads to definite performance improvements as
compared to using graphs.

TMMs can provide a coherent framework that allows
better understanding of available motion planning options
when computing task plans. For future work, it would be
interesting to integrate the proposed method with a task
planner to produce a complete planning system. This would
also allow for a more extensive experimental evaluation of
the approach.
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