
Collision-Affording Point Trees: SIMD-Amenable
Nearest Neighbors for Fast Collision Checking

Clayton W. Ramsey, Zachary Kingston∗, Wil Thomason∗, and Lydia E. Kavraki
Rice University

{clayton.w.ramsey,zak,wbthomason,kavraki}@rice.edu
∗Equal Contribution.

Abstract—Motion planning against sensor data is often a critical
bottleneck in real-time robot control. For sampling-based motion
planners, which are effective for high-dimensional systems such
as manipulators, the most time-intensive component is collision
checking. We present a novel spatial data structure, the collision-
affording point tree (CAPT): an exact representation of point
clouds that accelerates collision-checking queries between robots
and point clouds by an order of magnitude, with an average
query time of less than 10 nanoseconds on 3D scenes comprising
thousands of points. With the CAPT, sampling-based planners
can generate valid, high-quality paths in under a millisecond,
with total end-to-end computation time faster than 60 FPS, on a
single thread of a consumer-grade CPU. We also present a point
cloud filtering algorithm, based on space-filling curves, which
reduces the number of points in a point cloud while preserving
structure. Our approach enables robots to plan at real-time speeds
in sensed environments, opening up potential uses of planning for
high-dimensional systems in dynamic, changing, and unmodeled
environments.

I. INTRODUCTION

Motion planning underpins many applications of high-
degree-of-freedom robots, allowing them to efficiently find
collision-free trajectories between arbitrary poses. Modern
motion planning methods capably solve problems with many
obstacles for these high-dimensional robots, typically by either
building and searching a graph or tree approximating the
collision-free subset of the robot’s state space (i.e., sampling-
based motion planning (SBMP) [1–3]) or by solving a numerical
optimization problem (i.e., trajectory optimization [4–6]). The
most time-consuming component of most motion planners—
and SBMPs in particular—is state validation, which ensures that
a robot’s state does not violate its constraints or collide with
obstacles [7, 8]. State validators commonly assume knowledge
of the precise geometries and positions of all obstacles in the
environment—an assumption that does not hold for general
real-world settings where only sensed representations of the
world may be available. Earlier work that checks for collisions
between robot geometries and point clouds [9–14] attempts to
lift this assumption, but point cloud collision checking remains
a relatively slow bottleneck for motion planning.

Recent work [15–18] has produced new approaches to
hardware-accelerated motion planning that exploit parallelism

This work was supported by NSF CCF 2336612, NSF ITR 2127309 for
the CRA CIFellows Project, and Rice University Funds.

in collision checking and other core planning operations to find
complete trajectories in microseconds to milliseconds. This
use of parallelism motivates the need for higher-throughput
parallelism-friendly algorithms and data structures for effi-
ciently planning collision-free motions in environments that
are only perceived as point clouds, e.g., from a common depth
camera like the Intel RealSense. Sundaralingam et al. [16] use
GPU parallelism to allow batched querying of an approximate
Euclidean Signed Distance Field (ESDF) built from a series of
sensor measurements [19]; similarly, Vasilopoulos et al. [17]
perform a GPU-parallel brute-force SDF computation between
a discretized set of points on the robot geometry and a dense
point cloud. Although these GPU-based methods are promising
for some applications, data synchronization costs between the
GPU and CPU limit the direct applicability of these techniques
for motion planning algorithms, many of which are CPU-based.
Further, for applications of field robotics such as planetary
rovers, agricultural robots, and others, the power requirements
of an onboard GPU may be untenable.

In this work, we propose a data structure and associated
construction and search algorithms for exact point cloud
distance computation and collision checking. Our proposed data
structure, the collision-affording point tree (CAPT), adapts and
refines concepts from the classical k-d tree to support efficient
parallel evaluation. The core insights guiding our design of the
CAPT are that (1) exploiting the spatial correlation present in
SBMP edge validation collision queries allows for aggressive
early-termination of batched queries without sacrificing cor-
rectness, and that (2) many motion planning problems (e.g.,
in manipulation) only need to represent a relatively small,
local part of the environment for collision checking. This first
insight extends ideas from Thomason et al. [15]; the second
enables us to rethink traditional assumptions about minimizing
memory overhead in point cloud representations: we in fact
duplicate select subsets of points to create a parallelism-friendly
data model. By combining these insights with a machine-
sympathetic data structure and the use of data-level parallelism,
CAPTs can return collision results against an observed 3D point
cloud in a mean time of under ten nanoseconds per query
on a single core of a consumer desktop CPU1. Although we

1The point clouds used to generate these collision-checking throughput
results contained up to 50000 points and had mean dispersions between 7mm
and 2.2cm. For detailed analysis, refer to the results in Sec. VI-A1 and
Appendix C; for examples of such point clouds, see Fig. 1c and Fig. 3b.

ar
X

iv
:2

40
6.

02
80

7v
1

 [
cs

.R
O

]
 4

 J
un

 2
02

4

focus on CPU-based single-instruction, multiple-data (SIMD)
parallelism in this paper, our approach also applies to and
may benefit GPU-based planners using a single-instruction,
multiple-thread (SIMT) parallelism model.

Concretely, we contribute:
1) the collision-affording point tree (CAPT), a novel data

structure for storing sensed point clouds for collision
checking.

2) efficient construction, branch-free parallel query, and col-
lision check algorithms for CAPTs.

3) a method for efficient point cloud down-sampling by
exploiting properties of space-filling curves.

4) proofs of correctness (i.e., that using CAPTs and our
filtering algorithm does not modify planning problem
feasibility).

5) empirical evaluations for collision throughput and error
against a set of competitive baselines.

6) integration with a vectorized motion planner [15], demon-
strating the utility of CAPTs for high-performance SBMP
on a number of difficult and cluttered problems.

7) a proof-of-concept demonstration with a depth camera
and physical robot hardware.

8) an open source implementation of CAPTs2.

II. RELATED WORK

Despite the inherent computational complexity of motion
planning, which is known to be PSPACE-complete [20, 21],
SBMPs [2, 3] are nonetheless capable of solving many motion
planning problems in tens to hundreds of milliseconds, given
explicit representations of the problem environment. Thomason
et al. [15] proposed an approach to accelerating SBMPs via
SIMD parallelism, decreasing planning times to the order of
microseconds—sufficient for real time operation. Much of this
speedup is due to the use of fine-grained parallelism in collision
checking; however, this planner still requires an explicit, known
model of the environment’s geometry. Particularly, in real-
world planning problems, explicit geometry models are often
unavailable—thus, planning from sensor data has been desirable
since the beginning of the field [22].

A. Planning from sensor data

Planning-amenable representations of sensor data usually
take the form of some space-partitioning data structure. k-d
trees [23] are particularly relevant data structures for point cloud
representation. They are often used for nearest-neighbor search
in low-dimensional spaces [24–26], and allow for logarithmic-
time collision-checking against points in a point cloud [9].
These trees can also be augmented with a sphere covering [27]
for efficient rejection of non-colliding geometry. Many efforts
have been made to accelerate k-d tree queries by low-level
optimization, including through parallel subtree search [28] and
dedicated instruction-set architectures [29]. FLANN [30, 31]
and Nigh [32] are popular implementations of k-d trees; the

2Available at https://github.com/kavrakilab/vamp.

former supports approximate nearest-neighbor search, while
the latter is exact.

The most popular approaches to representing sensor data for
SBMP collision checking often use occupancy maps [33–35].
OctoMaps [10] implement a probabilistic occupancy map
using octrees [36] of voxels, where each voxel is considered
“occupied” based on Bayesian updates computed upon each
new point cloud inserted into the map. They allow for collision-
checking based on bounding-volume hierarchies, which use a
branch-and-prune search to limit the set of possible points
for collision checking. OctoMaps are also integrated with
collision checking libraries, e.g., the Flexible Collision Library
[11], and popular planning frameworks such as MoveIt [37].
They are a commonly used representation in practice, e.g.,
for underwater vehicles [38], subterranean exploration [39],
autonomous vehicles [40], and aerial vehicles [41].

Voxel-based approaches have also seen significant use
recently due to many optimization-based planners [5, 17]
using signed distance fields for collision-checking—the repre-
sentation of the signed-distance field is backed by a voxel
representation [42, 43]. CuRobo [16] is an optimization-
based planner which uses GPU parallelism for high-efficiency
collision-checking, including against point clouds. It relies on
the NVBlox [19] GPU-accelerated signed-distance field library
for its collision-checking and optimization. VoxBlox [44] and
VoxGraph [45] are also CPU-based sensor-based mapping tools
for constructing signed-distance fields for collision-checking.

Recently, there has also been interest in using implicit
representations of the environment, such as neural radiance
fields (NERFs) [46], which have been used for motion plan-
ning [47, 48]. However, constructing NERFs, while relatively
fast [49], still take on the order of seconds to construct with
GPU hardware, making them infeasible for online planning.

B. Space-filling curves

Space-filling curves are continuous real bijections that map
every point of a one-dimensional line to a higher-dimensional
space, such as R3. Z-order curves [50], also known as Morton
curves, are a class of space-filling curve often used for nearest-
neighbor applications. A point in a high-dimensional space
can be projected onto a Z-order curve by interleaving the
bits of the binary representation of its coordinates. If two
points’ projections onto the curve are close together, they are
likely to also be near in the higher-dimensional pre-image
space. Ying et al. [51] used a Z-order curve to produce a low-
discrepancy sub-sampling of a point cloud; however, their sub-
sampling procedure does not guarantee that the overall point
cloud structure is preserved. Likewise, Connor and Kumar [52]
used a Z-order sorting to accelerate construction of k-nearest-
neighbor graphs by limiting their search to a single range of
the space-filling curve.

C. SIMD parallelism and planning

Parallel motion planning algorithms [7, 15, 16, 18, 53–57] re-
quire parallelizable collision-checking data structures. Further,
to reap the benefits of early-termination in collision checking

https://github.com/KavrakiLab/vamp

(a) (b) (c)

Figure 1: 1a, 1b: A cluttered tabletop scene, captured as RGB-D with an Intel Realsense D455 sensor. 1c: The point cloud rendering of the same scene,
filtered using our proposed space-filling curve method (Sec. IV-C).

that enable SIMD-accelerated planning to plan at the microsec-
ond scale, a SIMD-amenable data structure is required. How-
ever, the major data structures used in planning for sensor data
representation are not amenable to this flavor of parallelism—
hierarchical space-subdividing data structures (e.g., OctoMaps,
k-d trees, other voxel grids) require conditional-branch-heavy
searches through large subtrees, which result in a highly sub-
optimal memory access pattern: collision checks in these data
structures must access potentially many fragmented segments
of memory. Additionally, the branching nature of these searches
makes them impractical to adapt to the branchless computation
framework that SIMD parallelism best matches. To overcome
these issues, we present a new data structure, designed with
branchless, cache-friendly access in mind and demonstrate its
effectiveness for efficient collision checking.

III. PRELIMINARIES

A k-d tree [58] is a class of space partitioning tree which
represents and organizes a set of n points, PC ⊆ Rk. Each
leaf of the tree corresponds to a cell, which is an axis aligned
bounding box in Rk containing exactly one representative
point, pr ∈ PC . The union of a k-d tree’s cells spans the
entirety of Rk 3 and the union of all representative points is
equal to PC . Each branch of the tree partitions Rk about an
axis-aligned hyperplane: a branch at depth d in the tree with
test value t partitions the space such that, for any point p ∈ PC ,
if p[d mod k] ≤ t (where p[i] is the i-dimension component
of p), it belongs to the left sub-tree of the branch; otherwise,
it belongs to the right sub-tree.

We can construct a k-d tree from a point cloud PC in
O(kn log n) time using a recursive partitioning algorithm. At
each level, we split PC into two equally-sized subsets B1, B2

by a hyperplane intersecting the median point in PC along
axis d. This splitting continues recursively for B1 and B2

until the point cloud contains exactly one point. Each splitting
hyperplane forms one branch in the tree, and the walls of each
leaf’s cell are the splitting hyperplanes of its parent branches
for each dimension.

k-d trees are most commonly used for nearest-neighbor
search. Given some query point x, a recursive branch-and-

3Slightly abusing the notion of an AABB, the cells on the boundary of the
k-d tree are half-open.

bound search through the tree can find the closest element of
PC to x in O(log n) operations [58].

We can use the nearest-neighbor facility of a k-d tree to
check for collisions between a sphere and a point cloud. Given
a sphere centered at x with radius r, the aforementioned branch-
and-bound search procedure can find the nearest point p ∈ PC
to x. Then, if ∥x−p∥ ≤ r, the sphere is in collision; otherwise,
there must be no point in PC whose distance to x is less than
r, and x therefore does not collide with PC .

IV. METHOD

CAPTs redesign aspects of the classic k-d tree to make
it amenable to high-throughput parallel querying for robot
collision checking. The major problems with directly using
a k-d tree for this purpose are (1) cache-unfriendly random
memory access patterns that arise from the tree’s storage
representation, and (2) the inherently conditional-branch-heavy
backtracking recursive algorithm used for normal k-d tree
nearest-neighbor queries. Accordingly, the defining features of
a collision-affording point tree, as opposed to a k-d tree, are its
use of a memory layout that improves cache coherency during
tree traversal, and that each leaf of a collision-affording point
tree contains an affordance set, a conservative approximation
of the possible nearest-neighbors to any point in the cell. This
deceptively simple change allows the implementation of a
search to avoid the backtracking stage of a search through a k-
d tree, enabling branch-free, parallelism-friendly exact collision
checking in a fraction of the time.

To use a CAPT to check for robot collision, we first assume
that the robot is made up of some set of spheres S (as in
other motion planning work, e.g., [15, 16, 59]). Non-spherical
robots can be approximated conservatively by constructing a
spherical bounding volume hierarchy [60] which contains all of
their collision geometry. Let the smallest sphere of the robot’s
geometry have some known radius rmin and the largest sphere of
the robot’s geometry have some known radius rmax. Then, given
a query sphere with center x and radius r : rmin ≤ r ≤ rmax,
we can use the CAPT to check if the sphere is in collision.
First, we search through the tree to find the leaf cell of the
tree which contains x. If any point in the leaf’s affordance
set collides with the sphere, then the sphere is in collision;
otherwise, the query sphere is not in collision.

(a) (b)

Figure 2: 2a: The cell containing p1 affords p2 and p3 at radius rmax, but
not p4 or p5. The axis-aligned bounding box containing all afforded points is
depicted in green. 2b: The sphere centered at p6 of radius rmin contains the
entire cell, so no other points need to be included in the cell’s affordance set.

We begin by explaining the collision-affording point tree
and its construction process in Secs. IV-A and IV-B. Next,
we detail a point cloud filtering algorithm based upon space-
filling curves in Sec. IV-C. Lastly, we describe our branch-free
parallel collision-checking algorithm for CAPTs in Sec. IV-D.

A. The collision-affording point tree

In a CAPT, each leaf of the tree contains the affordance set
for the leaf’s corresponding cell, illustrated in Fig. 2. Given
the cell c corresponding to a leaf, that leaf’s affordance set is
the set of all points in PC such that c affords collision with l
at the radius rmax. A cell c affords a point p at radius r if there
exists some point q ∈ c such that ∥p− q∥ ≤ r, as depicted in
Fig. 2a. Intuitively, a point p is afforded by a cell c if a sphere
of radius r whose center is contained by c could collide with
p. Finally, each leaf is associated with a second axis-aligned
bounding box. This bounding box is not the same as the cell;
instead, it is the minimal bounding box containing all points
in the leaf’s affordance set, as shown in green in Fig. 2a.

For simplicity, we also assume that PC contains n points,
such that n is a power of two. If n is not a power of two, we
pad PC with points at ∞ to the next greatest power of two.

A CAPT is then the tuple (T,A, P), such that the test
sequence T is an array of n − 1 test values in R ∪ {∞},
A is an array of n axis-aligned bounding boxes over Rk, and
the affordance table P is a ragged two-dimensional array of
n different affordance sets. This representation is implicit: the
tree does not store any information about its branches other
than in the test sequence T .

We arrange T according to an Eytzinger layout, a class of
array-backed implicit tree layout originally used for heaps [61].
This layout reduces memory fragmentation by storing all data
in a single contiguous block, and also improves performance
by allowing for branch-free traversal. In such a layout, T0

corresponds to the root branch of the tree: all points whose x-
value is less than T0 belong to the left sub-tree, while all others
belong to the right sub-tree. Next, T1 and T2 correspond to the
first branches in the left and right sub-trees about the y-value
of each point. Recursively, if Ti corresponds to a partition of
the tree about the dimension d, then T2i+1 corresponds to the
next branch in the left sub-tree, while T2i+2 corresponds to
the next branch in the right sub-tree, both of which split on

dimension d + 1 mod k. The value of Ti at depth d is the
median value of p[d mod k] across all representative points
p in its sub-tree. Intuitively, each Ti partitions the space by a
new axis-aligned hyperplane, splitting the points in its subtree
in half. For simplicity, we choose to partition on a repeating
sequence of axes every time (first along the x-axis, then the
y-axis, and so on), but could substitute other methods, such as
randomly selecting an axis.

Algorithm 1: Construct
Input: Point cloud PC containing n points of

dimension k, minimum query radius rmin,
maximum query radius rmax, axis-aligned
bounding box c, affordance set z, uninitialized
CAPT (T,A, P), index i, dimension index d

1 if |PC| = 1 then
2 x← only element of PC ;
3 if ∃q ∈ c : ∥q − x∥ > rmin then
4 PC ← PC ∪ z;
5 a← bounding box containing all points in PC ;
6 append PC onto P ;
7 append a onto A;
8 else
9 Ti ← median value of pd for all p ∈ PC ;

10 B1 ← {p ∈ PC : pd ≤ Ti};
11 B2 ← {p ∈ PC : pd > Ti};
12 c1, c2 ← c;
13 shrink the upper bound of c1 on dimension d to Ti;
14 raise the lower bound of c2 on dimension d to Ti;
15 z1 ← {p ∈ z ∪B2 : c1 affords p at rmax};
16 z2 ← {p ∈ z ∪B1 : c2 affords p at rmax};
17 Construct(B1, rmin, rmax, c1, z1, (T,A, P), 2i+

1, (d+ 1) mod k);
18 Construct(B2, rmin, rmax, c2, z2, (T,A, P), 2i+

2, (d+ 1) mod k);

B. Collision-affording point tree construction

To construct a CAPT, we apply the same recursive partition-
ing approach as in k-d tree construction, using quick-select [62]
for an expected linear-time selection of the median value for
each partition. The exact construction algorithm is specified in
Alg. 1. At each step of the construction procedure, we retain
two additional sets of information: the current cell c and the
current afforded set z. c is initialized to the cell containing all
of Rk, while z is initialized to the empty set. Every time we
split the point cloud along a median plane, we split c about the
same median plane into two adjacent cells, c1 and c2. Next,
we duplicate z to produce two new affordance sets, z1 and z2.
We expand z1 to include all points in the cloud contained by
c2, and vice versa for z2. Finally, we filter out all points from
z1 which are not afforded by c1, and likewise with z2. This
process can be thought of as maintaining the set of all points
outside of a cell c that are still close enough to c that they
may collide with a query sphere centered in c. Once each cell

(a) (b)

Figure 3: 3a: A point cloud with 126000 points, created by randomly sampling
the surface of a shelf. 3b: The same point cloud, filtered to 8889 points using
rfilter = 2cm.

contains exactly one point, we determine the final affordance
set of that cell’s leaf as the union of the set containing the
representative point and all points afforded by the leaf cell.

We can use knowledge of rmin to prune the affordance set
slightly more than the conservative approximation created by
the construction procedure. If all points xc ∈ c are so close to
the representative point p that ∥xc−p∥ ≤ rmin, then all spheres
with center x ∈ c and radius r ≥ rmin will collide with c’s
representative point p, as shown in Fig. 2b. If this is the case,
then there is no need to include any points outside of c in the
affordance set, since we know that any query sphere centered
in c is already in collision. Therefore, for these sufficiently
small cells, we can simply store {p} as the affordance set,
without including any other points.

C. Filtering

Not all points in an input point cloud are required for
collision-checking, especially in extremely dense clouds, as
there are many redundant points when conservatively approxi-
mating the colliding volume of the cloud. As the construction
time of collision-affording point trees grows with the size of
the point cloud, we introduce an efficient filtering procedure to
significantly reduce the density of the cloud that also guarantees
that it will not remove critical points.

As the cloud is used for collision checking, it cannot remove a
point p unless there is another point p∗ in the cloud sufficiently
close to p, such that ∥p − p∗∥ is less than some threshold
radius rfilter. This guarantees that the robot cannot penetrate
further than rfilter into the point cloud; alternately, all spheres
of the robot may be padded by rfilter to produce a conservative
approximation of the cloud. Lastly, this filtering procedure
must be computationally cheap: it must be significantly faster
than the construction time of the CAPT to achieve any useful
speedup.

In order to verify that any removed point p has a sufficiently
close neighbor p∗, we must compute the distance between p and
p∗. A naive algorithm would compare every two points in PC ,
but this approach yields O(n2) runtime, which is unacceptable
for large point clouds. Instead, we reduce the candidate set of
pairs by exclusively comparing points which are relatively near
to one another, according to an arbitrary measure of locality.

Space-filling curves (specifically in our implementation, Z-
order curves [50]) provide such a measure of locality: we

use one to map all points in PC to a one-dimensional space-
filling curve. Once sorted in order of their position along the
curve, points which are adjacent in the curve are also likely to
be adjacent in their higher-dimensional space. Therefore, by
exclusively checking the distance between neighboring points
in the space-filling curve, we can dramatically reduce the point
cloud size in O(n log n) time (Alg. 2).

However, nearby points in a higher-dimensional space are
not guaranteed to be adjacent in a fixed space-filling curve.
We mitigate this by checking for neighbors on multiple space-
filling curves, one for each permutation of dimensions. If two
points are near to each other, then it is likely that at least one
such curve will place them adjacent to one another. Repeating
the filtering process on each permutation of dimensions means
that the filtering procedure scales with O(k!n log n), but for
k = 3, there are only six such permutations, so the cost of
extra filter checks is minimal compared to the savings in point
cloud size.

Algorithm 2: Filter
Input: list of points PC , filter radius rfilter
Output: list of filtered points PC ′ ⊆ PC

1 PC ′ ← PC ;
2 foreach permutation X of dimensions do
3 sort PC ′ along a Z-order curve by dimension order

X;
4 i← 0;
5 foreach j ← 1, 2, · · · |PC ′| − 1 do
6 if ∥PC ′

i − PC ′
j∥ > rfilter then

7 i← i+ 1;
8 PC ′

i ← PC ′
j ;

9 PC ′ ← PC ′
0···i;

10 return PC ′;

Additionally, we filter out any points which we can prove
will never be in collision with the robot. This process is simple
for fixed-base arm robots: a point can only collide with a robot
if its distance to the base link of the robot is less than the
maximum extension length of the arm.

All together, this filter can achieve dramatic reductions in
point cloud size even for small values of rfilter, filtering clouds
with over a hundred thousand points to less than ten thousand in
a few milliseconds. As shown in Fig. 3, relatively conservative
values of rfilter cull the point cloud by a dramatic amount;
additionally, the filtering process significantly reduces point
cloud density, reducing the expected colliding-set size and
therefore improving tree construction and query times.

D. Collision querying

When collision-checking for a robot, a robot’s configuration
is valid only if all of the robot’s physical geometry is not in
collision with the environment. If any sphere of the robot’s
geometry is in collision with the environment, then the entire
configuration is invalid. This provides us with an early-
termination condition: we need only find a single colliding

sphere to invalidate an entire configuration. By parallelizing
collision checks across multiple query spheres, the entire search
can terminate as soon as one collision is found.

The first step of a collision check is a search through the tree,
as outlined in lines 1-7 of Alg. 3. Given some query sphere
with center x and radius r, the search begins with a test index
i = 0 and dimension d = 0. Then, at each step of the search,
if xd < Ti, i is updated to 2i+1, or 2i+2 otherwise, while d
is updated to d+ 1 mod k. This is the same update rule for
the Eytzinger layout as used during construction: index 2i+ 1
corresponds to the left sub-tree, while index 2i+2 corresponds
to the right subtree. When the search completes, the final value
of i is an integer in the range [n− 1, 2n− 1), with each value
corresponding to a unique leaf of the tree. i−n+1 is an integer
in the range [0, n) corresponding to each point stored at a leaf
of the tree. This traversal can be performed branchlessly by
converting the boolean value xd ≥ Ti comparison into an
integer l, assigning i← 2i+1+ l. Since n is a power of two,
all traversals of the tree terminate in exactly the same number
of iterations, and we do not need to test for reaching the end of
the tree. Likewise, the memory access pattern of the traversal
is extremely predictable: all accesses at a given iteration are
restricted to a small set of possible values. The branchless
traversal sequence allows for efficient SIMD parallelism: each
lane of a single register contains a different test index, and
each load, comparison, and index update is parallel, providing
a large improvement in performance.

After determining which cell contains x, the search algorithm
first performs an efficient collision check between the query
sphere and the axis-aligned bounding box Ai−n+1, which
contains all points afforded by the cell. This step occurs in lines
8-9 of Alg. 3. This check does not change the final output of the
search algorithm; instead, it simply filters out spheres which can
be trivially proven not to collide with any points to reduce the
number of expensive traversals through the affordance set. This
step is once again parallelizable across multiple queries: for
each SIMD lane of the processor, we can compute the distance
from each query sphere to its leaf’s bounding box in parallel
instead of sequentially. During a parallel query, if spheres are
not in collision with the bounding box, then they can be masked
out from all remaining collision checks, reducing the overall
search time. If no spheres in the query set collide with the
axis aligned bounding box, then the query set is provably not
in collision, and the search can terminate immediately.

Finally, the collision-checking procedure exhaustively checks
for collision between the query sphere and all points p ∈
Pi−n+1. If x is nearer to any p than r, then it is in collision.
This step of collision-checking occurs in lines 10-13 of Alg. 3.
We parallelize this step differently from the previous two:
instead of parallelizing across the set of query spheres, we
parallelize across the set of test points in each affordance set.
This is all for cache locality: parallelizing across the test points
means that all memory accesses are in the same contiguous
region, instead of requiring inefficient gather instructions across
multiple different affordance sets. Such parallelism would not
be possible with a conventional k-d tree, as the set of possibly-

colliding points is not known to the search until it explores
each sub-tree.

Algorithm 3: CollisionCheck

Input: CAPT (T,A, P) containing n points in Rk,
sphere s with center x and radius r

Output: Whether s collides with any point in the tree
1 d, i← 0;
2 while i < n− 1 do
3 if xd ≤ Ti then
4 i← 2i+ 1;
5 else
6 i← 2i+ 2;
7 d← d+ 1 mod k;
8 if Ai−n+1 does not intersect s then
9 return false;

10 for p ∈ Pi−n+1 do
11 if ∥x− p∥ ≤ r then
12 return true;
13 return false;

V. ANALYSIS

A. Runtime
The runtime of the construction procedure is dictated by

two sub-procedures: the partitioning of the space, which is
the same as a k-d tree at O(kn log n) for a point cloud with
n points; and the construction of the final affordance set,
which requires O(ka) time for each point, where a is the
maximum size of an affordance set. Therefore the total runtime
of construction is O(kn log n+ kna). When the dispersion of
the point cloud is high, a tends to be small, so the construction
runtime is O(kn log n). However, for extremely low-dispersion
point clouds, all points in the point cloud are afforded by each
cell, so a = O(n), yielding a much larger construction runtime
of O(kn2). In total, a CAPT consumes O(kna) memory, which
may be as much as O(kn2) for extremely low-dispersion
clouds.

In total, each collision query against the collision-affording
point tree performs O(log n) comparisons while traversing the
tree, then O(a) checks evaluating the distance to each point
p ∈ Pi, where a is the maximum size of any affordance set Pi.
Therefore the total search procedure requires O(log n + ka)
steps.

B. Correctness
Lemma V.1. If Pi is the set of points corresponding to a cell
c of the tree, then any sphere s with center x contained by
c and with radius r ∈ [rmin, rmax] collides with a point in the
point cloud PC if and only if s collides with a point in Pi.

Proof: Since Pi ⊆ PC , it is trivial to show that if s
collides with a point in Pi, then it collides with a point in
PC . Now we must prove the converse; that is, ∃p ∈ PC :
∥x − p∥ ≤ r → ∃q ∈ Pi : ∥x − q∥ ≤ r. Let t be the single
point in PC contained by c.

Case 1: ∃q ∈ c : ∥q − t∥ > rmin. Then, by construction,
Pi = {p ∈ PC : minxc∈c ∥xc − p∥ ≤ rmax}. If ∃p ∈ PC :
∥x− p∥ ≤ r, then minxc∈c ∥xc − p∥ ≤ r ≤ rmax. Therefore if
the sphere centered at x collides with p, then x collides with
a point in Pi.

Case 2: ∄q ∈ c : ∥q− t∥ > rmin. By construction, Pi = {t}.
Since x ∈ c, ∥x − t∥ ≤ rmin ≤ r, so if s is in collision with
PC , then s is in collision with Pi.

Lemma V.2. There exists a filter radius rfilter such that the
filtering process does not insert a gap in the point cloud PC
larger than the minimum collision-check sphere diameter 2rmin.

Proof:
Let O ⊆ Rk be the ground truth obstacle volume for a robot

environment, and let PC ⊆ O be its surface approximation
as a point cloud. Then the L2 dispersion δ(O,PC), defined
following LaValle [8], is:

δ(O,PC) = sup
x∈O

min
p∈PC

∥x− p∥

That is, any point x contained in O must be no further than
δ(O,PC) from some point p contained in PC .

Now consider some sphere s with diameter 2rmin. To fit in a
gap of width 2rmin in PC, s must have center x ∈ O. Then, by
the definition of dispersion, ∃p ∈ PC : ∥x− p∥ ≤ δ(O,PC).

The filter algorithm presented in Alg. 2 only removes a point
p ∈ PC if ∃p∗ ∈ PC ′ : ∥p − p∗∥ ≤ rfilter; that is, if there
is already a retained point closer than rfilter to the point in
question. Thus, the largest gap that the filter can introduce is
bounded by 2 (rfilter + δ(O,PC)). So, it follows that ∃p∗ ∈
PC ′ : ∥x − p∗∥ ≤ rfilter + δ(O,PC). To prevent introducing
gaps larger than 2rmin, we then require that:

∥x− p∗∥ ≤ rfilter + δ(O,PC) ≤ rmin

Rearranging, we reach rfilter ≤ rmin − δ(O,PC).
The choice of rfilter as outlined by Lemma V.2 ensures that

the center of any sphere of the robot does not intersect the
obstacle O, preventing the robot from travelling directly through
an obstacle’s surface. However, like any filtering scheme, this
may somewhat reduce the envelope of the point cloud. The
simplest way to overcome this issue is to instead substitute all
query radii rq with r′q = rq + rfilter. An alternate interpretation
of this is that all points in the filtered point cloud are padded by
rfilter to become solid, volumetric spheres. With this padding,
any value of rfilter may be used.

In practice, however, we find empirically that aggressively
padding queries or selecting a small rfilter is overly conservative
(i.e., unnecessary for maintaining plan validity) and detrimental
to CAPT construction performance, so more aggressive filtering
is possible.

The lemmas above ensure that collision-checking using a
collision-affording point tree does not change problem feasibil-
ity compared to brute-force collision-checking; i.e., a planner
using a collision-affording point tree will not erroneously report
that a problem is solvable or unsolvable due to the collision-
checking backend. Lemma V.1 implies that a collision-affording

point tree does not alter the collision status of any query sphere,
so any trajectory which is valid through brute force collision
checking is also valid when using a collision-affording point
tree. Likewise, Lemma V.2 implies that the filtering procedure
is sufficiently conservative to avoid creating spurious gaps,
meaning that the filtering process does not make invalid plans
feasible, subject to the correct radius padding.

VI. EXPERIMENTS

We benchmarked collision-checking throughput on an AMD
Ryzen™ 9 7950X CPU clocked at 4.5GHz against six differ-
ent collision-checking and nearest-neighbor implementations.
We compared against OctoMaps [10], a voxel-based method,
backed by FCL [11]; Nigh [32] and NanoFLANN [31], k-d tree
implementations; GNAT [64], a hyperplane partitioning tree
(as implemented in the Open Motion Planning Library [65]);
and FLANN [30], an approximate nearest-neighbor library. Our
approach was implemented in C++ and integrated with an
existing vector-accelerated motion planning framework [15].
This planner represents the robot as a hierarchy of spheres, so
all robot-environment collision-checking was performed using
the CAPT. We also implemented a collision-checking backend
using sequential queries against the tree. Here, sequential refers
to collision checking each of the n spheres packed into a
SIMD vector sequentially, rather than using SIMD intrinsics to
evaluate, thus demonstrating the benefits of SIMD parallelism.
Sequential queries are used as well for NanoFLANN and
OctoMap collision checking.

We benchmark planning performance on the challenging
MotionBenchMaker [63] dataset, with 3 robots (the 6-DOF
UR5, the 7-DOF Panda, and the 8-DOF Fetch) in 7 scenes (table
pick, table under pick, box, cage, bookshelf small, bookshelf tall,
and bookshelf thin) each, performing 100 different planning
problems per scene.

All motion planning was performed on a single thread, using
an implementation of a dynamic-domain [66] balanced [67]
RRT-Connect [68] limited to 1 million iterations. All plans
used the same sequence of randomly sampled configurations,
so any difference in performance is from collision-checking
speed, not from sampling order. All code was compiled with
clang 16.0.6 using the -O3 compiler optimization level
along with native CPU optimizations.

1) Collision query throughput: We began by evaluating
collision-checking throughput on all of the possible backends.
First, we recorded the set of all collision-checking queries made
by a motion planner using ground-truth primitive geometry
on each scene from the MotionBenchMaker [63] dataset. We
then generated point clouds for each scene by uniform random
sampling of the geometry’s surface, then filtered each point
cloud with rfilter ∈ [1mm, 10cm] to reach a desired size. All
collision-checking throughput experiments were performed on
the same set of point clouds. Finally, we executed the exact
same queries on each collision-checking method, recording
the total timing for collision-checking and avoiding any other
timing overhead from other steps in the motion planning
process. CAPTs were constructed with rmin = 1cm and

Figure 4: Construction times and average query throughput for pointcloud collision-checking approaches. Methods were evaluated on exemplary pointclouds
from each of the 7 benchmark datasets from MotionBenchMaker [63], and evaluated against the set of all collision queries attempted by the motion planner.
On the left, construction times are presented in milliseconds. On the right, average query time in nanoseconds are shown on a logarithmic scale for all queries,
only colliding queries, and queries that are not in collision. 99% confidence intervals are shown over 2nd-order polynomial fitted curves for build time and
linear log fit curves for query time.

Backend Mean Filter Mean Build Med. Build 95% Build Mean Plan Med. Plan 95% Plan Mean Simpl. Mean Total Med. Total 95% Total Succ.

U
R

5

OctoMap

2.897

120.935 104.892 218.075 78.894 24.736 375.782 23.290 220.906 179.170 521.604 96.5%
nanoflann 0.346 0.339 0.596 15.526 4.797 78.979 7.810 26.730 15.806 92.221 100.0%

CAPT Seq. 5.859 5.608 10.467 0.833 0.273 4.226 0.368 9.935 8.829 16.279 100.0%
CAPT SIMD 0.490 0.146 2.542 0.225 9.499 8.630 15.541 100.0%

Primitives - - - - 0.204 0.051 1.039 0.067 0.272 0.117 1.145 100.0%

Pa
nd

a

OctoMap

2.712

66.127 49.503 122.043 25.579 9.363 109.210 24.424 118.844 103.436 223.829 99.6%
nanoflann 0.315 0.233 0.611 5.958 3.241 20.352 7.423 16.607 13.726 39.647 100.0%

CAPT Seq. 4.269 3.227 8.758 0.342 0.182 1.166 0.477 7.781 6.430 15.078 100.0%
CAPT SIMD 0.198 0.102 0.728 0.261 7.445 6.055 14.704 100.0%

Primitives - - - - 0.078 0.034 0.363 0.070 0.148 0.100 0.468 100.0%

Fe
tc

h

OctoMap

3.345

160.976 124.376 335.959 309.302 212.953 894.198 121.892 429.362 375.223 900.221 96.6%
nanoflann 0.469 0.391 0.863 177.912 70.510 661.252 33.131 204.500 102.742 680.011 99.9%

CAPT Seq. 6.073 5.145 10.508 18.331 3.863 76.251 1.831 29.624 16.015 88.011 99.7%
CAPT SIMD 10.736 2.159 42.974 0.983 21.213 12.648 58.239 99.7%

Primitives - - - - 3.873 0.779 16.290 0.262 4.136 0.966 16.744 99.3%

Table I: Statistics over the MotionBenchMaker [63] dataset. We compare parallel (CAPT SIMD) and sequential (CAPT Seq.) collision-affording point tree
collision checking against other collision checking backends. All collision-checking backends except for the primitive geometry used the same filtered point
clouds for planning. We report the mean, median, and 95th percentile times spent constructing each collision-checking data structure, planning, simplifying the
path, and the total time spent from observation to completed plan for each robot and collision-checking backend. All times are in milliseconds.

rmax = 8cm. OctoMaps were constructed with a resolution
of 1cm. FLANN indices were created with 4 k-d trees. All
experiments were performed on a single CPU thread.

2) Motion planning performance: We implemented full
motion-planning backends using OctoMaps and NanoFLANN
(as it had the the next-highest throughput, after CAPTs, of
any collision-checking method). Each backend was used as
part of the same motion planning system, so all speedups
are due to collision-checking speed, not sampling order or
other aspects of planner efficiency. We compared the relative
performance of CAPTs, using both sequential and parallelized
SIMD queries, with these two backends. All point clouds were
filtered with rfilter = 2cm; although this filter radius is greater
than that suggested by Lemma V.2, it was empirically tested to
strike an appropriate balance between performance and fidelity,
i.e., not allowing invalid plans. See Appendix A for further
experiments on the effect of rfilter. CAPTs were constructed
with rmin and rmax derived from robot geometry; (rmin, rmax)
was equal to (1.5cm, 8cm), (1.2cm, 6cm), and (1.2cm, 5.5cm)
for the UR5, Panda, and Fetch respectively. OctoMaps were
constructed with a resolution of 1cm. Once again, these tests
were performed exclusively on a single CPU thread to isolate
per-thread performance; we leave thread-level parallelization
to future work.

A. Empirical Results

1) Collision query throughput: Fig. 4 presents timing results
for CAPT construction times and average query throughput
times for three different classes of tests: all-colliding queries
are a set of queries where each sphere in the query set collides;
non-colliding queries have no sphere in collision, and mixed
queries are a mix of all-colliding, non-colliding, and partially-
colliding queries. Queries against the point cloud were created
by recording the set of all queries made by a motion planner
in the scene, then recording the runtime of checking the same
sequence of queries against each collision-checking system.
We observe that CAPT construction is significantly slower than
other tree-based nearest neighbor data structures, but is still
faster than an OctoMap for construction on point cloud data.
The construction procedure exhibits significantly superlinear
scaling, showing that point cloud filtering is necessary to use
a CAPT effectively.

Collision queries against the tree are overwhelmingly faster
than any other data structure, running nearly ten times faster
than the nearest data structures for collision checking, for
an average performance of 9.89 nanoseconds per query—in
comparison, the next best performing approach, NanoFLANN,
takes on average 309 nanoseconds per query. Remarkably,
collision checks against an OctoMap are over three orders
of magnitude slower than against a CAPT (averaging 0.01
milliseconds per query). This demonstrates a need for the

field to reevaluate methods for planning with sensor data: it is
possible to achieve extremely high performance gains with a
different data structure.

2) Motion planning performance: Table I shows some
critical statistics for filtering, collision checking data structure
construction, planning, simplification, and total time for the
6-DOF UR5, 7-DOF Panda, and 8-DOF Fetch over the Motion-
BenchMaker dataset, as described above. These benchmarks
show a dramatic improvement in performance over baseline
approaches, with SIMD collision checking with a CAPT demon-
strating planning times on par with the ground-truth primitive-
based planner. For both the UR5 and Panda arms, the 95%
quantile of total time end-to-end (filtering, building the CAPT,
planning, and simplification) takes less than 16 milliseconds,
faster than a 60FPS camera can refresh and provide a new
pointcloud. We also highlight that CAPTs provide such an
enormous speedup that motion generation is no longer the
most expensive step. Instead, other steps in the planning
pipeline dominate planning times: point cloud filtering and
CAPT construction account for the lion’s share of planning
time.

B. Planning from real sensor data

Finally, we applied our planning system to point clouds
observed from a real-world scene with an Intel RealSense
D455 RGB-D camera. Fig. 1 shows an example of these data.

1) Static scene: We first created a planning problem in a
static snapshot of this scene, requiring a UR5 robot to move
from its initial pose to a “reach” point across the table. The
original point cloud contained 166587 points; applying our
space-filling curve filter (Sec. IV-C) with rfilter = 2cm reduced
the cloud down to 2732 points. In this experiment, we used a
minimum radius rmin = 1.5cm to match the geometry of our
model of the UR5. As in Sec. VI-A2, we chose to use a larger
rfilter than suggested by Lemma V.2 because it empirically
did not reduce plan quality; for timings with different values
of rfilter, see Appendix A. Running on the same machine as
our other experiments, we observe a median planning time
of 215 microseconds, with a simplified path returned in a
total of 575 microseconds. The total duration from the start
of point cloud filtering through CAPT construction, planning,
and simplification was a median of 7.166 milliseconds—
corresponding to a complete planning rate of roughly 140Hz.

2) Dynamic scene: We additionally evaluated our planning
system in a live control loop on the UR5, tasking it with
moving between a sequence of preset goal waypoints while
dodging unmodeled dynamic obstacles (i.e., pool noodles
moved by humans to obstruct the robot). Planned trajectories
are passed to a simple velocity interpolation controller for time
parameterization and execution, and are replaced and updated
on every new point cloud. We observe that the system is able
to plan at or above the 60FPS camera frame rate; qualitatively,
this speed enables the robot to reactively dodge obstacles and
effectively maneuver in the scene, despite a lack of motion
forecasting or obstacle modeling. We report additional statistics
on planning performance and point cloud properties for this

experiment in Appendix C; please also see the supplementary
material for a video showing the robot in action.

VII. CONCLUSION

Planning from sensor data is a crucial component of au-
tonomous robotics. In this paper, we present a novel data
structure for motion planning with observed point clouds,
demonstrating an order-of-magnitude speedup compared to
state-of-the-art techniques. We also present a unique filtering
algorithm to reduce the density of a point cloud while still
providing safety guarantees on collision detection. Combined,
these two contributions enable a robot to plan from sensor data
in milliseconds on a single CPU core, allowing the robot to plan
faster than standard 60FPS camera refresh rates. This means
that robots can now use sampling-based motion planning in
real time on purely sensed environments, using only general-
purpose low-power hardware.

The primary limitation of a CAPT is that it is an immutable
data structure. After construction, no points in the tree can be
inserted or deleted. Since depth-camera images are streamed
on a frame-by-frame basis, this is not a problem for collision-
checking in dynamic environments, since we can reconstruct
the CAPT from scratch for each frame. However, the CAPT’s im-
mutability precludes use of a CAPT for the state-space nearest-
neighbor search required by most sampling-based planning
algorithms. Future extensions to the CAPT structure could
enable incremental updating, which would allow it to be used
for nearest-neighbor search in the state space during sampling-
based planning. Unlike OctoMaps [10], the CAPT does not
distinguish between free and unobserved space. This may be
problematic for cluttered environments due to occlusions, and
in future work we are interested in extending the CAPT to
more directly model visibility and occlusion, as well as to
better handle perceptual uncertainty by e.g., modeling points
as probabilistic particles.

As well, although our choice to duplicate potentially colliding
points to construct the affordance sets enables CAPTs to avoid
branches and effectively exploit parallelism, it also limits
their capacity for scaling to massive point clouds, such as
those constructed by autonomous vehicles. In future work, we
would be interested in exploring techniques for compressing
or otherwise de-duplicating affordance sets. Perhaps more
promising is the potential for using CAPTs as a secondary
collision data structure paired with another form of spatial
subdivision, such as a spatial hash or voxel grid [19, 44]. This
hierarchical fused data structure would allow a set of CAPTs
to each be “responsible” for only a local neighborhood of a
large point cloud while maintaining efficient and parallelizable
queries over the entire cloud.

Finally, our performance results challenge conventional as-
sumptions about the nature of planning. We have demonstrated
that judicious application of parallelism and insights into the
core problems of collision checking against sensor data enables
extraordinary improvements in planning time, so much so that
motion planning from sensor data could now be seen as a cheap
primitive operation, instead of a time-consuming bottleneck.

REFERENCES

[1] A. Orthey, C. Chamzas, and L. E. Kavraki. “Sampling-based motion
planning: A comparative review”. In: Annual Review of Control,
Robotics, and Autonomous Systems 7 (2023).

[2] S. M. LaValle, J. J. Kuffner, B. R. Donald, et al. “Rapidly-exploring ran-
dom trees: Progress and prospects”. In: Algorithmic and computational
robotics: new directions 5 (2001), pp. 293–308.

[3] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars. “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces”. In: IEEE Transations on Robotics and Automation 12.4 (1996),
pp. 566–580.

[4] J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow, J.
Pan, S. Patil, K. Goldberg, and P. Abbeel. “Motion planning with
sequential convex optimization and convex collision checking”. In: The
International Journal of Robotics Research 33.9 (2014), pp. 1251–1270.

[5] M. Zucker, N. Ratliff, A. D. Dragan, M. Pivtoraiko, M. Klingensmith,
C. M. Dellin, J. A. Bagnell, and S. S. Srinivasa. “CHOMP: Covariant
Hamiltonian optimization for motion planning”. In: The International
Journal of Robotics Research 32.9–10 (2013), pp. 1164–1193.

[6] M. Bhardwaj, B. Sundaralingam, A. Mousavian, N. D. Ratliff, D. Fox,
F. Ramos, and B. Boots. “STORM: An Integrated Framework for Fast
Joint-Space Model-Predictive Control for Reactive Manipulation”. In:
Conference on Robot Learning. 2021.

[7] J. Bialkowski, S. Karaman, and E. Frazzoli. “Massively Parallelizing
the RRT and the RRT*”. In: IEEE/RSJ International Conference on
Intelligent Robots and Systems. Sept. 2011, pp. 3513–3518.

[8] S. M. LaValle. Planning algorithms. Cambridge university press, 2006.
[9] J. Schauer and A. Nüchter. “Collision detection between point clouds

using an efficient kd tree implementation”. In: Advanced Engineering
Informatics 29.3 (2015), pp. 440–458.

[10] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard.
“OctoMap: An efficient probabilistic 3D mapping framework based on
octrees”. In: Autonomous robots 34 (2013), pp. 189–206.

[11] J. Pan, S. Chitta, and D. Manocha. “FCL: A general purpose library for
collision and proximity queries”. In: IEEE International Conference
on Robotics and Automation. IEEE. 2012, pp. 3859–3866.

[12] J. Pan, I. A. Şucan, S. Chitta, and D. Manocha. “Real-time collision
detection and distance computation on point cloud sensor data”. In:
2013 IEEE International Conference on Robotics and Automation.
IEEE. 2013, pp. 3593–3599.

[13] M. Danielczuk, A. Mousavian, C. Eppner, and D. Fox. “Object
rearrangement using learned implicit collision functions”. In: IEEE
International Conference on Robotics and Automation. IEEE. 2021,
pp. 6010–6017.

[14] A. Murali, A. Mousavian, C. Eppner, A. Fishman, and D. Fox. “CabiNet:
Scaling Neural Collision Detection for Object Rearrangement with
Procedural Scene Generation”. In: IEEE International Conference on
Robotics and Automation. 2023, pp. 1866–1874.

[15] W. Thomason, Z. Kingston, and L. E. Kavraki. “Motions in Microsec-
onds via Vectorized Sampling-Based Planning”. In: IEEE International
Conference on Robotics and Automation. 2024.

[16] B. Sundaralingam, S. K. S. Hari, A. Fishman, C. Garrett, K. Van Wyk,
V. Blukis, A. Millane, H. Oleynikova, A. Handa, F. Ramos, N. Ratliff,
and D. Fox. “CuRobo: Parallelized Collision-Free Robot Motion
Generation”. In: IEEE International Conference on Robotics and
Automation. 2023, pp. 8112–8119.

[17] V. Vasilopoulos, S. Garg, P. Piacenza, J. Huh, and V. Isler. “RAMP: Hi-
erarchical Reactive Motion Planning for Manipulation Tasks Using Im-
plicit Signed Distance Functions”. In: arXiv preprint arXiv:2305.10534
(2023).

[18] A. T. Le, G. Chalvatzaki, A. Biess, and J. R. Peters. “Accelerating
Motion Planning via Optimal Transport”. In: Advances in Neural
Information Processing Systems 36 (2024).

[19] A. Millane, H. Oleynikova, E. Wirbel, R. Steiner, V. Ramasamy, D.
Tingdahl, and R. Siegwart. “nvblox: GPU-Accelerated Incremental
Signed Distance Field Mapping”. In: arXiv preprint arXiv:2311.00626
(2023).

[20] J. H. Reif. “Complexity of the mover’s problem and generalizations”.
In: Annual Symposium on Foundations of Computer Science. IEEE
Computer Society. 1979, pp. 421–427.

[21] J. Canny. The complexity of robot motion planning. MIT press, 1988.
[22] S. Thrun, W. Burgard, and D. Fox. “Probabilistic robotics”. In:

Communications of the ACM 45.3 (2002), pp. 52–57.

[23] J. L. Bentley. “Multidimensional binary search trees used for associative
searching”. In: Communications of the ACM 18.9 (1975), pp. 509–517.

[24] P. Ram and K. Sinha. “Revisiting kd-tree for nearest neighbor search”.
In: Proceedings of the 25th acm sigkdd international conference on
knowledge discovery & data mining. 2019, pp. 1378–1388.

[25] Y. Chen, L. Zhou, Y. Tang, J. P. Singh, N. Bouguila, C. Wang, H.
Wang, and J. Du. “Fast neighbor search by using revised kd tree”. In:
Information Sciences 472 (2019), pp. 145–162.

[26] R. Pinkham, S. Zeng, and Z. Zhang. “Quicknn: Memory and perfor-
mance optimization of kd tree based nearest neighbor search for 3d point
clouds”. In: 2020 IEEE International symposium on high performance
computer architecture (HPCA). IEEE. 2020, pp. 180–192.

[27] J. Klein and G. Zachmann. “Point cloud collision detection”. In:
Computer Graphics Forum. Vol. 23. 3. Wiley Online Library. 2004,
pp. 567–576.

[28] F. Chen, R. Ying, J. Xue, F. Wen, and P. Liu. “ParallelNN: A
Parallel Octree-based Nearest Neighbor Search Accelerator for 3D Point
Clouds”. In: 2023 IEEE International Symposium on High-Performance
Computer Architecture (HPCA). IEEE. 2023, pp. 403–414.

[29] P. H. E. Becker, J.-M. Arnau, and A. González. “KD Bonsai: ISA-
Extensions to Compress KD Trees for Autonomous Driving Tasks”. In:
Proceedings of the 50th Annual International Symposium on Computer
Architecture. 2023, pp. 1–13.

[30] M. Muja and D. Lowe. “Flann-fast library for approximate nearest
neighbors user manual”. In: Computer Science Department, University
of British Columbia, Vancouver, BC, Canada 5 (2009), p. 6.

[31] J. L. Blanco and P. K. Rai. nanoflann: a C++ header-only fork of
FLANN, a library for Nearest Neighbor (NN) with KD-trees. https:
//github.com/jlblancoc/nanoflann. 2014.

[32] J. Ichnowski and A. Kuntz. nigh: Concurrent exact nearest neighbor
searching in robotics-relevant spaces, including Euclidean, SO(3), SE(3)
and weighted combinations thereof. https://github.com/UNC-Robotics/
nigh. 2018.

[33] H. Moravec and A. Elfes. “High resolution maps from wide angle
sonar”. In: Proceedings. 1985 IEEE International Conference on
Robotics and Automation. Vol. 2. 1985, pp. 116–121.

[34] S. Thrun and A. Bücken. “Integrating grid-based and topological maps
for mobile robot navigation”. In: Proceedings of the national conference
on artificial intelligence. 1996, pp. 944–951.

[35] R. B. Rusu, I. A. Şucan, B. Gerkey, S. Chitta, M. Beetz, and L. E.
Kavraki. “Real-time perception-guided motion planning for a personal
robot”. In: 2009 IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE. 2009, pp. 4245–4252.

[36] D. Meagher. “Geometric modeling using octree encoding”. In: Com-
puter graphics and image processing 19.2 (1982), pp. 129–147.

[37] S. Chitta, I. Sucan, and S. Cousins. “Moveit!” In: IEEE Robotics &
Automation Magazine 19.1 (2012), pp. 18–19.

[38] E. Vidal Garcia, M. Moll, N. Palomeras, J. D. Hernández, M. Carreras,
and L. E. Kavraki. “Online Multilayered Motion Planning with
Dynamic Constraints for Autonomous Underwater Vehicles”. In: IEEE
International Conference on Robotics and Automation. May 2019,
pp. 8936–8942.

[39] T. Dang, M. Tranzatto, S. Khattak, F. Mascarich, K. Alexis, and M.
Hutter. “Graph-based subterranean exploration path planning using
aerial and legged robots”. In: Journal of Field Robotics 37.8 (2020),
pp. 1363–1388.

[40] C. Badue, R. Guidolini, R. V. Carneiro, P. Azevedo, V. B. Cardoso,
A. Forechi, L. Jesus, R. Berriel, T. M. Paixao, F. Mutz, et al. “Self-
driving cars: A survey”. In: Expert Systems with Applications 165
(2021), p. 113816.

[41] Y. Lu, Z. Xue, G.-S. Xia, and L. Zhang. “A survey on vision-based
UAV navigation”. In: Geo-spatial information science 21.1 (2018),
pp. 21–32.

[42] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim,
A. J. Davison, P. Kohi, J. Shotton, S. Hodges, and A. Fitzgibbon.
“Kinectfusion: Real-time dense surface mapping and tracking”. In:
IEEE international symposium on mixed and augmented reality. Ieee.
2011, pp. 127–136.

[43] T. Whelan, S. Leutenegger, R. Salas-Moreno, B. Glocker, and A.
Davison. “ElasticFusion: Dense SLAM without a pose graph”. In:
Robotics: Science and Systems. 2015.

[44] H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart, and J. Nieto. “Voxblox:
Incremental 3D Euclidean signed distance fields for on-board MAV

https://github.com/jlblancoc/nanoflann
https://github.com/jlblancoc/nanoflann
https://github.com/UNC-Robotics/nigh
https://github.com/UNC-Robotics/nigh

planning”. In: IEEE/RSJ International Conference on Intelligent Robots
and Systems. IEEE. 2017, pp. 1366–1373.

[45] V. Reijgwart, A. Millane, H. Oleynikova, R. Siegwart, C. Cadena,
and J. Nieto. “Voxgraph: Globally Consistent, Volumetric Mapping
Using Signed Distance Function Submaps”. In: IEEE Robotics and
Automation Letters (2020).

[46] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi,
and R. Ng. “NeRF: Representing Scenes as Neural Radiance Fields for
View Synthesis”. In: Commun. ACM 65.1 (Dec. 2021), pp. 99–106.

[47] M. Adamkiewicz, T. Chen, A. Caccavale, R. Gardner, P. Culbertson,
J. Bohg, and M. Schwager. “Vision-only robot navigation in a neural
radiance world”. In: IEEE Robotics and Automation Letters 7.2 (2022),
pp. 4606–4613.

[48] T. Chen, P. Culbertson, and M. Schwager. “CATNIPS: Collision
Avoidance Through Neural Implicit Probabilistic Scenes”. In: arXiv
preprint arXiv:2302.12931 (2023).

[49] T. Müller, A. Evans, C. Schied, and A. Keller. “Instant neural graphics
primitives with a multiresolution hash encoding”. In: ACM Transactions
on Graphics (ToG) 41.4 (2022), pp. 1–15.

[50] G. M. Morton. A computer oriented geodetic data base and a new
technique in file sequencing. Tech. rep. International Business Machines
Company New York, 1966.

[51] Z. Ying, S. Bhuyan, Y. Kang, Y. Zhang, M. T. Kandemir, and C. R. Das.
“EdgePC: Efficient Deep Learning Analytics for Point Clouds on Edge
Devices”. In: Proceedings of the 50th Annual International Symposium
on Computer Architecture. 2023, pp. 1–14.

[52] M. Connor and P. Kumar. “Fast construction of k-nearest neighbor
graphs for point clouds”. In: IEEE transactions on visualization and
computer graphics 16.4 (2010), pp. 599–608.

[53] J. Ichnowski and R. Alterovitz. “Parallel sampling-based motion plan-
ning with superlinear speedup”. In: IEEE/RSJ International Conference
on Intelligent Robots and Systems. IEEE. 2012, pp. 1206–1212.

[54] E. Plaku, K. E. Bekris, B. Y. Chen, A. M. Ladd, and L. E. Kavraki.
“Sampling-Based Roadmap of Trees for Parallel Motion Planning”. In:
IEEE Transactions on Robotics 21.4 (2005), pp. 597–608.

[55] N. M. Amato and L. K. Dale. “Probabilistic Roadmap Methods
Are Embarrassingly Parallel”. In: IEEE International Conference on
Robotics and Automation. Vol. 1. May 1999, 688–694 vol.1.

[56] S. A. Jacobs, K. Manavi, J. Burgos, J. Denny, S. Thomas, and N. M.
Amato. “A Scalable Method for Parallelizing Sampling-Based Motion
Planning Algorithms”. In: IEEE International Conference on Robotics
and Automation. 2012, pp. 2529–2536.

[57] J. Pan and D. Manocha. “GPU-based parallel collision detection for fast
motion planning”. In: The International Journal of Robotics Research
31.2 (2012), pp. 187–200.

[58] J. H. Friedman, J. L. Bentley, and R. A. Finkel. “An algorithm for find-
ing best matches in logarithmic expected time”. In: ACM Transactions
on Mathematical Software (TOMS) 3.3 (1977), pp. 209–226.

[59] M. Mukadam, J. Dong, X. Yan, F. Dellaert, and B. Boots. “Continuous-
Time Gaussian Process Motion Planning via Probabilistic Inference”.
In: The International Journal of Robotics Research 37.11 (Sept. 2018),
pp. 1319–1340.

[60] G. Bradshaw and C. O’Sullivan. “Adaptive medial-axis approximation
for sphere-tree construction”. In: ACM Transactions on Graphics (TOG)
23.1 (2004), pp. 1–26.

[61] J. W. J. Williams. “Algorithm 232: Heapsort”. In: Communications of
the ACM 7.6 (June 1964), pp. 347–348.

[62] C. A. Hoare. “Algorithm 65: find”. In: Communications of the ACM
4.7 (1961), pp. 321–322.

[63] C. Chamzas, C. Quintero-Pena, Z. Kingston, A. Orthey, D. Rakita,
M. Gleicher, M. Toussaint, and L. E. Kavraki. “MotionBenchMaker:
A tool to generate and benchmark motion planning datasets”. In: IEEE
Robotics and Automation Letters 7.2 (2021), pp. 882–889.

[64] S. Brin. “Near neighbor search in large metric spaces”. In: VLDB.
Vol. 95. 58. Citeseer. 1995, pp. 574–584.

[65] I. A. Sucan, M. Moll, and L. E. Kavraki. “The open motion planning
library”. In: IEEE Robotics & Automation Magazine 19.4 (2012),
pp. 72–82.

[66] L. Jaillet, A. Yershova, S. M. La Valle, and T. Siméon. “Adaptive tuning
of the sampling domain for dynamic-domain RRTs”. In: IEEE/RSJ
International Conference on Intelligent Robots and Systems. IEEE.
2005, pp. 2851–2856.

[67] J. J. Kuffner and S. M. LaValle. An efficient approach to path planning
using balanced bidirectional RRT search. Tech. rep. Robotics Institute,
Carnegie Mellon University, 2005.

[68] J. J. Kuffner and S. M. LaValle. “RRT-connect: An efficient approach
to single-query path planning”. In: IEEE International Conference on
Robotics and Automation. Vol. 2. IEEE. 2000, pp. 995–1001.

APPENDIX

A. Empirical impact of filter radii

We ran the simulated planning experiments from Sec. VI-A2
for the Panda robot with different values for the rfilter parameter
to Alg. 2 to investigate its effect on CAPT construction times,
planning performance, and problem feasibility. These results are
shown in Table IV. We note that, although the CAPT is sensitive
to the value of rfilter in its construction time in particular,
even for conservative values of rfilter (e.g., matching or less
than the bound suggested by Lemma V.2), our planning times
are always faster than any baseline, and our total times are
competitive or fastest. Note also that the baselines are only
evaluated with the most aggressive value of rfilter, and would
also be slowed in planning and total time for more conservative
values. Finally, Table IV also validates that, for all values of
rfilter, the paths we find are valid with respect to the exact,
primitive geometric obstacles, evaluated post hoc.

B. Empirical dispersion of point clouds

We recorded the values of dispersion δ(O,PC) as discussed
in Lemma V.2 across the point clouds used for our simulation
collision query throughput and planning performance exper-
iments. We compute dispersion by using a standard nearest-
neighbors data structure to query the distance to the closest
neighbor of each point in each point cloud for each scene,
and recording basic summary statistics, as shown in Table II.
We note that δ(O,PC) is often quite small for well-observed
obstacles; further, as argued in the proof sketch for Lemma V.2,
the increase in dispersion resulting from applying Alg. 2 is
bounded by rfilter + δ(O,PC). Therefore, selecting an rfilter in
the same order of magnitude as rmin is a reasonable choice.

C. Real-robot planning experiments

We evaluate the impact of the value of rfilter via the real-
robot demonstration of planning with CAPTs discussed in
Sec. VI-B. We collected 300 observed point clouds from
sequential frames of RGB-D video generated by an Intel
Realsense D455 sensor, and computed the mean post-filter
point cloud sizes and essential timing statistics (i.e., timing
for applying the filter, building a CAPT on the filtered point
cloud, solving a motion planning problem with the CAPT,
and simplifying the solution found—which requires further
collision-checking) for a range of values of rfilter, keeping the
values of rmin and rmax constant at 1.5cm and 8cm respectively.
Table III shows these quantitative results, demonstrating that
although CAPTs remain fast at conservatively small values of
rfilter, increasing rfilter dramatically decreases both point cloud
size and CAPT construction time.

Crucially, we also qualitatively find that, for any rfilter ≤ 2cm,
the generated trajectories are valid and do not intersect or
contact any obstacles. As such, broadly speaking, a user can
vary the value of rfilter to trade fidelity of representation for
performance, and reasonable balances of the two are easy to
find.

δ(O,PC) δ(O,PC ′)
rfilter Mean Median 95% Mean Median 95%

0.5

0.00336 0.00198 0.01075

0.00763 0.00675 0.01314
1 0.01253 0.01182 0.01774

1.5 0.01758 0.01696 0.02314
1.8 0.02055 0.01995 0.02663
1.9 0.02158 0.02097 0.02790

2 0.02261 0.02199 0.02919

Table II: Empirical measurements of point cloud dispersion before (left
grouping) and after (right grouping) applying the filter proposed in Alg. 2 with
a range of rfilter values (leftmost column, in cm). Pre-filter values are identical
and accumulated over all MotionBenchMaker problems used for evaluation
with the Panda robot; all dispersion values are given in cm.

rfilter |PC′| Filter Build Plan Simpl. Total
1 16225 6.944 30.373 0.168 0.275 37.761

1.5 7872 5.682 7.669 0.079 0.085 13.517
2 4614 4.990 3.964 0.087 0.089 9.131

Table III: Impact of rfilter (in centimeters) on planning times for the real
robot experiment with the UR5. The initial pointcloud size |PC| is always
307200 (constructed from a 640x480 pixel depth image). We report mean
point cloud sizes, mean point cloud filtering times, mean CAPT construction
times, mean motion planning times, and mean path simplification times, as
well as the mean total end-to-end planning time. rfilter is in centimeters, and
all times are in milliseconds.

rfilter Mean Filter Mean Build Med. Build 95% Build Mean Plan Med. Plan 95% Plan Mean Simpl. Mean Total Med. Total 95% Total Succ.
0.5 4.544 62.560 56.294 122.966 0.427 0.210 1.581 0.480 68.012 61.546 132.708 100.0

1 3.307 19.339 13.286 41.888 0.288 0.136 1.136 0.344 23.280 16.514 49.667 100.0
1.5 2.742 8.069 5.954 16.595 0.228 0.112 0.923 0.288 11.329 8.753 22.851 100.0
1.8 2.514 5.378 4.278 10.895 0.212 0.103 0.923 0.265 8.370 6.905 16.565 100.0
1.9 2.454 4.701 3.613 9.760 0.207 0.102 0.734 0.265 7.628 6.281 15.149 100.0

2 2.400 4.098 3.125 8.467 0.192 0.099 0.702 0.253 6.945 5.658 13.812 100.0

Table IV: Effect of rfilter on MotionBenchMaker planning performance for the Panda robot for CAPT SIMD. All planning results are valid with respect to the
underlying primitive scene representation sampled to generate simulated pointclouds. rfilter is given in centimeters, and all times are given in milliseconds.

	I Introduction
	II Related Work
	II-A Planning from sensor data
	II-B Space-filling curves
	II-C SIMD parallelism and planning

	III Preliminaries
	IV Method
	IV-A The collision-affording point tree
	IV-B Collision-affording point tree construction
	IV-C Filtering
	IV-D Collision querying

	V Analysis
	V-A Runtime
	V-B Correctness

	VI Experiments
	VI-1 Collision query throughput
	VI-2 Motion planning performance

	VI-A Empirical Results
	VI-A1 Collision query throughput
	VI-A2 Motion planning performance

	VI-B Planning from real sensor data
	VI-B1 Static scene
	VI-B2 Dynamic scene

	VII Conclusion
	Appendix
	A Empirical impact of filter radii
	B Empirical dispersion of point clouds
	C Real-robot planning experiments

