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Robust Optimization-based Motion Planning for high-DOF Robots
under Sensing Uncertainty
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Abstract— Motion planning for high degree-of-freedom (DOF)
robots is challenging, especially when acting in complex envi-
ronments under sensing uncertainty. While there is significant
work on how to plan under state uncertainty for low-DOF
robots, existing methods cannot be easily translated into the
high-DOF case, due to the complex geometry of the robot’s body
and its environment. In this paper, we present a method that
enhances optimization-based motion planners to produce robust
trajectories for high-DOF robots for convex obstacles. Our
approach introduces robustness into planners that are based on
sequential convex programming: We reformulate each convex
subproblem as a robust optimization problem that “protects”
the solution against deviations due to sensing uncertainty. The
parameters of the robust problem are estimated by sampling
from the distribution of noisy obstacles, and performing a
first-order approximation of the signed distance function. The
original merit function is updated to account for the new costs
of the robust formulation at every step. The effectiveness of
our approach is demonstrated on two simulated experiments
that involve a full body square robot, that moves in randomly
generated scenes, and a 7-DOF Fetch robot, performing tabletop
operations. The results show nearly zero probability of collision
for a reasonable range of the noise parameters for Gaussian
and Uniform uncertainty.

I. INTRODUCTION

As the cost of robotic platforms reduces and technology
integration improves, more often than not, high degree-of-
freedom (DOF) robots will make their way into non-structured,
highly uncertain environments. Sampling-based [1]–[3] and
optimization-based [4]–[7] planners provide efficient plan-
ning solutions for such high-dimensional systems in the
presence of obstacles, but most such planners assume perfect
information about the state of the robot and its environment.
For motion planning, this is particularly important since
uncertainty-unaware planners will likely generate unsafe
motions that do not meet task specifications.

There are methodologies that incorporate uncertainty
into motion planners, both sampling-based [8]–[12] and
optimization-based [13]–[17]. The majority of approaches
is designed only for low-DOF robots, where the robot’s ge-
ometry is greatly simplified (e.g., to a point robot). Typically,
Gaussian uncertainty in the state of the robot is considered.

Yet, many robotic applications involve high-DOF robots,
where the uncertainty due to perception dominates that of
the robots’ state2. Take as an example a home-assistant
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2Motion happens at low torques and velocities and therefore any uncer-
tainty in the robot actuators can be corrected during execution.

Fig. 1: Example of one trajectory generated by our approach
in the Fetch tabletop task. The robot avoids colliding with the
uncertain block. The uncertainty acts in the direction shown
by the arrow.

robot faced with the task of removing cutlery and tableware
from a dining table: During execution, its actions do not
require complex dynamics (e.g., fast motions or lifting heavy
objects), but the complex geometry of both the robot and the
objects needs to be considered to avoid colliding with (or
even breaking) objects on the table. That is, there are real
scenarios where both the robot and the environment are made
of complex geometry, which further increase the chances
of potential collisions, if uncertainty is not properly taken
into account. Due to the inherent complexity of the robot
geometry, the techniques designed for low-DOF robots, more
often than not, do not transfer to the high-DOF regime [15].

A successful approach for robustness has been that of
producing trajectories that meet certain bounds on the proba-
bility of collision, by using chance constraints [13]. This
is efficiently achieved by exploiting properties of certain
types of noise and geometry to transform chance constraints
into deterministic ones that make the problem tractable.
Optimization-based methods solve convexified forms of these
constraints [13], [15]–[17], while sampling-based methods
only consider samples that meet these constraints [9], [18].
In both cases, the algorithm design is tied to the assumed
noise model, making the resulting algorithms impractical to
other noise models.

We propose a method that produces robust trajectories for
high-DOF robots, interacting in complex environments, when
sensing uncertainty dominates. Our method is not attached to
a specific noise model; it only assumes that uncertainty in the
problem parameters is bounded. Instead of explicitly deriving
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an estimation to the overall risk of collision, we consider how
sensing uncertainty is propagated into each convex subprob-
lem of a planner based on sequential convex programming
(SCP). Our method finds robust solutions to each subproblem
by introducing artificial variables and constraints that protect
the solution against worst-case deviations. To achieve this,
we leverage results from Robust Optimization (RO) [19], [20]
that allow each convex subproblem to be solved considering
set-based uncertainty in the problem parameters. Under
realistic assumptions, our formulation enhances SCP-based
planners to produce trajectories with low probability of
collision without assuming specific noise models. We test our
method in motion planning problems and environments with
complex geometry and for different types of noise models.

II. PRELIMINARIES

We consider planning for a high-DOF robot in an environ-
ment with convex obstacles and uncertainty in its perception
system. We assume that there is no uncertainty in the robot’s
state, i.e., the robot moves quasi-statically in the environment.

A. Trajectory Optimization through SCP

Optimization-based planners compute a trajectory by solv-
ing the following optimization problem:

minimize
q

f(q)

subject to gi(q) ≤ 0, i = 1, . . . ,m,

hi(q) = 0, i = 1, . . . , n.

Here, q is a vector of stacked waypoints qt that represent the
discretized trajectory (t = 1, . . . , T ); f usually encourages
smooth trajectories; gi are inequality constraints that can be
used for joint limits and collision avoidance; and, hi can be
used to enforce end-effector pose or to meet dynamics.

SCP has been successfully used to solve the non-convex
motion planning problem [6], [7], [21], [22]. It works by
optimizing a sequence of local convex approximations of the
non-convex problem, as the one above. For our discussion,
we will focus on TrajOpt [6]. Collision-free trajectories can
be computed by enforcing the signed distance between each
obstacle and the volume swept by the robot, to be greater
than certain safety distance.

Let us assume that the robot body is made of L convex
links and the environment has K convex obstacles. Per
iteration, TrajOpt solves the following convex subproblem:3

minimize
s

f̂(s) (1a)

subject to a>tklst + btkl ≤ 0, ∀t, k, l (1b)

W (st + q0t )− w ≤ 0 , t = 1, . . . , T (1c)
‖s‖ ≤ ∆. (1d)

Here, st = qt − q0t is the update that should be applied
to the t-th waypoint of the current trajectory {q01 , . . . , q0T }.
Constraints (1b) correspond to the convexified collision

3We show the discrete collision avoidance formulation for clarity of
presentation. However, all the analysis shown here can be seamlessly
transferred to the continuous case.

avoidance achieved through a first order approximation of the
signed distance [6]: a>tkl = −n̂>tklJtkl, btkl = dsafe − sdtkl.
Here, n̂tkl is the normal vector between obstacle k and link
l, Jtkl is the robot’s Jacobian at contact point pl, and sdtkl
is the signed distance between link l and obstacle k at the
t-th waypoint. Constraints (1c) represent joint limits and (1d)
enforces the solution to remain in the trust region ∆.

Problem (1) is solved using an `1-norm penalty, where
each collision avoidance inequality is penalized using a hinge
function. This leads to the convex objective (2):

φ̂(s) = f̂(s) + µ

L∑
l=1

K∑
k=1

T∑
t=1

max(0, a>tklst + btkl) (2)

where µ > 0 is a regularizer parameter. In practice, eq. (2) is
solved by adding slack variables and additional constraints
for the non-smooth terms to keep the problem a quadratic
program. Other linear constraints (i.e., joint velocity limits or
accelerations) can be seamlessly added to the formulation.

SCP algorithms, such as TrajOpt, keep track of the relation-
ship between the original costs and their convexified versions
to accept or reject the current solution. This procedure works
as a line search: if the error between the model and the
actual merit function remains low and there is a significant
improvement in the merit function, the solution is accepted.
Otherwise, it is rejected. Specific procedures for automatically
adjusting the size of the trust region and for enforcing hard
constraints are also key steps in SCP algorithms [6], [7].

B. Sensing Uncertainty

We represent sensing uncertainties as noise that contam-
inates the 3D poses of uncertain objects. This type of
model is common when the shape of obstacles is known
beforehand, but there is uncertainty in their pose [9], [16],
[18]. Sensing systems based on computer vision and pose
estimation provide this type of sensing uncertainty [23].
Under this model, we refer to the nominal obstacle O as the
set of points occupied by an obstacle at its expected position,
as given by the perception system. The uncertain obstacle O
is the set of all points that result from corrupting the points
in the nominal obstacle with additive random noise:

O = {x+ γ | x ∈ O} (3)

where γ ∈ R3 is some multivariate random variable. Most
existing works assume that γ is Gaussian [9], [16], [18].
However, there is an increasing interest in the non-Gaussian
case [18], [24]. In this work, we do not assume a specific
distribution for γ, but only that it does not lead to unbounded
uncertainty sets for the parameters of the approximated signed
distance function (see Sec. III-A).

III. ROBUST-OPTIMIZATION MOTION PLANNING

Our proposal is not tied to a specific probability distribution
of the corruption noise. We encourage robust trajectories by
robustifying each convex subproblem of a SCP planner.

We refer to our method as Robust-Optimization Motion
Planning (ROMP) (See Alg. 1). It builds off of a SCP
planner, such as TrajOpt [6], with two main loops: one



Accepted for publication in IEEE International Conference on Robotics and Automation (ICRA) June 2021

for every convex subproblem (line 1) and the other for
the trust region iteration (line 5). First, the non-convex
problem is convexified around the current solution (line 2).
For the convex subproblem (f̂ , ĝ) and with access to the
noise probability distribution pγ , we estimate parameters
of the robust formulation (â, b̂, δ) (line 3). We build the
robust formulation of the current subproblem in line 4. Next,
we minimize the robust merit formulation (line 6). The
non-convex merit function is updated, taking into account
the robustified convex problem (line 7). The trust region
acceptance criteria are checked to decide whether the current
solution is accepted or not (line 8). Finally, convergence is
checked according to the desired criteria (line 9).

Algorithm 1: ROMP
input : Initial trajectory q0

output : Optimal Trajectory q∗

1 for SCPIteration← 1, 2, . . . do
2 (f̂ , ĝ) ← Convexify (f, g);
3 (â, b̂, δ) ← EstimateParams (f̂ , ĝ, pγ);
4 (f̂r, ĝr) ← RobustifyProblem (f̂ , ĝ, â, b̂);
5 for TrustRegionIteration← 1, 2, . . . do
6 (s?, r?) ← min φ̂r(s, r) subject to linear

constraints and trust region;
7 φr ← MeritUpdate ((s?, r?) , δ);
8 q ← AcceptanceCriteria (φr, φ̂r);
9 if CheckConvergence () then

10 Return q or break;

A. Uncertain Convex Subproblem

The model described in Sec. II-B will result in uncertainty
in the signed distance function between the robot links and
uncertain obstacles in the environment. This uncertainty
is propagated through the first-order approximation of the
signed distance and leads to uncertainty in parameters (atkl
and btkl) of the linearized collision avoidance constraints (1b)
of every convex subproblem.

In ROMP, we assume that the uncertain parameters of
each convex subproblem follow an unknown, but bounded
and symmetric, probability distribution around a nominal
value. Let uncertain parameters atkl and btkl take values in
[ātkl − âtkl, ātkl + âtkl] and

[
b̄tkl − b̂tkl, b̄tkl + b̂tkl

]
respec-

tively, where ātkl, b̄tkl are coefficients that correspond to the
nominal environment, and âtkl, b̂tkl ≥ 0 are the maximum
deviations from nominal, due to the uncertain obstacle poses.

With this uncertainty model, each collision avoidance
constraint (1b) can be protected against the worst deviation
that each parameter may have, with respect to its nominal
value. I.e., we are interested in solutions s that are feasible
for any realization of the parameters in their corresponding
uncertainty sets. This can be achieved as follows:

ātklg · stg + b̄tkl + âtklg · |stg|+ b̂tkl ≤ 0, (4)

where stg corresponds to the g-th entry of vector st. The
third and fourth term correspond to positive deviations from
nominal values that are forced to remain in the feasible
set. A reformulation of (4), without absolute values, can be
incorporated into (1), leading to:

minimize
s,r

f̂(s) (5a)

subject to ā>tklst + b̄tkl + â>tklrt + b̂tkl ≤ 0 (5b)
− ri ≤ si ≤ ri (5c)

W (st + q0t )− w ≤ 0 , ‖s‖ ≤ ∆, ri ≥ 0. (5d)

Here, r ∈ RTd is a vector of artificial variables that result
in r? = |s?| (component-wise) at its optimal value. After
convergence, formulation (5) will attain an optimal value
s? that will be feasible in (1), even in the presence of the
uncertain parameters atkl and btkl.

Constraints (5b) and (5c) can be used as penalties in the
objective of (5)—using hinge functions and slack variables.
The problem can still be solved as a quadratic program using
off-the-shelf solvers. This step corresponds to line 4 of Alg. 1.

The convex merit function associated with (5) can be
written as follows:

φ̂r(s, r) = f̂(s)

+ µ
∑
l,k,t

(
max(0, ā>tklst + b̄tkl + â>tklrt + b̂tkl)

+

d∑
g=1

max(0,−rtg − stg) +

d∑
g=1

max (0, stg − rtg)

)
where terms in color are additional costs added in ROMP, as
compared to classical TrajOpt. Formulation (5) is one exam-
ple of Robust Optimization (RO) [20], [25]. Our formulation
assumes cardinality constrained uncertainty set. However,
other shapes for the uncertainty set have been explored in
the literature of RO such as ellipsoidal and polyhedral [19].

B. Estimation of Robust Parameters
At every iteration, ROMP computes the robust parameters

âtkl, b̂tkl (line 3 in Alg. 1). These values depend on the
type of noise that corrupts the nominal obstacle’s pose, and
how this noise affects the signed distance, contact points and
normal vectors between objects.

We estimate these values by sampling scenes based on the
noise probability distribution pγ . For each sampled scene,
we compute the new values for the distances, normal vectors,
contact points and robot Jacobians, and use them to linearize
the signed distance function around the current trajectory.
We compare each computed value against the corresponding
value in the nominal scene and keep the largest.

In practice, unbounded uncertainty distributions in the
obstacles’ poses might produce parameter uncertainties that
do not meet the boundedness condition assumed by ROMP
(e.g., Gaussian additive noise in the translation component).
For those cases, we constraint samples to stay within certain
confidence interval of the probability distribution (e.g., an
interval that contains 95% of all the realizations of the random
variable). This approach has proven to work well in practice.
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C. Merit Function Update

A critical step in ROMP involves updating the original
merit function in a way that the model’s merit function at the
optimal value remains a close representation of the original
problem, and the algorithm can make progress. The cost of
the “robustified” convex subproblem (5) after convergence
will be an upper bound of the cost of all instances of the
uncertain programs [26]. For this reason, in ROMP, we
increase the costs related to uncertain objects in the scene, by
adding a multiple of the worst case-deviation of the signed
distance for the corresponding link and obstacle:

φr(q) = f(q) + µ
∑
l,kt

max(0, dsafe − sdkl(qt) + κ · δklt)

Here, in color, δklt is the maximum deviation of the signed
distance between obstacle k and link l, when the robot is at
configuration qt due to uncertainty in the obstacle pose; κ is
a parameter to be tuned.

The value of δklt represents a lower bound on the amount
of cost that needs to be added to φr(q) to accurately represent
φ̂r(q). This parameter can be estimated when the robust
parameters are computed (Sec. III-B) without additional
computational effort. For specific probability distributions,
it may also be analytically computed. Here, we show the
case for Gaussian translational uncertainty.

Gaussian translational uncertainty: Assume that K ⊂
R3 is the space occupied by the “nominal obstacle” k. Due to
the (translational) sensing uncertainty, the “uncertain obstacle”
ku occupies the space Ku = {j + ξ : j ∈ K} and ξ ∼
N (0, Pξ). As in [6], we assume that the signed distance can
be linearized by keeping constant the contact points pl, pk
and the normal vector n̂, and, therefore, can be expressed as

sd(q, d, θ, ξ) ≈ n̂>(Fl(q)pl − FK(d, θ, ξ)),

where Fl and FK are transformations from local to global
coordinates of the robot link and the obstacle, respectively.
If we consider R(θ) the rotation component of the transfor-
mation, the signed distance can be written as:

sd(q, d, θ, ξ) = n̂>Fl(q)pl − n̂>(R(θ)pk + d+ ξ)

= n̂>(Fl(q)pl − FK(d, θ, 0)pk)− n̂>ξ
= sd(q, d, θ, 0)− n̂>ξ (6)

Eq. (6) implies that the signed distance between link l and
obstacle ku is a random variable with Gaussian distribution,
when the robot is at configuration qt; i.e.,

sdξklt ∼ N (sd0klt, n̂
>Pξn̂).

We know that the signed distance random variable will lie
outside sd0klt±

(√
2n̂>Pξn̂

)
·erf−1(2p−1) with probability

2(1− p), where erf−1 is the inverse error function [27]. This
allows us to write the desired maximum deviation:

δklt =
√

2n̂>Pξn̂ · erf−1(2p− 1),

where p is such that the random variable lies inside the
interval of interest with certain given confidence.

IV. RELATED WORK
Research in safe motion planning in dynamic environments

has a long history. Chance constraints have been used to
represent the obstacle avoidance problem as a Disjunctive
Linear Program [28] but also to optimize risk allocation using
linear quadratic programming and robust model predictive
control [29].

Other approaches use a similar probabilistic framework to
model uncertainties, but under sampling-based methods. CC-
RRT [9] is based on a modified version of RRT, where a tree
of Gaussian probability distributions is grown, and each dis-
tribution in the tree is probabilistically feasible. The chance
constraints are transformed into deterministic constraints, that
are included in the validity checker of RRT. This approach
initially allowed to model sensing and action uncertainty for
linear systems, and was later extended [18] for non-Gaussian
uncertainty, nonlinear systems and asymptotically optimal
planners [10]. Similarly, a distributionally robust version
of RRT has been proposed [11]. There, the uncertainty is
assumed to come from a family of probability distributions,
characterized by their first and second order moments and
the optimization is performed over the worst-case distribution
in the ambiguity set. In [30] the authors propose online
generation of robust motion plans for nonlinear dynamics
and bounded disturbances, control constraints and obstacles
using feedback controllers, contraction theory and convex
optimization.

The aforementioned literature is concerned with dynamical
systems where the uncertainty in the robot’s state dominates;
they are also motivated by low-DOF robots, such as cars and
aerial robots. In comparison, there is limited work on high-
DOF robots, such as manipulators, where scene uncertainty
has a larger impact on the safety of the planned trajectories.
More recently and closer to our work, the P-Chekov planner
has been proposed [15]. It relies on a deterministic planner
that successfully combines sampling-based and optimization-
based methods into a sparse roadmap framework. P-Chekov
uses quadrature theories to estimate collision risk for every
waypoint. This planner can be used for high-DOF robots, but
only takes into account state uncertainty. A recently proposed
a robust motion planner based on SCP [17] leverages signed
distance functions and chance-constraints for nonlinear dy-
namical systems, under model uncertainty and disturbances.
Similar to the work presented here, their work rely on SCP
and signed distances. However, their theoretical guarantees
and motivation hold for low-DOF robots.

V. EXPERIMENTS
We test ROMP on two motion planning tasks, namely

the Square Robot and the Fetch Tabletop. The former is
an omnidirectional square robot translating and rotating in
the plane in an environment with random convex shapes.
The latter is a 7-DOF Fetch robot arm performing tabletop
operations. For both experiments, we study the behavior of
ROMP for different types of uncertainty models. Overall, we
highlight how ROMP can effectively incorporate uncertainty
information into the planning problem and create robust
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Fig. 2: Trajectory computed by TrajOpt (left) and ROMP
(right) for one random scene of the Square robot task. Obsta-
cles (blue) are randomly generated convex shapes. The grey
shapes between consecutive waypoints are the approximated
volume swept by the robot, when moving along the trajectory
waypoints (shown in red).

Fig. 3: Percentage of TP/FP/TN/FN for TrajOpt and ROMP,
when solving 1000 different scenes in the presence of
Gaussian and Uniform uncertainty.

trajectories, when compared to other uncertainty unaware
planners. All the experiments were run on an Intel Xeon
E-2136 CPU.
Square robot. We study the performance of TrajOpt and
ROMP in 1000 noisy randomly generated scenes. The square
robot starts at the lower left corner of the environment and
is required to reach a configuration at the top right avoiding
obstacles (See Fig. 2). Each scene consists of 4 to 6 randomly
generated convex uncertain obstacles spread across the envi-
ronment. We considered Gaussian and Uniform uncertainty
in the position of each obstacle (in both x and y axes). For
planning, we build the collision avoidance constraints using
the full body of the robot instead of simplifying it as a point
robot. For every scene, both TrajOpt and ROMP are initialized
with a straight-line trajectory in SE(2). In the experiments we
have used Box2D [31] as collision manager and Gurobi [32]
as backend optimizer. Finally, we have rejected scenes where
trivial (i.e., straight-line) trajectories can solve the problem.
Fig. 2 shows an example of a trajectory generated by TrajOpt
and ROMP on the nominal environment.

TrajOpt is unaware of the obstacle noise: it generates
collision-free trajectories, up to the safety distance parameter.
However, as the trajectories run close to the obstacles, they

collide with the uncertain obstacles. ROMP on the other hand,
pushes the trajectory further away from the obstacles.

For every scene, we have computed the percentage of
true positives (TP), false positives (FP), true negatives (TN)
and false negatives (FN). The first two correspond to cases
where the output trajectory is collision-free with respect to
the nominal scene and “true” and “false” indicate whether
the trajectory is also collision-free for the uncertain scene
or not respectively (similarly, for the negative examples).
Fig. 3 shows the results of 1000 random scenes with Uniform
and Gaussian uncertainty with U(−1.0, 1.0) and N (0, σ2I),
σ = 0.3 in the obstacles’ position. The effect of creating
robust convex sub-problems can be seen in the increased
number of true positives and the significant decrease of both
false positives and false negatives.
Fetch tabletop. We simulate a Fetch robot executing tabletop
operations using its 7-DOF arm with the base and torso fixed
(See Fig. 1). The pose of the table is accurately known, but
the elements on top are subject to uncertainty in the direction
normal to the robot’s body. The goal is to generate safe tra-
jectories, as the robot moves the cylinder from the left to the
right. We use RRT-Connect [33] and TrajOpt as uncertainty-
unaware planners to highlight how different planners are
affected by the sensing uncertainty. RRT-Connect implements
a post-processing heuristic to smoothen the generated trajec-
tory [34]. TrajOpt implements continuous collision avoidance
constraints (see [6]), and ROMP formulations are adapted
accordingly. We use RRT-Connect implementation from
OMPL [35] through MoveIt! [36]. ROMP is implemented
on top of the ROS-Industrial’s TrajOpt implementation [37],
where the collision costs were modified to accommodate
the additional terms in the robust formulation, and new
artificial constraints and variables were added. All planners
are benchmarked using Robowflex [38].

We let RRT-Connect, TrajOpt and ROMP solve the manip-
ulation problem shown in Fig. 1 using the nominal scene and
compute the estimated probability of collision by sampling
5000 scenes from 10 different probability distributions. We
use Gaussian and Uniform distributions with increasing
values of standard deviation and bounds: from 15 to 25cm
and 2.5 to 5.5cm, respectively. The values of these parameters
were chosen to produce similar probability of collisions in the
uncertainty-unaware cases. For the Gaussian distributions, we
reject samples outside of the interval, where 95% of the data
lie when estimating the parameters of our robust formulation.
However, we do not reject any sampled scene when estimating
the probability of collision.

TrajOpt is initialized using a straight line in the manipula-
tor’s joint space, while ROMP is fed with the trajectory found
by TrajOpt. RRT-Connect uses default parameter values.
Fig. 1 shows an example of a trajectory generated by ROMP.
The three planners generate trajectories with configurations
that are close to the noisy object. However, for ROMP the
trajectory is pulled closer to the robot due to the uncertainty
in that direction. Fig. 4 shows the estimated probability of
collision for both types of uncertainty (Left for Gaussian;
Center for Uniform). ROMP finds trajectories that keep a low
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Fig. 4: Estimated probability of collision for trajectories computed by the three planners in the Fetch Tabletop task for
varying levels of (Left) Gaussian and (Center) Uniform noises. (Right) Distance to collision between the Fetch arm and
the noisy object throughout the trajectory, under Gaussian noise with σ = 24cm. The x-axis corresponds to each waypoint,
while y-axis denotes “distance to collision”, where negative values indicate collision. Solid lines show mean distance and
shadows show 1 standard deviation over the 5000 sampled scenes. At the top we show the robot’s end-effector position at
every waypoint, starting where the cylinder is and finishing at the opposite side.

probability of collision for a range of noise, where the other
planners generates a large number of collisions. Furthermore,
the results show that ROMP is capable of handling both
translational Gaussian and Uniform distributions.

In Fig. 4(Right), we plot the distance to collision at every
waypoint between the robot’s arm and the noisy obstacle for
the Gaussian uncertainty with σ = 24cm. On top we show
the pose of the end-effector for one trajectory generated by
ROMP. Waypoint 0 corresponds to the grasping location at
the cylinder (left) and waypoint 9 is the goal configuration at
the other side of the block (right). The negative mean distance
and large deviation by TrajOpt at mid-trajectory waypoints
are the result of the noisy obstacle. ROMP consistently
generates trajectories that are not excessively conservative,
since both the mean distance and the standard deviation
remain low. Table I shows probability of collision, planning
time and path length for σ = 24cm (Gaussian) and bound=
5.5cm (Uniform). The small difference between ROMP’s
trajectories in path length also supports that conservatism of
the solution is not excessively large. Our method exhibits
planning times ∼1-2 seconds, due to the incorporation of the
uncertainty which is reasonable for real-time applications.
Discussion. ROMP effectively extends TrajOpt when sensing
uncertainty is present during planning. This is achieved by
adding artificial variables and estimating parameters that
capture deviation from expected values in SCP.

While writing this work, we did not find planners in the
literature that incorporate uncertainty for high-DOF robots to
compare against ROMP. One work that stands out is [15],
where a “Roadmap+TrajOpt” planner iteratively modifies
the safety distance parameter of the collision avoidance
constraints in TrajOpt. However, this method considers only
uncertainty in the robot’s state and not in the environment.

Recently, [16] proposes the use of convex shapes to
estimate the risk of collision for sensing uncertainty. The
authors integrate the risk into a SCP-based planner as chance
constraints that account for the trajectory’s accumulated risk.
The assumption of Gaussian additive translational noise for

TABLE I: Benchmark results (mean and standard deviation)
for RRT-Connect, TrajOpt and ROMP in the Fetch tabletop
task for Gaussian noise with σ = 24cm and Uniform noise
with bound 5.5cm.

Gaussian σ = 24cm
Prob. Collision Time (s) Length (rad)

RRT-Connect 0.2740 0.0715± 0.0005 13.03± 19.12
TrajOpt 0.2872 0.0663± 0.0000 5.424± 0.000
ROMP 0.0 2.2277± 0.0525 5.871± 0.000

Uniform bound = 5.5cm
Prob. Collision Time (s) Length (rad)

RRT-Connect 0.2580 0.0689± 0.0005 12.88± 18.61
TrajOpt 0.2716 0.0662± 0.0000 5.424± 0.000
ROMP 0.0 1.0091± 0.1139 5.700± 0.000

the uncertain obstacles may limit its applicability. It would
be interesting as a future work to compare this new approach
to ROMP for the cases of Gaussian translational uncertainty.

VI. CONCLUSIONS

We propose ROMP, a method that extends motion planners
based on SCP to incorporate sensing uncertainty into the plan-
ning process. Two important aspects make ROMP useful in
realistic applications. i) ROMP uses the collision avoidance
constraints, proposed in TrajOpt, allowing the use of high-
DOF robots in complex environments. This is an advantage
over the majority of uncertainty-aware planners that assume
a simplified representation of the robot. ii) ROMP is not tied
to a particular noise type, which is appealing for various tasks.
Its major assumption is that the parameters of the first-order
approximation for the signed distance function are bounded.

As future work, we plan to develop methodologies to esti-
mate the parameters of the robust formulation efficiently. E.g.,
methods that learn these statistics from previous experiences
would be interesting to explore. Finally, we plan to explore
more sophisticated shapes of the uncertainty sets, such as
polyhedral and ellipsoidal, that may provide the user with
control over the conservatism of the solution and the amount
of allowable risk.
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