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Abstract. We propose HyDICE, Hybrid DIscrete Continuous Exploration,
a multi-layered approach for hybrid-system testing that integrates con-
tinuous sampling-based robot motion planning with discrete searching.
The discrete search uses the discrete transitions of the hybrid system and
coarse-grained decompositions of the continuous state spaces or related
projections to guide the motion planner during the search for witness
trajectories. Experiments presented in this paper, using a hybrid system
inspired by robot motion planning and with nonlinear dynamics associ-
ated with each of several thousand modes, provide an initial validation of
HyDICE and demonstrate its promise as a hybrid-system testing method.
Comparisons to related work show computational speedups of up to two
orders of magnitude.

1 Introduction

Hybrid systems play an increasingly important role in transportation networks
[1], manufacturing processes [2], robotics [3], and medicine and biology [4, 5].
Today we find hybrid systems in sophisticated embedded controllers used in
the automotive and airplane industry, and also in medical devices that monitor
serious health conditions. Recently, it has been shown that hybrid systems are a
powerful tool for modeling biological processes and for analyzing how complex
systems, such as living organisms, survive [5].

Hybrid systems are formal models that combine discrete and continuous dy-
namics by associating continuous dynamics with each operating mode, while
using discrete logic to switch between operating modes. For example, a hybrid
system may model a vehicle whose underlying motion dynamics varies discretely
depending on terrain conditions. As another example, a hybrid system may
model air-traffic control, where the modes correspond to the cruising of the
planes and the discrete logic models conflict-resolution protocols.

As hybrid systems model more and more complex behaviors, and as they are
often part of devices operating in safety-critical situations, the verification of
safety properties becomes increasingly important. A hybrid system is considered
safe if unsafe states cannot be reached from initial safe states. In general, hybrid-
system verification consists of formally guaranteeing that a certain property is
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true for the system. A rich theory exists for this problem [6–10], as well as several
tools, such as CheckMate1, HyTech2, and PHAVer3.

Unfortunately, even for safety properties, where verification is equivalent to
reachability checking, decidability holds only for hybrid systems with very sim-
ple continuous dynamics (essentially some types of linear dynamics) [11]. To
handle more general hybrid systems, tools have to resort to overapproximation
techniques, surveyed in [12,13]. Such techniques are semi-decidable, since when
a hybrid system is unsafe it may not be possible to show that unsafe states are
reachable. Other recent approaches are semi-decidable in the opposite direction:
capable of finding unsafe behaviors when the system is unsafe, but unable to
determine that a system is safe [14, 15]. In essence, the focus in these recent
approaches shifts from verification to falsification, which often is the main focus
of model checking in industrial applications [16].

In this work we study the following problem: Can we produce a hybrid-system
trajectory from a safe state to an unsafe state when such trajectories exist? This
problem is commonly known as hybrid-system testing. When a hybrid system is
safe, it may not be possible to prove that unsafe states are unreachable. Such
an approach trades completeness for the ability to discover safety violations
for complex systems that current verification methods cannot handle. Under
appropriate conditions and for certain classes of algorithms, as discussed later in
the paper, as the running time increases, we can also increase our confidence in
the safety of the system, since the testing method has not been able to produce
a trajectory that violates safety properties. An efficient framework for finding
trajectories to unsafe states can shed light on the operation of the hybrid system
and may suggest possible interventions. Such framework is particularly useful
in the early stages of hybrid-system development, when errors in design are
common.

This work approaches hybrid-system testing using a robotics-inspired method.
Initially, we exploit the insight that hybrid-system testing is in many respects re-
lated to robot motion planning. The motion-planning problem consists of search-
ing a continuous space for a trajectory for a robotic system from an initial to a
final state, such that kinodynamic constraints on the robot motion are respected
and collision with obstacles are avoided [17, 18]. Hybrid-system testing is also a
reachability analysis on the state space of the hybrid system. In particular, find-
ing a trajectory from a safe to an unsafe state in a hybrid system entails searching
a high-dimensional state space with continuous and discrete components.

The connection with motion planning becomes deeper when we consider
state-of-the art motion-planning algorithms as the starting point for the meth-
ods used for searching the continuous state space of a hybrid system. Recent
advances in motion planning have made it possible to efficiently find trajectories
from initial to final states even for continuous systems with hundreds of dimen-
sions whose motion is governed by nonlinear dynamics [17–24]. The most success-

1 http://www.ece.cmu.edu/∼webk/checkmate/
2 http://embedded.eecs.berkeley.edu/research/hytech/
3 http://www.cs.ru.nl/∼goranf/
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ful planning methods are numerical, sampling-based methods. These methods
generate samples in the state space and connect them with simple trajectories.
(e.g., PRM [25], RRT [19], EST [20], PDST [22], GRIP [23], DSLX-Plan [24], and oth-
ers [17,18]). Motion planning methods, such as RRT, have already been used for
hybrid-system testing for nonlinear hybrid systems with few modes [14,15].

Departing from traditional robot motion planning, we introduce a discrete
component to our work that is responsible for managing the potentially huge
complexity of the discrete transitions. The contribution of this work is the de-
velopment of a multi-layered framework for hybrid-system testing that blends
sampling-based motion planning with discrete searching. The motivation and
many of our design decisions come from our earlier work [24, 26]. In [26] we use
discrete search to obtain a sequence of transitions that guides the generation
of motions for a hybrid robotic system with 10–30 modes and mostly linear
dynamics. In [24] we show that traditional motion-planning problems can be
solved more efficiently by combining sampling-based motion planning with dis-
crete search over an artificially imposed decomposition of the environment on
which the robot moves (which in general can be regarded as a projection of its
state space). The work presented in this paper combines and extends ideas de-
veloped in [24,26] to obtain an effective testing method for hybrid systems with
thousands of modes and nonlinear dynamics.

The proposed method, HyDICE, imposes a coarse-grained decomposition on
the continuous state space associated with each mode. The decomposition and
the discrete transitions of the hybrid system are used to construct a discrete
search graph. Vertices of the search graph correspond to decomposition regions,
while edges connect vertices corresponding to two adjacent decomposition re-
gions or two decomposition regions that are connected by a discrete transition.
The search graph is used to find leads, that is sequences of decomposition regions
that constitute search directions and may be useful in finding a trajectory from
a safe to an unsafe state. The search inside each of the continuous decomposition
regions is done by a state-of-the-art sampling-based motion-planning technique.
Information gathered during exploration, such as region coverage, exploration
time and progress, and other quantities, are used to refine the discrete search
and improve the quality of the lead computed for the next exploration step.

In contrast to previous work [14, 15], the multi-layered approach developed
in this paper is well-suited for systems with many modes and transitions and of-
fers considerable computational improvements over existing methods as demon-
strated in this paper. Initial validation of HyDICE is provided by testing hybrid
systems inspired by motion-planning problems that have thousands of modes and
transitions and nonlinear dynamics associated with each mode. As indicated by
the experiments, the tight integration of discrete search and exploration enables
HyDICE to be up to two orders of magnitude faster than other related methods.

The rest of the paper is as follows. The hybrid-testing problem and the hybrid
system used in the experiments are described in Section 2. Details of HyDICE are
provided in Section 3. Experiments and results are presented in Section 4. We
conclude in Section 5 with a discussion.



4

2 Problem Description

2.1 Hybrid Automata and Hybrid-Testing Problem

In this work, hybrid systems are modeled by hybrid automata [6]. A hybrid
automaton is a tuple H = (S,E,G, J, f, U, I, F ), where S = Q × X; Q is a
discrete and finite set; each Xq ∈ X, Xq ⊆ Rdim(Xq), represents the continuous
space associated with q ∈ Q; E ⊆ Q × Q indicates discrete transitions; each
G(qi,qj) ∈ G, G(qi,qj) ⊆ Xqi

, and each J(qi,qj) ∈ J , J(qi,qj) : Xqi
→ Xqj

, represent
the guard set and reset function associated with (qi, qj) ∈ E, respectively. The
continuous dynamics of the system in each q ∈ Q is governed by a set of differ-
ential equations fq : Xq × Uq → TgXq, where fq ∈ f , Uq ⊆ Rdim(Uq) denotes
the set of possible input controls, and TgXq denotes the tangent space of Xq.
Each Xq ∈ X usually includes derivatives of different orders, e.g., velocity and
acceleration of a car, and thus fq is typically nonlinear. The function fq has the
form fq(x, uq(x)), where the input uq(x) ∈ Uq associated with each x ∈ Xq could
represent continuous controls, nondeterminism, uncertainties, disturbances from
the environment, or actions of other systems. In order to model these factors,
the assignment uq(x) ∈ Uq could be non-deterministic or selected according to
some probability distribution associated with Uq.

A hybrid system trajectory consists of one or more continuous trajectories
interleaved with discrete transitions. Starting at some state (q0, x0) ∈ I, where
I ∈ S denotes the set of initial states, the system evolves according to fq0

until
it reaches G(q0,q1), for some q1 ∈ Q. Then a discrete transition to q1 occurs and
the continuous state is reset by J(q0,q1)(x0). The system evolution continues in
such manner until the end of execution time.

A hybrid system is considered unsafe if a witness trajectory is produced that
takes the hybrid system from some initial safe state ssafe ∈ I to some sunsafe ∈ F ,
where F ⊆ S denotes a set of unsafe states.

2.2 A Hybrid System Inspired by Motion Planning Problems

The hybrid system used throughout this paper consists of an autonomous robotic
car, whose underlying dynamics change discretely depending on terrain condi-
tions. The choice of this specific system is to provide a concrete, scalable bench-
mark in which the competitiveness of our approach can be tested.

A given environment is divided into a number of terrains {R1, . . . , RN}, where
each Ri corresponds to an operating mode qi ∈ Q. The motion of the robotic
car inside each terrain is specified by a set of ordinary differential equations.
A discrete transition (qi, qj) occurs when the robotic car enters a part of Ri

designated as the guard set G(qi,qj). The discrete transition indicates necessary
changes in the way the robotic car should be controlled to adapt to changes in
terrain conditions. After entering Rj , the continuous state of the robotic car is
reset as specified by J(qi,qj) and the underlying dynamics of the car is specified
according to the motion equations associated with qj ∈ Q. The robotic car is
said to have entered some unsafe state, for example, if it is in a particular terrain
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Rj and the speed is above a certain predefined threshold. The robotic car could
behave as a kinematic (first-order) car (KCar), smooth (second-order) car (SCar),
smooth Reeds-Shepp car (RSCar), smooth unicycle (SUni), or smooth differential
drive (SDDrive). Detailed descriptions of these models can be found in [17,18].

Kinematic Car (KCar): A continuous state x is of the form x = [p, θ],
where p ∈ R

2 and θ ∈ (−π, π] denote the position and orientation of the
robotic car. The motion equations are ṗ0 = u0(x) cos(θ); ṗ1 = u1(x) sin(θ); θ̇ =
u0(x) tan(u1(x))/L, where u0(x) ∈ [−1, 1] and u1(x) ∈ [−1, 1] are the speed and
steering wheel controls and L is the distance between the front and rear axles.

Smooth Car (SCar): The kinematic car model can be extended to a second-
order model by expressing the velocity v and steering angle φ as differential equa-
tions of the acceleration u0(x) and the rotational velocity of the steering wheel
u1(x) controls, as follows: x = [p, θ, v, φ] and ṗ0 = v cos(θ); ṗ1 = v sin(θ); θ̇ =
v tan(φ)/L; v̇ = u0(x); φ̇ = u1(x).

Smooth Reeds-Shepp Car (RSCar): A smooth Reeds-Shepp car is similar to
a smooth car, but the acceleration control u0(x) is only allowed to be from the
set {−max, 0,max}, where max ∈ R is some predefined parameter.

Smooth Unicycle (SUni): The continuous state x is x = [p, θ, v, ω], where p,
θ, v are as in the smooth car model and ω indicates the rotational velocity. The
motion equations are ṗ0 = v cos(θ); ṗ1 = v sin(θ); θ̇ = ω; v̇ = u0(x); ω̇ = u1(x).

Smooth Differential Drive (SDDrive): The motion equations are ṗ0 = 0.5r(ωℓ+
ωr) cos(θ); ṗ1 = 0.5r(ωℓ + ωr) sin(θ); θ̇ = r(ωr − ωℓ)/L; ω̇ℓ = u0(x); ω̇r = u1(x),
where x = [p, θ, ωℓ, ωr] is the continuous state; ωℓ and ωr are the rotational ve-
locities of the left and right wheels, respectively; r is the wheel radius; and L is
the length of the axis connecting the centers of the two wheels.

The controls u0(x) and u1(x) could be thought of as playing the role of
the automatic driver. The objective of hybrid-system testing is then to test the
safety of the automatic driver, i.e., the driver is unsafe if a witness trajectory
is produced that indicates that it is possible for the robotic car to enter an
unsafe state. Due to length limitations of this paper, we only provide high-level
descriptions of the automatic drivers.4 These driver models consist of simple if-
then-else statements depending on the state values and motion equations. In the
first model, RandomDriver, u0(x) and u1(x) are selected pseudo-uniformly at
random from some [−max0,max0] and [−max1,max1], respectively. In a second
model, StudentDriver, the driver follows an approach similar to stop-and-go.
When the speed is close to zero, StudentDriver selects u0(x) and u1(x) as in the
RandomDriver model. Otherwise, StudentDriver selects controls that reduce
the speed. The third model, HighwayDriver attempts to maintain the speed
within acceptable low and upper bounds and avoid sharp turns. When the speed
is too low, HighwayDriver selects controls that increase the speed. When the
speed is too high, HighwayDriver selects controls that slow down the robotic car.
When the speed is between the low and upper bounds, HighwayDriver selects
controls that do not change the speed too much.

4 See http://www.cs.rice.edu/CS/Robotics/CAV2007data/ for more details.
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3 Methods

As discussed in the introduction, HyDICE constructs a discrete search graph based
on the discrete transitions and a decomposition of the continuous state spaces.
Observe that any witness trajectory from ssafe ∈ I to sunsafe ∈ F passes through
a sequence of decomposition regions. Although the converse does not hold, a
sequence of connected decomposition regions, starting and ending in two regions
containing states in I and F , respectively, may contain a witness trajectory. Such
sequences of connected regions, referred to as leads, provide search directions
which are used by the sampling-based motion-planning method as guides for the
exploration of the state space of a given hybrid system.

The search for a witness trajectory proceeds iteratively. Throughout the
search, HyDICE maintains an exploration tree T = (VT , ET ), which initially
contains only ssafe, i.e., VT = {ssafe} and ET = ∅. The vertices VT are states of
S, while an edge (s′, s′′) ∈ ET indicates that a hybrid-system trajectory connects
s′ ∈ S to s′′ ∈ S. At each iteration, HyDICE uses the discrete search graph to
compute a lead and then sampling-based motion planning to extend the branches
of T in the direction specified by the lead. The branches of T are extended by
adding new vertices and edges to VT and ET , respectively. A witness trajectory
is found when a state sunsafe ∈ F is added to T . Otherwise, the search continues
until an upper bound on computation time is exceeded. Pseudocode is provided
in Algorithm 1. The discrete search and the sampling-based motion planning are
described in Sections 3.1 and 3.2, respectively.

Algorithm 1 Pseudocode for HyDICE

Input: H = (S, Inv, E, G, J, f, U, I, F ): hybrid system; tmax ∈ R: upper bound on
overall computation time; te ∈ R: short time allocated to each exploration step
Output: A witness trajectory or FAILURE if no witness trajectory is found

1: StartClock1

2: T = (VT , ET ); VT ← {ssafe}; ET ← ∅
3: D ← CoarseGrainedDecomposition(H)
4: GD = (VD, ED)← DiscreteSearchGraph(D)
5: InitExplorationEstimates(GD)
6: while ElapsedTime1 < tmax do

7: σ ← DiscreteLead(GD)
8: StartClock2

9: while ElapsedTime2 < te do

10: s← SelectState(T , σ)
11: snew ← PropagateForward(H, T , s, σ)
12: VT ← VT ∪ {snew}; ET ← ET ∪ {(s, snew)}
13: if snew ∈ F then return WitnessTrajectory(T , snew)
14: UpdateExplorationEstimates(GD, σ)
15: return FAILURE

3.1 Discrete Search

Coarse-grained Decomposition HyDICE constructs a coarse-grained decom-
position D = {Dq1

, . . . ,DqN
}, where Dqi

= {Dqi,1, . . . ,Dqi,ni
} denotes the de-
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composition of Xqi
into ni ∈ N different regions (line 3 of Algorithm 1). HyDICE

does not impose any strict requirements on the decomposition. Dqi
is usually

computed as a set of nonoverlapping regions in some low-dimensional projection
of Xqi

. For the hybrid system used in this work, HyDICE projects each Xqi
onto

R
2 and constructs a cell-based decomposition. Other types of projections and

decompositions are possible [17,18].

Discrete Search Graph D is used to create a search graph GD = (VD, ED).
A vertex vqi,j is added to VD for each Dqi,j . An edge (vqi,j , vqi,k) is added
to ED for each two adjacent regions Dqi,j and Dqi,k. Furthermore, an edge
(vqi,j , vqℓ,k) is added to ED for each two regions Dqi,j and Dqℓ,k such that there
is a discrete transition from some state (qi, x1), x1 ∈ Dqi,j , to some state (qℓ, x2),
x2 ∈ Dqℓ,k. There are also two special vertices vsafe and vunsafe added to VD. An
edge (vsafe, vqi,j) is added to ED for each Dqi,j such that Dqi,j ∩I 6= ∅. Similarly,
an edge (vqi,j , vunsafe) is added to ED for each Dqi,j such that Dqi,j ∩ F 6= ∅.
This operation is found in line 4 of Algorithm 1.

Importance of Leads A central issue is which lead to choose from the com-
binatorially large number of possibilities. This issue is addressed by associating
a weight w(vqi,j ,vqℓ,k) with each (vqi,j , vqℓ,k) ∈ ED, which estimates the impor-

tance of including (vqi,j , vqℓ,k) ∈ ED as an edge in the lead. Preference is given
to leads associated with higher edge weights. For the moment assume that there
is no distinction between edges corresponding to discrete transitions and edges
connecting adjacent regions in the decomposition. At the end we discuss the
possibility of using different weighting schemes depending on the edge type.

Initially, the weights are set to a fixed value (line 5) and are updated (line
14) after each exploration step. The weight w(vqi,j ,vqℓ,k) depends on the coverage

of Dqi,j and Dqℓ,k by T . The coverage c(T ,Dqi,j) is computed by imposing an
implicit uniform grid on Dqi,j and measuring the fraction of cells that contain
at least one state from T . Let cprev(T ,Dqi,j) denote c(T ,Dqi,j) at the begin-
ning of the current exploration step (before line 9) and let cafter(T ,Dqi,j) denote
c(T ,Dqi,j) at the end of the exploration step (after line 13). Thus ∆c(T ,Dqi,j) =
cafter(T ,Dqi,j) − cprev(T ,Dqi,j) indicates the change in the coverage of Dqi,j

by T as a result of the current exploration step. c(T ,Dqℓ,k), cprev(T ,Dqℓ,k),
cafter(T ,Dqℓ,k), and ∆c(T ,Dqℓ,k) are defined similarly. Let t denote the com-
putation time devoted to the exploration of Dqi,j and Dqℓ,k during the current
exploration step and let tacc(Dqi,j ,Dqℓ,k) denote the accumulated exploration
time devoted to Dqi,j and Dqℓ,k. Then, the weight w(vqi,j ,vqℓ,k) is defined as

w(vqi,j ,vqℓ,k) = (1 − ǫ)(∆c(T ,Dqi,j) + ∆c(T ,Dqℓ,k))/(2t) + ǫ/tacc(Dqi,j ,Dqℓ,k),
where 0 < ǫ < 1 is a normalization constant. Large values of w(vqi,j ,vqℓ,k) indi-
cate promising leads, since such values are obtained when T in a short amount
of time reaches previously uncovered parts of Dqi,j and Dqℓ,k. tacc(i, j) is used
to increase the weight of those regions that have been explored less frequently.

As described so far the same procedure determines w(vqi,j ,vqℓ,k), regardless
of whether the edge from Dqi,j to Dqℓ,k corresponds to a discrete transition
or adjacency in the decomposition. Intuitively, edges corresponding to discrete
transitions may be more important, as they guide the sampling-based motion
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planner to extend branches of T from one continuous state space to another. For
this reason, each w(vqi,j ,vqℓ,k) corresponding to a discrete transition is multiplied
by some constant w > 1. Depending on the problem, it may also be beneficial
to estimate the weights corresponding to discrete transitions differently.

Computation of Leads Leads associated with higher edge weights are selected
more frequently. At the same time, each lead has a non-zero probability of being
selected. In this way, HyDICE aims to obtain a balance between greedy and me-
thodical search. The computation of leads is essentially a graph-search problem
and there is extensive literature on the subject [27]. The approach undertaken
in this work is to use combinations of different strategies, such as randomized
depth-first search where the weights associated with each edge in ED are used
to select the successor vertices in the search process, Dijkstra’s algorithm, and
other graph-search methods [27]. For considerably larger problems, approaches
from model checking, such as bounded model checking [28] or directed model
checking [29], could also be used (see also discussion in Section 5).

DiscreteLead(GD) (line 7) returns more frequently the most probable lead
and the lead associated with the highest sum of edge weights and less frequently
leads computed by randomized depth-first search. The most probable lead is
computed using Dijkstra’s algorithm and setting the weight function used in the
graph search to − log(w(vqi,j ,vqℓ,k)/wtotal) for (vqi,j , vqℓ,k) ∈ ED, where wtotal =
∑

(v′,v′′)∈ED
w(v′,v′′). The lead with the highest sum of edge weights is computed

using Dijkstra’s algorithm and setting the weight function to wmax−w(vqi,j ,vqℓ,k)

for (vqi,j , vqℓ,k) ∈ ED, where wmax denotes the maximum weight.

3.2 Sampling-based Motion Planning

The objective of the exploration step (lines 9–13) is to use the lead σ to extend
T toward F . The exploration step proceeds iteratively by selecting a state s from
T and propagating forward from s to a new state snew.

Conceptually, forward propagation provides the necessary mechanism for
sampling-based motion planning to extend the branches of T and explore the
state space. The forward propagation from s entails simulating the evolution
of H starting at s and for a duration of t units of time, where t is selected
pseudo-uniformly at random from [mint,maxt] ⊂ (0,∞). The simulation can be
computed by numerically integrating the motion equations for a short period of
time and following the appropriate discrete transitions when guard conditions
are met. The simulation terminates if at any point an unsafe state is reached
(see [14] for more details). The new state snew obtained at the end of the simula-
tion and the edge (s, snew) are added to the vertices and edges of T , respectively.

SelectState(T , σ) (line 10) selects more frequently states s from T , which,
when propagated forward, bring T closer to F . Let Dqi1

,j1 , . . . ,Dqin ,jn
be the

coarse-grained decomposition regions associated with the sequence of vertices
vsafe, vqi1

,j1 , . . . , vqin ,jn
, vunsafe in σ. Since σ is a sequence of edges from vsafe to

vunsafe, the order 1 ≤ k ≤ n in which vqik
,jk

appears in σ provides an indication
of how close Dqik

,jk
is to F . Since the objective of the exploration step is to
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extend branches of T closer to F , HyDICE gives preference to regions Dqik
,jk

that
are closer to F , i.e., k is close to n. To balance this greedy approach, HyDICE
also takes into account the overall exploration time tacc(Dqik

,jk
) spent in each

Dqik
,jk

and the coverage c(T ,Dqik
,jk

). If Dqik
,jk

contains states from T , let wk =
αk/n + β/c(T ,Dqik

,jk
) + γ/tacc(Dqik

,jk
), where α, β, and γ are normalization

constants. Otherwise, let wk = 0. SelectState(T , σ) selects a region Dqik
,jk

with probability wk/
∑m

h=1 wh. Each state s from T that is contained in Dqik
,jk

is selected with probability 1/nsel(s), where nsel(s) is the number of times s
has been previously selected. Preference is thus given to states that have been
selected less frequently, since such states, when propagated forward, can cause
T to extend in previously unexplored directions.

PropagateForward(H, T , s, σ) attempts to extend s toward Dqik+1
,jk+1

and thus bring T closer to F . Since the evolution of H can be nondeterministic,
PropagateForward(H, T , s, σ) tries several times to propagate forward from
s. Let snewi

be the state obtained after simulating the evolution of H from s for
a duration of ti units of time, where ti is selected pseudo-uniformly at random
from [mint,maxt]. PropagateForward(H, T , s, σ) computes snew as the state
snewi

that is the closest to Dqik+1
,jk+1

. A witness trajectory is found if snew ∈ F .

The witness trajectory is computed by reconstructing the evolution of the hybrid
system from ssafe to snew following the appropriate edges of T (line 13).

4 Experiments and Results

Experiments are performed using the hybrid robotic system described in Sec-
tion 2.2. The hybrid robotic system is made increasingly complex by increasing
the number of modes. This paper presents experiments with up to 10000 modes.

An important part of experiments is the comparison with previous related
work. The closest work we can compare to is the application of RRT to hybrid
systems [14, 15]. We also provide experiments that indicate the impact of the
discrete search on the computational efficiency of HyDICE.

A problem instance is obtained by fixing the number N of operating modes
of the hybrid robotic car. The continuous dynamics associated with each mode qi

(or terrain Ri) is selected pseudo-uniformly at random from KCar, SCar, RSCar,
SUni, and SDDrive. The set of discrete transitions E is created as follows. Ini-
tially, discrete transitions are added between each pair Ri, Rj of neighboring
terrains. A disjoint-set strategy, similar to maze creation, is then used to remove
certain discrete transitions. Furthermore, each remaining discrete transition is
kept with probability p. We experimented with different values of p and found
that it has minimal impact on the comparisons between HyDICE and RRT. Ex-
periments reported in this paper use p = 0.1. For each problem instance, we
create 30 safety properties. Each safety property is created by selecting pseudo-
uniformly at random one terrain as safe and another one as unsafe. As discussed
in Section 2.2, the hybrid robotic car is said to have entered some unsafe state,
if it is in an unsafe terrain and its speed is above a certain predefined thresh-
old. In all the experiments, the systems were unsafe. For safe systems, since the
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hybrid-system testing problem is generally undecidable, all the tools used in the
experiments would timeout.

Results For each problem instance, experiments are run using each of the driver
models. Results are summarized in Table 1. We report the average computational
time in seconds required by RRT, HyDICE*, and HyDICE to test 30 safety proper-
ties. HyDICE* refers to the version of HyDICE that does not use the discrete-search
component, i.e., HyDICE* is the sampling-based motion planner of HyDICE with
some minor modifications.5 Comparisons include HyDICE* to investigate the im-
portance of the discrete search on HyDICE. An entry marked with X indicates
that the testing method timed out. The upper bound on time was set to 3000s
for each safety property testing. The time allocated to each exploration step by
HyDICE (te in Algorithm 1) was set to 1s. The Rice PBC Cluster and Rice Cray
XD1 Cluster ADA were used for code development. Experiments were run on
ADA, where each processor runs at 2.2GHz and has up to 8GB of RAM.

Table 1. Summary of experimental comparisons. Time is in seconds.

RandomDriver StudentDriver HighwayDriver

|Q| RRT HyDICE* HyDICE RRT HyDICE* HyDICE RRT HyDICE* HyDICE

100 22.30 4.34 2.68 74.01 6.74 2.20 21.29 4.92 2.82
225 117.79 14.02 6.24 336.85 32.44 5.24 230.88 21.64 6.30
525 295.88 75.60 6.87 792.45 65.40 15.52 668.67 106.56 16.31
900 504.93 175.96 13.74 X 120.48 17.06 2596.50 182.54 36.96

1600 2159.24 289.94 32.52 X 464.56 34.14 X 374.44 37.26
2500 X 910.86 60.18 X 699.66 62.30 X 929.36 71.44

10000 X X 439.88 X X 457.60 X X 445.52

Table 1 shows that HyDICE is consistently more efficient than RRT. When the
RandomDriver model is used, HyDICE is 8.32, 18.87, 43.06, and 66.39 times faster
than RRT, as the number of modes is increased to 100, 225, 525, and 1600, respec-
tively. Furthermore, RRT times out when |Q| = 2500, while HyDICE requires only
60.18s. Similarly, when the StudentDriver model is used, the computational
speedups obtained by HyDICE vary from 33.64 to 51.05 on instances where RRT

does not time out. Under the StudentDriver model, RRT times out on instances
with |Q| = 900, while HyDICE requires only 17.06s. The StudentDriver model is
particularly computationally challenging for RRT since the stop-and-go approach
it uses makes it difficult for RRT to extend the exploration tree. On the other
hand, since HyDICE relies on a discrete search component it successfully extends
the exploration tree and quickly reaches unsafe states. Similar observations are
made for the HighwayDriver model as well.

Table 1 indicates that HyDICE is up to two orders of magnitude computation-
ally faster than RRT. Table 1 also shows that HyDICE scales up reasonably well
with respect to |Q|. In fact, RRT timed out in all cases when |Q| ≥ 2500, while
HyDICE is shown to handle problems even with |Q| = 10000 quite efficiently.

5 HyDICE* can be obtained from the implementation of HyDICE by computing the lead
σ as vsafe, γ, vunsafe, where γ is a random permutation of VD−{vsafe, vunsafe}, where,
as described in Section 3, GD = (VD, ED) is the search graph.
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The second set of experiments provides insight on the observed computa-
tional efficiency of HyDICE. In particular, we investigate the importance of the
discrete search on HyDICE. Table 1 shows that although HyDICE* is still faster
than RRT, it is considerably slower than HyDICE. (For a discussion on issues re-
lated to the computational efficiency of RRT and sampling-based motion planners
similar to HyDICE* see [17,18,21,24].) For example, when |Q| = 2500, HyDICE* is
11–15 times slower than HyDICE. Furthermore, HyDICE* times out on instances
with |Q| = 10000, while HyDICE handles such instances efficiently. These re-
sults highlight the importance of the discrete search and agree with observations
made in [24]. The interplay between lead computations and sampling-based ex-
ploration has the desired effect of quickly improving the quality of future leads
and explorations and bringing the search closer to obtaining a solution. By guid-
ing the exploration, the discrete search significantly improves the computational
efficiency of HyDICE.

5 Discussion

We have presented HyDICE, a multi-layered approach for hybrid-system test-
ing that blends sampling-based motion planning with discrete searching. The
discrete search, responsible for managing the potentially huge complexity of dis-
crete transitions, also uses coarse-grained decompositions of the continuous state
spaces or related projections to guide the motion planner during the search for
witness trajectories. The motion planner feeds back to the discrete search in-
formation gathered during the exploration, which is then used to further refine
the discrete search and guide the motion planner toward increasingly promising
search directions. This tight integration of discrete search and motion planning
in the framework of HyDICE offers considerable computational advantages over
related work. Experiments presented in this paper, using a hybrid robotic car,
different driving models, and nonlinear dynamics associated with each of the
several thousand modes, provide initial validation of HyDICE and demonstrate
its promise as a hybrid-system testing method. Comparisons to related work
show computational speedups of up to two orders of magnitude.

Although HyDICE was shown to handle a system with thousands of modes and
nonlinear dynamics, the scalability issue is relevant and remains open to further
research. As the number of modes becomes significantly large, the simple graph-
search strategies used in this work becomes a computational bottleneck and
need to be replaced with state-of-the-art techniques developed in the verification
community which can handle discrete systems with billions of modes [30].

Additionally, the search graph is based on a decomposition of the continuous
state spaces or related projections and the ability to determine whether or not
two decomposition regions are connected by a discrete transition. Depending
on the hybrid system, guard sets, and reset functions it may be challenging to
determine if such discrete transition exists. In such cases, a viable approach
would be to resort to approximations of guard sets and reset functions, which
also requires investigating the overall impact of approximations on HyDICE.
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One important theoretical issue that is subject of ongoing research relates to
guarantees HyDICE can offer for general hybrid-system testing. Although com-
pleteness cannot be guaranteed, since the problem is generally undecidable, our
belief is that HyDICE offers a weaker form of completeness, referred to as prob-
abilistic completeness. Guaranteeing probabilistic completeness means that, for
unsafe systems, the probability of finding a witness trajectory goes to one as the
running time approaches infinity [17]. Probabilistic completeness allows us to
increase the confidence in the safety of the system as the running time increases.
The work in [31] has already proven probabilistic completeness in a continuous
setting for certain classes of motion-planning methods, such as the one used by
HyDICE. The theoretical framework developed in [31] is also promising for show-
ing probabilistic completeness in a hybrid-system setting and we are currently
investigating such an approach.

We also intend in future work to experiment with HyDICE in other settings
and apply it to increasingly realistic and complex hybrid systems.
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