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Abstract

High-dimensional problems arising from robot motion planning, biology, data mining, and geographic
information systems often require the computation of k nearest neighbor (knn) graphs. The knn graph
of a data set is obtained by connecting each point to its k closest points. As the research in the above-
mentioned fields progressively addresses problems of unprecedented complexity, the demand for com-
puting knn graphs based on arbitrary distance metrics and large high-dimensional data sets increases,
exceeding resources available to a single machine. In this work we efficiently distribute the computation
of knn graphs for clusters of processors with message passing. Extensions to our distributed framework
include the computation of graphs based on other proximity queries, such as approximate knn or range
queries. Our experiments show nearly linear speedup with over one hundred processors and indicate
that similar speedup can be obtained with several hundred processors.

Key words: Nearest neighbors; Approximate nearest neighbors; knn graphs; Range queries; Metric
spaces; Robotics; Distributed and Parallel Algorithms

1 Introduction

The computation of proximity graphs for large high-dimensional data sets in arbitrary metric
spaces is often necessary for solving problems arising from robot motion planning [14,31,35,40,45,
46, 56], biology [3, 17, 33, 39, 42, 50, 52], pattern recognition [21], data mining [18, 51], multimedia
systems [13], geographic information systems [34, 43, 49], and other research fields. Proximity
graphs are typically based on nearest neighbor relations. The nearest neighbor or, in general, the
k nearest neighbor (knn) graph of a data set is obtained by connecting each point in the data
set to its k closest points from the data set, where a distance metric [11] defines closeness.

As an example, research in robot motion planning has in recent years focused on the development
of sampling-based motion planners motivated by the success of the Probabilistic RoadMap (PRM)
method [31] for solving problems involving multiple and highly complex robots. Sampling-based
motion planning algorithms [14,31,41,45,46] rely on an efficient sampling of the solution space and
construction of the knn graph for the sampled points. The knn graph captures the connectivity
of the solution space and is used to find paths that allow robots to move from one point in
the environment to another while satisfying certain constraints such as avoiding collision with
obstacles.
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The use of knn graphs combined with probabilistic methods also has promise in the study of
protein folding [3, 17, 52]. Other applications of knn searches and graphs in biology include clas-
sifying tumors based on gene expression profiles [42], finding similar protein sequences from a
large database [33, 39], and docking of molecules for computer-assisted drug design [50].

In pattern recognition and data mining, nearest neighbors are commonly used to classify objects
based upon observable features [13, 18, 21, 51]. During the classification process, certain features
are extracted from the unknown object and the unknown object is classified based on the features
extracted from its k nearest neighbors.

In geographic information systems [34,43,49], a commonly encountered query is the computation
of knn objects for points in space. Examples of queries include finding “the nearest gas stations
from my location” or “the five nearest stars to the north star.”

As research in robot motion planning, biology, data mining, geographic information systems, and
other scientific fields progressively addresses problems of unprecedented complexity, the demand
for computing knn graphs based on arbitrary distance metrics and large high-dimensional data
sets increases, exceeding resources available to single machines [48]. In this paper, we address the
problem of computing the knn graph utilizing multiple processors communicating via message
passing in a cluster system with no-shared memory and where the amount of memory available to
each processor is limited. Our model of computation is motivated by many scientific applications
where the computation of the knn graph is needed for massive data sets whose size is dozens or
even hundreds of gigabytes. Since such applications are also computationally intensive and the
knn graph constitutes only one stage of the overall computation, it is important to fit as much
of the data as possible in the main memory of each available processor in order to reduce disk
operations. The challenge lies in developing efficient distributed algorithms for the computation
of the knn graph, since nearest-neighbors computations depend on all the points in the data set
and not just on the points stored in the main memory of a processor.

The contribution of our work is to develop a distributed decentralized framework that efficiently
computes the knn graph for extensively large data sets. Our distributed framework utilizes ef-
ficient communication and computation schemes to compute partial knn results, collect infor-
mation from the partial results to eliminate certain communication and computation costs, and
gather partial results to compute knn queries for each point in the data set. The partial knn re-
sults are computed by constructing and querying sequential knn data structures [8,23,26–28,55]
stored in the main memory of each processor. Our distributed framework works with any se-
quential knn data structure and is also capable of taking advantage of specific implementations
of sequential knn data structures to improve the overall efficiency of the distribution.

Our distributed framework supports the efficient computation by hundreds of processors of very
large knn graphs consisting of millions of points with hundreds of dimensions and arbitrary dis-
tance metrics. Our experiments show nearly linear speedup on one hundred and forty processors
and indicate that similar speedup can be obtained on several hundred processors.

Our distributed framework is general and can be extended in many ways. One possible extension
is the computation of graphs based on approximate knn queries [4, 16, 32, 36, 38, 47, 54]. In an
approximate knn query, instead of computing exactly the k closest points to a query point, it
suffices to compute k points that are within a (1 + ǫ) hypersphere from the k-th closest point to
the query point. Approximate knn queries provide a trade-off between efficiency of computation
and quality of neighbors computed for each point. Another possible extension is the computation
of graphs based on range queries [5, 9, 19]. In a range query, we are interested in computing all
the points in the data set that are within some predefined distance from a query point. Range
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queries are another type of proximity queries with a wide applicability.

The rest of the paper is organized as follows. In section 2 we review related work. In section 3
we formally define the problem of computing the knn graph, describe the distributed model
of computation, and then present a distributed algorithm for computing knn graphs. We also
discuss how to extend our distributed framework to compute graphs based on approximate knn
and range queries. In section 4 we describe the experimental setup, the data sets for testing the
efficiency of the distribution, and the results obtained. We conclude in section 5 with a discussion
on the distributed algorithm.

2 Related Work

The computation of the knn graph of a data set S is based on the computation of the k nearest
neighbors for each point s ∈ S. The computation of the k nearest neighbors for a point s ∈ S is
referred to as a knn query and s is referred to as a query point. In this section we review work
related to the sequential and distributed computation of knn queries and knn graphs.

Motivated by challenging problems in many research fields, a large amount of work has been
devoted to the development of efficient algorithms for the computation of knn queries [4, 8,
15, 23, 26–28, 36, 55]. The computation of knn queries usually proceeds in two stages. During a
preprocessing stage, a data structure TS is constructed to support the computation of knn queries
from a given a data set S. During the query stage, searches are performed on TS to compute
the k nearest neighbors of a query point s, denoted TS(s, k). The same data structure TS can
be used for the computation of the k nearest neighbors from the data set S to any query point;
TS is modified only when points are added to or removed from S. In knn literature, references
to the knn data structure encompass both the structure of the data, TS, and the algorithms to
query the data structure to obtain the k nearest neighbors, TS(s, k).

Researchers have developed many efficient data structures for the computation of knn queries
based on Euclidean distance metrics [4, 15, 23, 26, 36]. However, many challenging applications
stemming from robot motion planning, biology, data mining, geographic information systems,
and other fields, require the computation of knn queries based on arbitrary distance metrics.
Although a challenging problem, progress has been made towards the development of efficient
data structures supporting knn queries based on arbitrary distance metrics [8,28,55]. During the
preprocessing stage, usually a metric tree [53] is constructed hierarchically as the data structure
TS. One or more points are selected from the data set and associated with the root node. Then
the distances from the points associated with the root node to the remaining points in the data
set are computed and used to partition the remaining points in the data set into several smaller
sets. Each set in the partition is associated with a branch extending from the root node. The
extension process continues until the cardinality of the set in the partition is smaller than some
predefined constant. For example, in the construction of vantage-point trees [55], the median
sphere centered at the point associated with the root is used to partition the data set into points
inside and outside the sphere, while in the construction of GNAT [8], the data set is clustered using
an approximate k-centers algorithm and each center is associated with a branch extending from
the root. Figure 1 illustrates the construction of a metric tree for GNAT. During the query stage,
precomputed distances, lower and upper bounds on the distances between points associated with
the nodes of the tree, triangle inequality, and other properties and heuristics are used to prune
certain branches of the tree in order to improve the efficiency of computing knn queries.

In addition to the development of more efficient sequential knn algorithms, distributed algo-
rithms that take full advantage of all the available resources provide a viable alternative for the
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Fig. 1. The hierarchical structure of the metric tree in GNAT [8]. Illustrated are the points of the data
set and the spheres, represented as circles, associated with each node of the tree.

computation of knn queries. Research on distributed knn algorithms mostly focuses on the devel-
opment of algorithms for computing knn queries based on Euclidean distance metrics. The work
in [43] addresses parallel processing of knn queries in declustered spatial data in 2-dimensional
Euclidean spaces for multiple processors communicating through a network. The work is based
on the parallelization of nearest neighbor search using the R-tree data structure [26] and could
be generalized to d-dimensional Euclidean spaces. The work in [29] shows how to compute knn
queries for 3-dimensional Euclidean point sets for a shared-memory grid environment utilizing
general grid middle-ware for data intensive problems. In [49], knn queries are computed effi-
ciently in an integration middleware that provides federated access to numerous loosely coupled,
autonomous data sources connected through the internet.

There is also research on distributed algorithms for computing knn graphs, but the focus again
is on knn graphs based on Euclidean distance metrics. In [20], an algorithm is presented for
the computation of the knn graph for a 2-dimensional Euclidean point set for coarse grained
multicomputers that runs in time Θ(n log n/p + t(n, p)), where n is the number of points in the
data set, p is the number of processors, and t(n, p) is the time for a global-sort operation. The
work in [12] develops an optimal algorithm for the computation of the knn graph of a point set
in d-dimensional Euclidean space based on the well-separated pair decomposition of a point set
that requires O(log n) time with O(n) processors on a standard CREW PRAM model.

Recent progress in the development of parallel and distributed databases and data mining has
spawned a large amount of research in the development of efficient distributed algorithms for the
computation of knn queries [44,57]. In [1], the PN-tree is developed as an efficient data structure
for parallel and distributed multidimensional indexing and can be used for the computation
of knn queries for certain distance metrics. The computation of knn queries using the PN-
tree data structure depends on clustering of points into nodes and projections of nodes over
each dimension, which is not generally possible for arbitrary distance metrics. In [7], a parallel
algorithm is developed for computing multiple knn queries based on arbitrary distance metrics
from a database. Experimental results on Euclidean data sets and up to 16 servers show close to
linear speedup. We note that the focus of parallel and distributed databases and data mining is
on applications that are usually I/O intensive and require the computation of one or several knn
queries. The focus of the work in this paper is different. This paper targets applications that are
computationally intensive, require the computation of the knn graph, and the computation of
the knn graph constitutes only one stage of the entire computation. Our motivation comes from
our research in robot motion planning and biology [14,22,30,37,40,45,46], where the knn graph
is computed to assist in the computation of paths for robots or exploration of high-dimensional
state spaces to analyze important properties of biological processes.
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3 Distributed Computation of the knn Graph

Our distributed algorithm for the computation of the knn graph utilizes sequential knn data
structures, such as those surveyed in section 2, for the partial computation of knn queries and
efficient communication and computation schemes for computing the k nearest neighbors of each
point in the data set. The description of the distributed algorithm is general and applicable to any
knn data structure. We initially present the distributed algorithm by considering the knn data
structure as a black-box and later discuss how to take advantage of the specific implementations of
the knn data structures to improve the efficiency of the distributed algorithm for the computation
of the knn graph. At the end of this section, we also discuss possible extensions to the distributed
framework including computation of graphs based on approximate knn and range queries.

3.1 Problem Definition

Let the pair (S, ρ) define a metric space [11], where S is a set of points and ρ : S × S → R
≥0

is a distance metric that for any x, y, z ∈ S satisfies the following properties: (i) ρ(x, y) ≥ 0 and
ρ(x, y) = 0 iff x = y (positivity); (ii) ρ(x, y) = ρ(y, x) (symmetry); and (iii) ρ(x, y) + ρ(y, z) ≥
ρ(x, z) (triangle inequality). Let S = {s1, s2, . . . , sn} ⊂ S be a collection of n points defining the
data set. Let k ∈ N be an integer representing the number of nearest neighbors. The k nearest
neighbors (knn), denoted by NS(si, k), of a point si ∈ S are defined as the k closest points
to si from S − {si} according to the metric ρ. The knn graph of S, G(S, k) = (V, E), is an
undirected graph where V = {v1, . . . , vn}, with vi corresponding to si, and E = {(vi, vj) ∈ V 2 :
si ∈ NS(sj , k) ∨ sj ∈ NS(si, k)}.

3.2 Model of Computation

Let P = {P1, P2, . . . , Pp} be the set of all the available processors for the computation of G(S, k).
Let S1, S2, . . . , Sp be a partition of S, i.e., S = S1 ∪ S2 ∪ · · · ∪ Sp and Si ∩ Sj = ∅ for all
i, j ∈ {1, 2, . . . , p} and i 6= j. Let TSi

be a data structure that computes knn queries for the set
Si, i.e., querying TSi

with s ∈ S and k ∈ N, denoted TSi
(s, k), produces NSi

(s, k), where NSi
(s, k)

denotes the k closest points to s from Si − {s}.

In our model of computation, processors communicate via message passing and there is no-shared
memory available. We assume restrictions on the memory available to each processor Pi ∈ P ,
similar to [20]. Processor Pi is capable of storing the set Si, the data structure TSi

, a small
number of query points Ci ⊂ S−Si, knn query results for |Si|+ |Ci| points, and a small amount
of bookkeeping information. In addition, processor Pi is equipped with a small communication
buffer to exchange messages, query points, and results with other processors.

Our model of computation is particularly well-suited for many scientific applications in different
research fields such as robot motion planning, biological applications, etc., which often generate
hundreds of gigabytes of data and require the computation of the knn graph G(S, k) for such
extensively large data sets S. In addition to storage requirements, such applications are also
computationally intensive and the computation of the knn graph G(S, k) constitutes only one
stage of the overall computation. Therefore, effective distribution schemes, as the one we propose
in this work, should use most of the main memory of each processor to store as much of the data
set S as possible.

3.3 Local Nearest Neighbor Queries

Each processor Pi ∈ P constructs a knn data structure TSi
for the computation of knn queries

NSi
(s, k) for any point s ∈ S. The objective of the knn data structure TSi

is the efficient compu-
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tation of knn queries NSi
(s, k) based on arbitrary distance metrics for any point s ∈ S. Several

examples of efficient knn data structures can be found in [4, 8, 15, 23, 28, 36, 55]. The distributed
algorithm considers the knn data structure TSi

as a black-box it can query to obtain NSi
(s, k) for

any point s ∈ S. In this way, the distributed algorithm is capable of computing the knn graph
utilizing any knn data structure TSi

. In addition, the distributed algorithm is also capable of
taking advantage of specific implementations of the knn data structures, as we discuss in sec-
tion 3.5.7. It is important to note that processor Pi cannot query the knn data structure TSi

to
obtain NS(s, k), since only the portion Si of the data set S is available to processor Pi. In our
distributed algorithm we show how to compute NS(s, k) for all s ∈ S efficiently.

3.4 Data and Control Flow

Before relating the details of the distributed algorithm, we discuss data and control flow depen-
dencies. The computation of the knn query NS(si, k) for a point si ∈ Si requires the combination
of results obtained from querying the knn data structures TS1

, . . ., TSp
associated with the

processors P1, . . ., Pp, respectively, since S is partitioned into S1, . . ., Sp. Under our model of
computation, each processor Pi is capable of storing only one knn data structure, i.e., TSi

, due
to the limited amount of memory available to processor Pi. Furthermore, each processor Pi is
equipped with only a small communication buffer which makes the communication of the data
structure TSi

from Pi to other processors prohibitively computationally expensive. Therefore, the
only viable alternative for computing the knn query NS(si, k) is for processor Pi to send the point
si to other processors which in turn query their associated knn data structures and send back
the results to Pi.

An efficient distribution of the computation of the knn graph G(S, k) can be achieved by max-
imizing useful computation. For each processor Pi ∈ P , the useful computation consists of (i)
the computation of knn for points owned by processor Pi and (ii) the computation of knn for
points owned by other processors. In order to maximize the useful computation by reducing idle
times, it is important that each processor Pi handles requests from other processors as quickly
as possible [25, 58].

The computation of knn queries for points owned by processor Pi requires no communication,
while the computation of knn queries for points owned by other processors requires communica-
tion. Each processor Pi has a limited cache Ci, thus only a small number of points from other
processors can be stored in Ci. Following general guidelines set forth in [25, 58] for efficient dis-
tribution algorithms, in order to accommodate as many points from other processors as possible,
it is important that processor Pi empties its cache Ci quickly. Hence, before computing any knn
queries for points it owns, processor Pi first computes any knn queries pending in the cache
Ci. Furthermore, in order to minimize the idle or waiting time of other processors, processor Pi

also handles any communication requests made by other processors before computing any knn
queries for the points it owns. In this way, processor Pi gives higher priority to requests from
other processors and computes knn queries for points it owns only when there are no pending
requests from other processors. The overall effect of this schema is shorter idle and waiting times
for each processor which translates into better utilization of resources for useful computations.

We have designed a decentralized architecture for our distributed implementation of the compu-
tation of the knn graph G(S, k). We utilize only asynchronous communication between different
processors in order to minimize idle and waiting times. Each processor Pi is responsible for the
computations of knn queries utilizing the data structure TSi

, posting of requests to other pro-
cessors for the computation of knn queries for points it owns, and ensuring a timely response to
requests made by other processors.
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DKNNG Algorithm: Distributed Computation of the knn Graph

Input: Si ⊂ S = {s1, s2, . . . , sn}, points Output: NS(si, k) for each si ∈ Si

k, number of nearest neighbors

Computation by processor Pi. All communications are done asynchronously.

1: initialize cache Ci ← ∅ 14: request results from P ′

2: construct knn data structure TSi
15: if received points then

3: while computing G(S, k) is not over do 16: if cache Ci is full then

4: if cache Ci is not empty then 17: create room in Ci

5: select and remove one point s from Ci 18: add received points to Ci

6: compute query TSi
(s, k) 19: if received results then

7: send results to owner of s 20: update results

8: if cache Ci is not full then 21: if no pending requests then

9: post request to fill Ci 22: select one point s from Si

10: if received “cache is not full” then 23: compute query TSi
(s, k)

11: P ′ ← processors posting the request 24: update results

12: select points from Si to send to P ′ 25: end while

13: send the selected points to P ′

Algorithm 1. High-level description of the distributed computation of the knn graph. The pseudocode
is applicable to each processor Pi ∈ P . The computation of the knn graph proceeds in stages and at the
end of the computation each processor Pi stores the knn results NS(si, k) for each point si ∈ Si.

3.5 Distributed Computation

The distributed knn algorithm DKNNG proceeds through several stages, as illustrated in Algo-
rithm 1. After initializing the cache Ci to be empty and constructing the knn data structure TSi

associated with the points in Si (lines 1–2), each processor Pi enters a loop until the computation
of the knn graph G(S, k) is complete (lines 3–24). Inside the loop, each processor Pi tests if there
are pending computations in the cache Ci (lines 4–7), if the cache Ci needs to be filled (lines
8–9), if there are pending requests from other processors (lines 10–20), or if it should compute
knn queries from the points Si it owns (lines 21–24). As the computation proceeds, certain issues
arise including how processor Pi processes queries pending in the cache, removes and adds queries
to the cache, communicates with other processors to fill its cache and the cache of other proces-
sors with query points. Processor Pi considers the different stages in an order that attempts to
minimize the idle and waiting times of other processors by handling pending requests from other
processors [25, 58] as quickly as possible before it computes knn queries for the points it owns.
We now describe each stage of DKNNG in more detail.

3.5.1 Cache is Not Empty

Processor Pi selects one point s from the cache Ci and computes its nearest neighbors utilizing
the knn data structure TSi

. The selection of the point s can be done in a variety of ways. One
possibility is to apply the first-in first-out principle and select from the cache Ci the point s that
has been in the cache Ci for the longest time. Processing the points in the order of addition to
the cache has the benefit of guaranteeing that each point will eventually be processed and thus
avoids the starvation problem. On the other hand, since other processors will possibly send to
processor Pi several points at a time, processing of points in the cache Ci from processor P ′′ will
start only after all the points in the cache Ci from processor P ′ have been processed (assuming
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that points from processor P ′ were added to the cache Ci before the points from processor P ′′.)

In order to ensure a timely response to the requests from other processors, we introduce ran-
domization to the selection process. A weight ws is associated with each point s in the cache
Ci. The weight ws is directly proportional to the time the point s has been in the cache Ci and
inversely proportional to the number of points in the cache Ci owned by the processor that owns
the point s. The constant of proportionality can be defined to also include a measure of the
state of computation for each processor and the importance of the computation of the nearest
neighbors for the point s to the processor that owns the point s. A probability ps is computed as
ps = ws/

∑
s′∈Ci

ws′ and a point s is selected with probability ps from the cache Ci. The weight
ws of a point s increases the longer s waits in the cache Ci, since ws is directly proportional to
the waiting time of s. Therefore, as s waits in the cache, the probability ps increases and thus the
likelihood that s will be the next point selected from Ci increases as well. In order to guarantee
that there is no starvation and to ensure that points in the cache do not wait for long periods of
time, we use a first-in first-out strategy to select points that have been in the cache for longer
than a predefined maximum amount of time.

3.5.2 Cache is Not Full

The objective of processor Pi is to maximize the useful computation [25, 58]. Consequently, it is
important that there are always some points in the cache Ci, so that processor Pi can spend useful
computation time computing knn queries on behalf of other processors. In this way, processor Pi

postpones the computation of knn queries for its points as much as possible – these computations
require no communication and can be done anytime.

Processor Pi requests from other processors to send to it several points in order to fill its cache
Ci. In order to avoid communicating the same request over and over again, processor Pi sends the
request only to those processors that have responded to a previous similar request. Processor Pi

maintains a flag fj for each processor Pj ∈ P −{Pi} that indicates if processor Pj has responded
to a “cache is not full” request from processor Pi. Processor Pi sends the request to processor
Pj only if the flag fj is set to true. After posting the request to processor Pj, processor Pi sets
the flag fj to false. The flag fj is set again to true when processor Pi receives a response from
processor Pj. Initially, processor Pi assumes that every other processor Pj has responded to its
request to fill the cache Ci.

When processor Pj receives a request from Pi to fill the cache Ci, processor Pj selects one or
more points uniformly at random from Sj and sends the selected points to processor Pi. The
selected points are never again considered by processor Pj for filling the cache Ci of processor
Pi. In order to ensure that the same point is never sent to a processor more than once, processor
Pj associates with each point sj ∈ Sj and each processor Pi ∈ P − {Pj} a single bit bsj ,Pi

that
indicates if point sj has been sent to processor Pi. A point sj is considered for selection iff bsj ,Pi

is set to false. The bit bsj ,Pi
is set to true when the point sj is sent to processor Pi.

The bookkeeping information requires the additional storage of (|P | − 1) + (|P | − 1)|Sj| bits by
each processor Pj ∈ P . This additional amount of bookkeeping is very small compared to the
size of the data Sj . As an example, if |P | = 100, Sj is 2GB large, each point sj ∈ Sj has 200
dimensions, and each dimension is represented by a 64-bit double, the amount of bookkeeping
is 15.84MB or equivalently 0.77% of the size of Sj .

3.5.3 Received Points

Processor Pi receives points from other processors only as a response to the request of Pi to fill
its cache Ci. If there is room in the cache Ci, the received points are added to the cache Ci.
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Otherwise, processor Pi selects one point from the cache Ci, using the selection process discussed
in section 3.5.1, and computes the knn query associated with it. This process continues until all
the received points are added to the cache Ci.

3.5.4 Received Results

Processor Pi associates with each point si ∈ Si the combined results of the knn queries com-
puted by Pi and other processors. Let NS(si, k) be the current knn results associated with the
point si. Initially, NS(si, k) is empty. Let NSj

(si, k) be the knn results computed by proces-
sor Pj utilizing the knn data structure TSj

. The set NS(si, k) is updated by considering all
the points s ∈ NSj

(si, k) and adding to NS(si, k) the point s iff |NS(si, k)| < k or ρ(s, si) <
mins′∈NS(si,k) ρ(s′, si). In other words, processor Pi merges the knn results computed by processor
Pj with the current results. In the merging process, only the k closest neighbors are associated
with the result NS(si, k).

3.5.5 No Pending Requests

If there are no pending requests, processor Pi has computed all the knn queries associated with the
points in the cache Ci and has requested from other processors to fill its cache Ci. Furthermore,
processor Pi has handled all the requests from other processors and, thus, it is free to compute
knn queries from the points Si it owns. Therefore, processor Pi selects one of the points si ∈ Si,
which has not been selected before, and computes the knn query NSi

(si, k) utilizing the data
structure TSi

. The computed results NSi
(si, k) are merged with the current results NS(si, k), as

described in section 3.5.4.

Processor Pi uses the computations of the knn queries for points it owns to avoid possible idle
or waiting times when it has handled all the requests from other processors. Doing such com-
putations only when it is necessary increases the effective utilization of processors [25, 58] and
consequently results in an efficient distribution of the computation of the knn graph G(S, k).

3.5.6 Termination Criteria

The computation of the knn graph G(S, k) is complete when NS(s, k) has been computed for
each s ∈ S. Since S is partitioned into S1, . . ., Sp, it suffices if for each Si and each si ∈ Si,
the computation of NS(si, k) is complete. Observe that the computation of NS(si, k) is complete
iff processor Pi, which owns the point si, has combined the knn query results NS1

(si, k), . . .,
NSp

(si, k), i.e., each processor Pj has computed the knn queries for the point si utilizing the knn
data structure TSj

and processor Pi has gathered and combined all the computed results into
NS(si, k).

When the computation of NS(si, k) is complete for all si ∈ Si, processor Pi notifies all the
other processors that the computation of knn queries for Si is complete. Processor Pi meets the
termination criteria when the computation of knn queries for Si is complete and when processor
Pi receives from all the other processors Pj ∈ P − Pi the notification that the computation of
knn queries for Sj is complete.

Processor Pi detects the completion of the computation of NS(si, k) for all si ∈ Si by maintaining
a counter. The counter is initially set to 0 and incremented each time processor Pi computes a
query for a point it owns or when processor Pi receives results from another processor. When the
counter reaches the value |P ||Si|, the computation of NS(si, k) is complete for each point si ∈ Si,
since each processor has computed knn queries using each point si ∈ Si.
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Fig. 2. Querying the GNAT [8] data structure. The empty circle drawn with a thick black perimeter
represents the hypersphere B(si) centered at si. During the computation of the query TSi

(si, k), there
is no need to consider points inside the circles with the solid lines, since these circles do not intersect
B(si).

3.5.7 Exploiting Properties of the knn Data Structure

Each processor Pi utilizes the knn data structure TSi
for the computation of knn queries. As

presented in Algorithm 1 (line 6), DKNNG considers each knn data structure TSi
as a black-box.

However, DKNNG not only works with any knn data structure, but it can easily take advantage of
special properties of the knn data structure TSi

to improve the overall performance.

The general idea consists of utilizing information gathered during the computation of knn queries
by processor Pi or other processors to prune future computations of knn queries. Past compu-
tations could provide information that can be used to eliminate from consideration points in a
data set that are too far from a query point to be its nearest neighbors. Such an idea has been
successfully used by many efficient nearest neighbors algorithms [4,8,15,23,28,36,55]. The overall
effect is that the computation of knn queries by other processors for some of the points owned by
processor Pi may become unnecessary and thus the efficiency of DKNNG is improved since certain
communication and computation costs are eliminated.

Pruning local searches: For the clarity of exposition, we illustrate how to take advantage of the
knn data structures by considering GNAT [8] and kd-trees [23] as the data structure TSi

. The
description, however, is applicable to many knn data structures [4, 15, 28, 36, 55].

GNAT is a hierarchical data structure based on metric trees [53] that supports the efficient com-
putation of nearest neighbor searches. At the root level, the set Si is partitioned into smaller sets
using an approximate k-centers algorithm and each center is associated with a branch extending
from the root. The construction process continues recursively until the cardinality of the set in
the partition is smaller than some predefined constant. An illustration is provided in Figure 1.

GNAT is a suitable choice since it is efficient for large data sets and supports the computation
of knn queries for arbitrary metric spaces, which is important in many research areas such as
robot motion planning, biological applications, etc. An important property of GNAT is that the
efficiency for the computation of knn for a point si ∈ S can be improved by limiting the search
only to points that are inside a small hypersphere B(si) centered at si, as illustrated in Figure 2.
We compute the radius rB(si) of B(si) as the largest distance from si to a point in NS(si, k).
When NS(si, k) is empty, rB(si) is set to ∞. As described in section 3.5.5, NS(si, k) contains the
partial results of the knn query for the point si. The computation of the knn query NSj

(si, k) by
processor Pj can significantly be improved by sending to it, in addition to si, the radius rB(si),
since a point sj ∈ Sj cannot be one of the k closest neighbors to si if it is outside B(si), since
there are already at least k points inside B(si).

Other knn data structures, such as kd-trees [23] could be exploited in a similar way. A kd-
tree constructs a hierarchical representation of the data set based on axis-aligned hyperplane
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Fig. 3. Additional pruning of knn searches. The hypersphere B(si) is represented by the empty circle
with the thick black perimeter, while the centers B(cj) are represented by the circles with the points
inside. Processor Pi can avoid sending the point si to processor Pj , since B(si) does not intersect any
of the hyperspheres B(cj). Any point sj ∈ Sj is at least a distance rB(si) away from si and thus cannot
be in NS(si, k), since NS(si, k) already contains k points that are inside B(si).

decompositions. At each level, an axis and a hyperplane through that axis is chosen and the data
set is split into two sets depending on the side of the hyperplane each data point is located. The
hyperplane is typically chosen to be the median of the points with respect to the coordinates of
the chosen axis. The process is repeated recursively until the cardinality of the remaining data
set is smaller than some predefined constant. The efficiency of the knn search can be improved
by pruning subtrees whose associated hyperplane does not intersect with B(si), since points in
these subtrees cannot be closer to si than points already in B(si). Therefore, the radius rB(si)

can be used by processor Pj to prune certain branches during the computation of NSj
(si, k).

Reducing communication and computation costs: The idea of pruning the knn search by limiting
it to points inside a small hypersphere around the query point can be further utilized in other
parts of DKNNG to improve its efficiency. During initialization, each processor Pi selects several
points Ci ⊂ Si as center points and associates each point si ∈ Si with the closest center ci ∈ Ci.
The computation of the centers can be done in a variety of ways including algorithms similar
to k-means [6] or approximate k-centers [8]. The radius of the hypersphere B(ci) is computed
as the largest distance from ci ∈ Ci to a point associated with ci. Processor Pi then sends ci

and rB(ci) for each ci ∈ Ci to all other processors. Consider now the computation of NSj
(si, k)

by processor Pj for some point si ∈ Si. A point sj ∈ NSj
(si, k) will be merged with NS(si, k)

iff ρ(sj , si) < rB(si). Since sj ∈ Sj is contained inside B(cj) for some cj ∈ Cj, then we know sj

cannot be merged with NS(si, k) if B(si) ∩ B(cj) = ∅. Hence, processor Pi can avoid sending to
processor Pj any point si ∈ Si such that B(si)∩B(cj) = ∅ for all cj ∈ Cj , since none of the points
in NSj

(si, k) will be merged with NS(si, k). Such pruning further reduces the communication and
computation costs of DKNNG. The idea is illustrated in Figure 3.

3.5.8 Improving the Distribution by Preprocessing the Data Set

The efficiency of DKNNG can be further improved by partitioning the set S into sets S1, . . ., Sp,
such that the partitioning improves the pruning of the knn search as discussed in section 3.5.7.
One possibility is to partition S into p clusters of roughly the same size and assign each cluster
to one processor. The clusters can be again computed using algorithms similar to k-means [6] or
approximate k-centers [8]. The partition of the set S into clusters increases the likelihood that
B(ci) ∩ B(cj) = ∅ for ci ∈ Ci and cj ∈ Cj , since points in Si belong to a different cluster than
points in Sj . Consequently, the likelihood that, for si ∈ Si, B(si)∩B(cj) = ∅ for all cj ∈ Cj, also
increases. In such cases, the computation of the knn query NSj

(si, k) becomes unnecessary and
thus reduces overall computational and communication costs.
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3.6 Extensions to DKNNG

Although DKNNG is presented for the computation of the knn graph, the proposed framework
can be extended and generalized in several ways. We now discuss how to apply and extend our
distributed framework to compute graphs based on approximate knn queries and range queries.

3.6.1 Computation of Graphs Based on Approximate knn Queries

The computation of graphs based on approximate knn queries is a viable alternative to the
computation of graphs based on knn queries for many applications in robot motion planning,
biology, and other fields, especially for large high-dimensional data sets. In an approximate knn
query, instead of computing exactly the k closest points to a query point, it suffices to compute k
points that are within a (1+ǫ) hypersphere from the k-th closest point to the query point. As the
number of points and the dimension of each point in the data set increases, the computation of
knn queries becomes computationally expensive and can be made more efficient by considering
approximate knn queries. Approximate knn queries provide a trade-off between efficiency of
computation and quality of neighbors computed for each point.

The DKNNG algorithm of Algorithm 1 easily supports the computation of graphs based on ap-
proximate knn queries. Since each data structure TSi

is considered as a black-box, it suffices to
use data structures TSi

that support the computation of approximate knn queries instead of knn
queries. Furthermore, efficient approximate nearest-neighbors algorithm exploit past computa-
tions to prune future searches in a similar fashion as exact nearest-neighbors algorithms [4,16,36].
Therefore, all the exploitations of the knn data structures to improve the efficiency of DKNNG, as
discussed in section 3.5.7, are applicable to approximate knn data structures as well.

3.6.2 Computation of Graphs Based on Range Queries

Another extension is the computation of range queries instead of knn queries. In a range query,
we are interested in computing all the points s ∈ S that are within some predefined distance ǫ
from a query point si ∈ S, i.e., RS(si, ǫ) = {s ∈ S : ρ(s, si) ≤ ǫ}. Thus, we would like to compute
RS(si, ǫ) for all the points si ∈ S. This is easily achieved by using data structures that support
range queries instead of data structures that support knn queries. As in the case of the knn
search, a large amount of work has been devoted to the development of efficient algorithms for
the computation of range queries (see [19] for extensive references). One potential problem with
range queries that could affect the performance of DKNNG is that the communication of the range
results RSj

(si, ǫ) from processor Pj to processor Pi could be less efficient than the communication
of NSj

(si, k), since it is possible that |RSj
(si, ǫ)| > k. On the other hand, the update of range

results is more efficient than the update of knn results, since processor Pi updates range results
by simply appending RSj

(si, k) to RS(si, k). Furthermore, in the cases where the application we
are interested in do not require processor Pi to store the results of RS(si, ǫ), i. e., the results
RS(si, ǫ) can be stored in any of the available processors, then the communication of the range
results RSj

(si, k) from processor Pj to processor Pi is unnecessary. Unlike in the case of the
computation of knn queries where results computed from other processors can be used to reduce
the radius of the hypersphere centered at the query point, in the case of range queries, the radius
of the hypersphere centered at the query point remains fixed to ǫ throughout the distributed
computation. Therefore, processor Pj can avoid communicating the range results RSj

(si, ǫ) to
processor Pi and keep the results stored in its memory. In cases where storing RSj

(si, ǫ) exceeds
the memory capacity available to processor Pj, then processor Pj writes the range results RSj

(si, ǫ)
to a file.
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4 Experiments and Results

Our experiments were designed to evaluate the performance of DKNNG compared to the sequential
implementation.

4.1 Hardware and Software Setup

The implementation of DKNNG was carried out in ANSI C/C++ using the MPICH implementation
of MPI standard for communication. Code development and initial experiments were carried
out in Rice Terascale Cluster, PBC Cluster, and Rice Cray XD1 Cluster ADA. The experiments
reported in this paper were run on the Rice Terascale Cluster, a 1 TeraFLOP Linux cluster based
on Intel R© Itanium R©2 processors. Each node has two 64-bit processors running at 900MHz with
32KB/256KB/1.5MB of L1/L2/L3 cache, and 2GB of RAM per processor. The nodes are connected
by a Gigabit Ethernet network. For the DKNNG experiments, we used two processors per node.

4.2 Data Sets

In this section, we describe the data sets we used to test the performance of DKNNG, how these
data sets were generated, and the distance metrics we used in the computation of the knn graph.

4.2.1 Number of Points and Dimensions

We tested the performance of DKNNG on data sets of varying number of points and dimension.
We used data sets with 100000, 250000, and 500000 points and 90, 105, 174, 203, 258, and 301
dimensions. The 18 data sets obtained by combining all possible variations in the number of
points and dimension varied in capacity from 83MB to 1.3GB. In addition, we also used data sets
with 1000000, 2000000, and 3000000 points and 504 and 1001 dimensions. The additional 6 data
sets obtained by combining all possible variations in the number of points and dimensions varied
in capacity from 3.75GB to 22.37GB.

4.2.2 Generation of Data Sets

Each data set was obtained from motion planning benchmarks, since motion planning is our main
area of research. The objective of motion planning is to compute collision-free paths consisting
of rotations and translations for robots comprised of a collection of polyhedra moving amongst
several polyhedral obstacles. An example of a path obtained by a motion planning algorithm
is shown in Figure 4(a). In our benchmarks, the robots consisted of objects described by a
large number of polygons, such as 3-dimensional renderings of the letters of the alphabet, bent
cylinders, and the bunny, as illustrated in Figure 4(b), and the obstacles consisted of the walls of a
3-dimensional maze, as illustrated in Figure 4(c). Floor and ceiling are removed from Figure 4(c)
to show the maze.

Efficient motion planning algorithms, such as [24, 31, 41, 45, 46], construct the knn graph using
points representing configurations of the robots. The configuration of a robot is a 7-dimensional
point parameterized by a 3-dimensional position and an orientation represented by a 4-dimensional
quaternion [2]. (We note that the robot has only 6 degrees of freedom, three for translation and
three for rotation. The fourth parameter in the parameterization of the rotation is redundant,
since unit quaternions suffice for the representation of rotations.) The configuration of ℓ robots is
a 7ℓ-dimensional point obtained by concatenating the configurations of each robot. The distance
between two configurations of a single robot is defined as the geodesic distance in SE(3) [10].
For multiple robots, the distance between two configurations is defined by summing the SE(3)
distances between the corresponding configuration projections for each robot [14]. The compu-
tation of the geodesic distance is an expensive operation as it requires the evaluation of several
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(a) (b) (c)

Fig. 4. A motion planning benchmark. The objective of the motion planning is to compute collision-free
paths consisting of rotations and translations for robots comprised of a collection of polyhedra moving
amongst several polyhedral obstacles in 3-dimensional environments. Rendering of objects is not on
the same scale. (a) A path where the robot goes from one side of a wall to the other side of the wall
by wiggling its way through a small hole. Illustrated are several consecutive poses of the robot as it
follows the path. The arrows indicate the direction of motion from one pose to the other. (b) Several
different robots varying from 3-dimensional renderings of the letters of the alphabet to a collection of
bent cylinders and complex geometric models such as the bunny. (c) A 3-dimensional maze representing
the environment where the robots are allowed to move.

points 100000, 250000, 500000 1000000, 2000000, 3000000

dimension 90 105 174 203 258 301 504 1001

point type emb cfg emb cfg emb cfg cfg cfg

distance euc geo euc geo euc geo geo geo

(a) (b)

Table 1
Data sets used for the computation of the knn graph. The geodesic (geo) and Euclidean (euc) distances
are used for the computation of knn graphs on configuration (cfg) and embedding (emb) points, respec-
tively. (a) For each dimension, data sets were generated with 100000, 250000, and 500000 points each.
(b) For each dimension, data sets were generated with 1000000, 200000, and 3000000 points each.

sin, cos, and square root functions. Alternatively, in order to improve on the efficiency of the
computation, the knn graph can be based on the Euclidean distance defined for embeddings
of configurations [14]. The knn graph based on embedding points provides a trade-off between
efficiency of computation and quality of neighbors computed for each point. An embedding of
a single robot configuration is a 6-dimensional point obtained by rotating and translating two
3-dimensional points selected from the geometric description of the robot as specified by the
configuration and concatenating the transformed points.

Data sets generated and used by PRM: The data sets generated by the motion planning algorithm
PRM [31] are described in Table 1(a). PRM constructs a knn graph by sampling configurations of
the robot uniformly at random and connecting each configuration to its k closest neighbors by
a simple path. The algorithm guarantees that the sampled configurations and the connections
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between configurations avoid collisions with the obstacles. In order for PRM to find paths for mul-
tiple robots in environments with many obstacles or narrow passages, millions of configurations
are typically sampled. As described in Table 1(a), we used data sets consisting either of configu-
ration points or embedding points. All data sets are generated by using PRM [31] to solve motion
planning problems in the maze environment of Figure 4. The number of robots was set to 15,
29, and 43 to obtain configuration points of 105, 203, and 301 dimensions and embedding points
of 90, 174, and 258 dimensions, respectively. The robots consisted of 3-dimensional renderings of
the letters of the alphabet, where the i-th robot is the (i mod 26)-th letter of the alphabet.

Large data sets: We generated large data sets consisting of 1000000, 2000000, and 3000000 points
of 504 and 1001 dimensions by sampling configurations uniformly at random, as described in
Table 1(b). We did not use these large data sets for planning because (i) the scope of this paper
is the distributed computation of the knn graph and not planning and (ii) time limitations, since
planning involves collision checking of configurations and paths and for the data sets of Table 1(b)
would require several weeks of computation.

4.3 Efficiency of DKNNG

To measure the efficiency of DKNNG, we ran the distributed code on various data sets, as described
in section 4.2, using different numbers of processors.

4.3.1 Description of Experiments

Number of nearest neighbors: We tested the performance of the sequential and DKNNG algorithms
for various values of k ∈ {15, 45, 150}. We found very little variation in the running times for the
sequential algorithm and DKNNG, thus in all our experiments we only report results obtained for
k = 15.

Measuring the computation time of the sequential algorithm: The computation time required
by the sequential algorithm is estimated by randomly selecting 500 points from the data set,
computing the associated knn queries and calculating the average time required to compute one
knn query. The total time is then obtained by multiplying the average time to compute one knn
query by the number of points in the data set and adding to it the time it takes to construct the
knn data structure. Our experiments with data sets of 100000 and 250000 points and 90, 105,
and 174 dimensions showed little variation (less than 60 seconds) between estimated sequential
time and actual sequential time.

Each data set can be stored in a single machine: The sizes of the data sets described in Table 1(a)
vary from 83MB to 1.3GB. These sizes were chosen to make a fair comparison between DKNNG and the
sequential algorithm by ensuring that each data set fits in the main memory of a single machine
(see section 4.1 for a description of the hardware we used.) The efficiency of DKNNG would be even
higher if each data set does not fit in the main memory of a single machine, as it is often the case
in emerging applications in robot motion planning [40, 45, 46] and biology [3, 33, 39, 42, 50, 52],
since the performance of the sequential implementation would deteriorate due to frequent disk
access.

For each of the 18 data sets of Table 1(a), we ran DKNNG on 64, 80, and 100 processors. Table 2
contains a summary of the results. For each experiment, we report the computation time required
by the sequential version and the efficiency obtained with p processors. The efficiency is calculated
as t1/(tp · p), where t1 is the time required by a single processor to compute the knn graph and
tp is the time required by DKNNG to compute the knn graph when run on p processors.

Storing each data set requires several machines: We also tested the performance of DKNNG on the
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[emb, euc, d = 90, k = 15] [cfg, geo, d = 105, k = 15]

100000 250000 500000 100000 250000 500000

1 108.52m 1076.35m 5396.78m 1875.72m 12016.02m 47301.52m

64 0.922 0.970 0.986 0.992 0.996 0.998

80 0.905 0.958 0.982 0.990 0.995 0.998

100 0.889 0.958 0.976 0.989 0.994 0.997

[emb, euc, d = 174, k = 15] [cfg, geo, d = 203, k = 15]

100000 250000 500000 100000 250000 500000

1 197.14m 1838.97m 8128.69m 3666.77m 22602.67m 92797.77m

64 0.913 0.969 0.986 0.992 0.996 0.998

80 0.876 0.958 0.981 0.990 0.996 0.998

100 0.851 0.944 0.974 0.988 0.995 0.998

[emb, euc, d = 258, k = 15] [cfg, geo, d = 301, k = 15]

100000 250000 500000 100000 250000 500000

1 264.37m 2014.33m 8610.76m 5416.69m 34381.19m 141771.51m

64 0.889 0.958 0.979 0.992 0.997 0.998

80 0.853 0.946 0.973 0.990 0.996 0.998

100 0.813 0.931 0.966 0.987 0.996 0.998

Table 2
Efficiency of DKNNG on the data sets of Table 1(a). The heading of each table indicates the type of
the points, the distance metric, the dimension of each point, and the number k of nearest neighbors
(corresponding to a column in Table 1(a)). For each table, experiments were run with 100000, 250000,
and 500000 points and on 1, 64, 80, and 100 processors. The row of processor 1 indicates the running
time in minutes of the sequential algorithm. For experiments with 64, 80, and 100 processors, we indicate
the efficiency of DKNNG computed as t1/(tp · p), where tp is the running time of DKNNG on p processors.

data set of Table 1(b). The purpose of these data sets, which vary in size from 3.75GB to 22.37GB,
is to test the efficiency of DKNNG for large data sets, where several machines are required just to
store the data. We ran DKNNG using 20, 100, 120, and 140 processors. We based the calculations
of the efficiency on the running time for 20 processors, since each processor is capable of storing
1/20-th of the data set in its main memory. This again ensures a fair computation of the efficiency
as the number of processors is increased, since the performance of DKNNG on 20 processors does
not suffer from frequent disk access. The efficiency is calculated as 20t20/(tp · p), where t20 is the
running time of DKNNG on 20 processors, and tp is the running time of DKNNG on p processors, for
p = 100, 120, 140. The results are presented in Table 3.
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[cfg, geo, d = 504, k = 15] [cfg, geo, d = 1001, k = 15]

1000000 2000000 3000000 1000000 2000000 3000000

eff[20, 100] 1.000 0.999 1.000 0.999 0.999 0.999

eff[20, 120] 1.000 0.999 1.000 0.999 0.999 0.999

eff[20, 140] 1.000 0.999 1.000 0.998 0.997 0.999

Table 3
Efficiency of DKNNG on the large data sets of Table 1(b). The heading of each table indicates the type
of the points, the distance metric, the dimension of each point, and the number k of nearest neighbors
(corresponding to a column in Table 1(b)). For each table, experiments were run with 1000000, 2000000,
and 3000000 points and on 20, 100, 120, and 140 processors. We report the efficiency of DKNNG on 100,
120, and 140 processors in rows eff[20, 100], eff[20, 120], and eff[20, 140], respectively. The efficiency
is calculated based on the running time of DKNNG on 20 processors, i.e., 20t20/(tp · p), where t20 is the
running time of DKNNG with 20 processors, and tp is the running time of DKNNG on p processors, for
p = 100, 120, 140.

4.3.2 Results

The overall efficiency of DKNNG is reasonably high on all our benchmarks. From the results in
Table 2, the efficiency on 64 processors ranges from 0.889 to 0.998 with an average of 0.974 and
median of 0.989. When the number of processors is increased to 80, the efficiency ranges from
0.853 to 0.998 with an average of 0.966 and median of 0.986. The efficiency of DKNNG still remains
high even on 100 processors, where the efficiency ranges from 0.813 to 0.998 with an average of
0.958 and median of 0.982.

For each dimension, we observe that the efficiency of DKNNG increases as the number of points in
the data set increases. As an example, for d = 90 and p = 100, the efficiency of DKNNG is 0.889
for 100000 points, 0.958 for 250000 points, and 0.976 for 500000 points. One important factor
that contributes to the increase in the efficiency is that each processor Pi has now more points
Si and thus more opportunities to fill in possible idle or waiting times by computing knn queries
for points si ∈ Si it owns.

Our experiments also indicate a high efficiency of DKNNG even when different metrics are used.
Even though the computation of the Euclidean metric is much faster than the computation of
the multiple geodesic metric in SE(3), the efficiency of DKNNG remains high in both cases.

For a fixed number of points, we observe that the performance of DKNNG increases as the cost of
computing the distance metric increases. For a fixed number of points and a fixed distance metric,
we observe that the performance of DKNNG decreases as the dimension increases. The increase in
the cost of computing the distance metric increases the useful computation time since more time
is spent computing queries. The increase in the dimension increases communication costs since
more data is communicated over the network when sending queries from one processor to another.
Hence, depending on whether the increase in useful computations dominates over the increase in
communication costs, the performance of DKNNG either increases or decreases, respectively. As an
example, when using the Euclidean metric, the efficiency of DKNNG for n = 250000 and p = 100
is 0.958 for d = 90, 0.944 for d = 174, and 0.931 for d = 258. When using a computationally
more expensive metric, such as the geodesic metric, the efficiency of DKNNG for n = 250000 and
p = 100 is 0.994 for d = 105, 0.995 for d = 203, and 0.996 for d = 301.
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Fig. 5. Performance of the DKNNG algorithm. (a) Comparison of the ideal efficiency with the worst,
average, median, and the best efficiency obtained for all the data sets of Table 1(a). (b) Characterization
of the useful computation for p = 100 for the data set with d = 105 and n = 500000 by showing what
percentage of the time is spent computing knn queries.

Figure 5(a) compares the ideal efficiency to the worst, average, median, and the best efficiency
obtained for all the data sets of Table 1(a) when DKNNG is run on 64, 80, and 100 processors.
Figure 5(a) indicates a nearly ideal efficiency for the DKNNG algorithm.

Figure 5(b) presents logged data for the data set with d = 105 and n = 500000, when DKNNG

is run on 100 processors, showing the percentage of time spent computing knn queries. The
plot in Figure 5(b) is characteristic of the behavior of DKNNG on the other data sets as well.
Figure 5(b) indicates that most of the time, ranging from 99.35% to 99.77%, is spent doing useful
computation, i.e., computation of knn queries on behalf of other processors and computation of
knn queries for points owned by the processor, which results in a highly efficient distributed
algorithm.

The results in Table 3 indicate that DKNNG achieves high efficiency for large data sets. As discussed
earlier, increasing the number of points and the cost of computing the distance metric increases
the useful computation time since more time is spent computing knn queries, resulting in an
almost ideal efficiency for DKNNG.

5 Discussion

Our work is motivated by increasingly high-dimensional problems arising from motion planning
[14, 31, 35, 40, 45, 46], biological applications [3, 33, 39, 42, 50, 52], pattern recognition [21], data
mining [18, 51], multimedia systems [13], geographic information systems [34, 43], and many
other research fields, which often require efficient computations of knn graphs based on arbitrary
distance metrics. This paper presents an algorithm for efficiently distributing the computation
of such graphs using a decentralized approach.

Our distributed framework is general and can be extended in many ways. Possible extensions
include the computation of graphs based on other types of proximity queries, such as approximate
knn or range queries, as discussed in section 3.6. In addition, our distributed framework allows
for the exploitation of certain properties of the data structures used for the computation of knn
queries, approximate knn queries, or range queries, to improve the overall efficiency of the DKNNG

algorithm.

The efficiency of DKNNG derives in part from a careful prioritization and handling of requests be-
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tween processors and a systematic exploitation of properties of knn data structures. Throughout
the distributed computation, each processor uses computations that do not require communica-
tions to fill in idle times and gives a higher priority to computations requests by other processors
in order to provide a timely response. Information collected during the computation of knn
queries by one processor is shared with other processors which use it to prune the computations
of their knn queries. The information sharing in some cases makes the computation of certain
knn queries completely unnecessary and thus reduces communication and computation costs. Our
experimental results suggest that our distributed framework supports the efficient computation
by hundreds of processors of very large knn graphs consisting of millions of points with hundreds
of dimensions and arbitrary distance metrics.

We intend to integrate DKNNG with our motion planning algorithms [45, 46] and use it for the
solution of robot motion planning problems of unprecedented complexity. While recent motion
planners can successfully solve robot motion planning problems with tens of dimensions, our
objective is to solve robot motion planning problems consisting of thousands of dimensions.
Other challenging applications stemming from biology, pattern recognition, data mining, fraud
detection, geographic information systems that rely on the computation of knn graphs could
benefit similarly from the use of our distributed DKNNG framework.
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[31] L. E. Kavraki, P. Švestka, J.-C. Latombe, M. H. Overmars, Probabilistic roadmaps for path planning
in high-dimensional configuration spaces, IEEE Transactions on Robotics and Automation 12 (4)
(1996) 566–580.

[32] F. Korn, B.-U. Pagel, C. Faloutsos, On the ‘dimensionality curse’ and the ‘self-similarity blessing’,
IEEE Transactions on Knowledge and Data Engineering 13 (1) (2001) 96–111.

[33] H.-P. Kriegel, M. Pfeifle, S. Schönauer, Similarity search in biological and engineering databases,
IEEE Data Engineering Bulletin 27 (4) (2004) 37–44.

[34] W.-S. Ku, R. Zimmermann, H. Wang, C.-N. Wan, Adaptive nearest neighbor queries in travel time
networks, in: ACM International Workshop on Geographic Information Systems, Bremen, Germany,
2005, pp. 210–219.

[35] J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, H. Inoue, Motion planning for humanoid robots,
in: D. Paolo, R. Chatila (Eds.), International Symposium of Robotics Research, Vol. 15 of Springer
Tracts in Advanced Robotics, Springer Verlag, Siena, Italy, 2005, pp. 365–374.

[36] E. Kushilevitz, R. Ostrovsky, Y. Rabani, Efficient search for approximate nearest neighbor in high
dimensional spaces, SIAM Journal of Computing 30 (2) (2000) 457–474.

[37] S. M. LaValle, P. W. Finn, L. E. Kavraki, J.-C. Latombe, Efficient database screening for rational
drug design using pharmacophore-constrained conformational search, in: International Conference
on Computational Molecular Biology, Lyon, France, 1999, pp. 250–260.

[38] T. Liu, A. W. Moore, A. Gray, K. Yang, An investigation of practical approximate nearest neighbor
algorithms, in: L. K. Saul, Y. Weiss, L. Bottou (Eds.), Advances in Neural Information Processing
Systems, MIT Press, Cambridge, MA, 2005, pp. 825–832.

[39] S. McGinnis, T. L. Madden, BLAST: at the core of a powerful and diverse set of sequence analysis
tools, Nucleic Acids Research 32 (2004) W20–W25.

[40] M. Moll, L. E. Kavraki, Path planning for variable resolution minimal-energy curves of constant
length, in: IEEE International Conference on Robotics and Automation, Barcelona, Spain, 2005,
pp. 2143–2147.

[41] M. Morales, S. Rodriguez, N. Amato, Improving the connectivity of PRM roadmaps, in: IEEE
International Conference on Robotics and Automation, Taipei, Taiwan, 2003, pp. 4427–4432.

[42] M. Paik, Y. Yang, Combining nearest neighbor classifiers versus cross-validation selection, Statistical
Applications in Genetics and Molecular Biology 3 (1) (2004) article 12.

[43] A. Papadopoulos, Y. Manolopoulos, Parallel processing of nearest neighbor queries in declustered
spatial data, in: ACM International Workshop on Advances in Geographic Information Systems,
Rockville, Maryland, 1996, pp. 35–43.

[44] A. N. Papadopoulos, Y. Manolopoulos, Nearest Neighbor Search: A Database Perspective, Series in
Computer Science, Springer Verlag, Berlin, Germany, 2005.

21



[45] E. Plaku, K. E. Bekris, B. Y. Chen, A. M. Ladd, L. E. Kavraki, Sampling-based roadmap of trees
for parallel motion planning, IEEE Transactions on Robotics 21 (4) (2005) 597–608.

[46] E. Plaku, L. E. Kavraki, Distributed sampling-based roadmap of trees for large-scale motion
planning, in: IEEE International Conference on Robotics and Automation, Barcelona, Spain, 2005,
pp. 3879–3884.

[47] E. Plaku, L. E. Kavraki, Quantitative analysis of nearest-neighbors search in high-dimensional
sampling-based motion planning, in: Workshop Algo Found Robot, New York, NY, 2006, in press.

[48] A. Qasem, K. Kennedy, J. Mellor-Crummey, Automatic tuning of whole applications using direct
search and a performance-based transformation system, The Journal of Supercomputing 36 (2)
183–196.

[49] T. Schwarz, M. Iofcea, M. Grossmann, N. Hönle, D. Nicklas, B. Mitschang, On efficiently processing
nearest neighbor queries in a loosely coupled set of data sources, in: ACM International Workshop
on Geographic Information Systems, Washington, DC, 2004, pp. 184–193.

[50] B. K. Shoichet, D. L. Bodian, I. D. Kuntz, Molecular docking using shape descriptors, Journal of
Computational Chemistry 13 (3) (1992) 380–397.

[51] P.-N. Tan, M. Steinbach, V. Kumar, Introduction to Data Mining, Addison-Wesley, Boston,
Massachusetts, 2005.

[52] S. Thomas, G. Song, N. M. Amato, Protein folding by motion planning, Physical Biology 2 (2005)
S148–S155.

[53] J. K. Uhlmann, Satisfying general proximity/similarity queries with metric trees, Information
Processing Letters 40 (4) (1991) 175–179.
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