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Abstract: We quantitatively analyze the performance of exact and approximate
nearest-neighbors algorithms on increasingly high-dimensional problems in the con-
text of sampling-based motion planning. We study the impact of the dimension,
number of samples, distance metrics, and sampling schemes on the efficiency and
accuracy of nearest-neighbors algorithms. Efficiency measures computation time and
accuracy indicates similarity between exact and approximate nearest neighbors.

Our analysis indicates that after a critical dimension, which varies between 15
and 30, exact nearest-neighbors algorithms examine almost all the samples. As a
result, exact nearest-neighbors algorithms become impractical for sampling-based
motion planners when a considerably large number of samples needs to be gener-
ated. The impracticality of exact nearest-neighbors algorithms motivates the use of
approximate algorithms, which trade off accuracy for efficiency. We propose a simple
algorithm, termed Distance-based Projection onto Euclidean Space (DPES), which
computes approximate nearest neighbors by using a distance-based projection of
high-dimensional metric spaces onto low-dimensional Euclidean spaces. Our results
indicate DPES achieves high efficiency and only a negligible loss in accuracy.

1 Introduction

Research in motion planning has in recent years focused on sampling-based
algorithms [1,5,9,13,14,17,20,22] for solving problems involving multiple and
highly complex robots. Such algorithms rely on an efficient sampling of the
configuration space and compute nearest neighbors for the sampled points. In
general, the k nearest neighbors of a point in a data set are defined as the k
closest points in the data set according to a distance metric.

As research in motion planning progressively addresses problems of un-
precedented complexity, nearest-neighbors computations based on arbitrary
distance metrics and large high-dimensional data sets become increasingly
challenging. Researchers have developed many nearest-neighbors algorithms,
such as the kd-tree, R-tree, X-tree, M-tree, VP-tree, Gnat, iDistance, surveyed
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in [7,10,11], and others [3]. Analysis has shown that for certain distance met-
rics and data distributions, the computational efficiency of such algorithms
decreases as the dimension increases [4, 6, 12, 18, 23]. As summarized in [15],
although the nearest neighbor of a point according to L2 from an n-point d-
dimensional data set can be computed in O(dO(1) log n) time, the associated
nO(d) space requirement is impractical. Reducing the space requirement to
what is practical, i.e., O(dn), increases the query time to min(2O(d), dn). In
fact, after a critical dimension, the brute-force linear method, which exam-
ines the entire data set, is computationally faster than other exact nearest-
neighbors algorithms. The work in [23] shows 610 as the theoretical bound
on the critical dimension for L2 and uniformly distributed points in [0, 1]d.
The experiments in [23] however indicate 10 as the critical dimension, a much
lower estimate than the theoretical bound. In [4,12], the critical dimension is
estimated between 10–15 for Lp and several synthetic and image data sets.

Another viable approach for nearest-neighbors computations is to use ap-
proximate algorithms which trade off accuracy for efficiency [2, 10, 19, 21],
where accuracy indicates similarity between exact and approximate nearest
neighbors. As summarized in [15], in the case of L2, approximate nearest neigh-
bors can be computed probabilistically in dn1/1+ε time and O(dn) space or

deterministically in (d log n/ε)O(1) time and n1/εO(1)

space. Such algorithms
gain efficiency by projecting the data set onto low-dimensional spaces and
achieve high accuracy when the projection results in low distortion of dis-
tances. The computational advantages of approximate nearest-neighbors al-
gorithms are more evident when the dimension d of the data set is high.
The problem however remains challenging for general metrics. As summa-
rized in [16], any n-point metric space can be projected onto R

O(log2 n) with
only O(log n) distortion. However, solving high-dimensional motion planning
problems requires generating millions of samples, which makes O(log2 n) im-

practical. By increasing the distortion to O(n2/d log3/2 n), and thus reducing
the accuracy, any n-point d-dimensional metric space could be projected onto
R

d. Therefore, the efficiency or accuracy of approximate nearest-neighbors
algorithms is typically reduced when general metrics are used instead of L2.

The analysis of nearest-neighbors algorithms generally assume a uniform
distribution of points and the use of L2. In motion planning, the distribution
is impacted by the sampling scheme. Samples satisfy certain criteria, such as
representing collision-free configurations, and, consequently, the distribution
is usually non-uniform. Furthermore, distances between configurations are not
necessarily defined by L2, but instead attempt to capture the success of the lo-
cal planner. Motion planners therefore exhibit a degree of flexibility which can
be exploited to compute approximate instead of exact nearest neighbors. Re-
search in [22] shows that in certain high-dimensional problems using random
neighbors actually improves the performance of motion planners. Therefore,
an understanding of the impact of these factors on the efficiency and accuracy



Quantitative Analysis of NN Search in Motion Planning 3

of nearest-neighbors algorithms employed by motion planners could provide
valuable insight in addressing high-dimensional motion planning problems.

In this work, we quantitatively analyze exact and approximate nearest-
neighbors algorithms in the context of high-dimensional sampling-based mo-
tion planning. We focus on roadmap-based algorithms, such as the Proba-
bilistic RoadMap (PRM) method with uniform [17], bridge [13], Gaussian [5],
and obstacle [1] sampling, and tree-based algorithms, such as the Rapidly-
exploring Random Tree (RRT) [20] and the Expansive-Spaces Tree (EST) [14].

We address the following questions: (i) under what conditions, if any,
should motion planners use the brute-force linear method instead of other
exact nearest-neighbors algorithms? (ii) do approximate nearest-neighbors al-
gorithms compute more efficiently nearest neighbors that are similar to exact
nearest neighbors on high-dimensional motion planning problems? We study
the impact of the dimension, number of samples, distance metrics, and sam-
pling schemes on the efficiency and accuracy of nearest-neighbors algorithms.

Our analysis indicates that after a critical dimension the brute-force linear
method is computationally more efficient than other exact nearest-neighbors
algorithms. The critical dimension however depends on the number of samples,
distance metric, and sampling scheme. We present results that quantify these
dependencies.

Motivated by the impracticality of exact nearest-neighbors algorithms, we
propose the use of approximate algorithms for the computation of neighbors
in high-dimensional motion planning problems. In this work, we develop a
simple algorithm, termed Distance-based Projection onto Euclidean Space
(DPES), which computes approximate nearest neighbors by projecting high-
dimensional metric spaces onto low-dimensional Euclidean spaces. The pro-
jection is based on distances between a set of selected points and points in
the data set. Our experiments indicate DPES achieves high computational
efficiency and only a negligible loss in accuracy.

The rest of the paper is organized as follows. In Sect. 2 we describe the
methodology we use in our analysis and the DPES algorithm. In Sect. 3 we de-
scribe the experimental setup. In Sect. 4 we present the results of our analysis
of nearest-neighbors algorithms. We conclude in Sect. 5 with a discussion.

2 Methods

In this section, we describe the nearest-neighbors algorithms we use in this
paper including DPES. We also outline the motion planners and distance
metrics we use in this study. We denote the data set, number of nearest
neighbors, and distance metric by S, k, and ρ : S × S → R

≥0, respectively.

2.1 Exact k Nearest-Neighbors Algorithms

We define the k nearest neighbors (kNN) of a point si ∈ S, denoted by
NNS(si, k), as the k closest points to si from S − {si} according to ρ.
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Linear This is a brute-force approach which resolves NNS(si, k) by comput-
ing the distance from si to each point in S. The Linear method provides the
basis for the comparison with other more sophisticated kNN algorithms.

Gnat Gnat [7] constructs a tree recursively by partitioning S into smaller
sets and associating each set with a branch in the tree. Gnat then uses the
triangle inequality to prune certain branches of the tree in order to compute
kNN more efficiently. We choose Gnat in our analysis, since the results in [7]
and our experiments in the context of motion planning with several kNN
algorithms, such as kd-tree, M-tree, VP-tree, [3], etc., indicate Gnat to be
more efficient especially on large data sets and metric spaces.

2.2 Approximate k Nearest-Neighbors Algorithms

We define approximate k nearest neighbors (kANN) of a point si ∈ S, denoted
by ANNS(si, k), as a subset of S − {si} of cardinality k that according to
certain measures is similar to NNS(si, k).

Random This method selects S ′ ⊂ S uniformly at random, |S′| � k, and
computes ANNS(si, k) as NNS′(si, k). Random provides a basis for evaluating
the quality of other kANN algorithms.

Distance-based Projection onto Euclidean Space (DPES) Our kANN
algorithm is based on projecting each point si ∈ S to a point v(si) ∈ R

m,
for some fixed m > 0. We then use L2 to define distances between projected
points and compute ANNS(si, k) as

ANNS(si, k) = {s′ : v(s′) ∈ NNV (S)(v(si), k)}, V (S) = {v(si) : si ∈ S}.

We thus compute ANNS(si, k) according to the distance metric ρ by com-
puting NNV (S)(v(si), k) according to L2. Any kNN data structure A can be
used to compute NNV (S)(v(si), k). DPES supports dynamic addition and re-
moval of points. When a point s is added to or removed from S, the corre-
sponding projection v(s) is added to or removed from A, respectively.

We obtain the projection by selecting m pivots {p1, p2, · · · , pm} ⊂ S and
setting each v(si) ∈ R

m to v(si)[j] = ρ(si, pj), 1 ≤ j ≤ m. We select p1

uniformly at random in S and each pj , 2 ≤ j ≤ m, as the point in S that

maximizes minj−1
i=1 ρ(pi, pj). The objective is to select pivots that preserve rel-

ative distances between points in S when projected onto R
m, e.g., projections

of points in S that are close according to ρ should be close according to L2.
DPES has certain computational advantages. The projection of S onto R

m

greatly improves the efficiency, since, as shown in Sect. 4.2, typically fewer dis-
tance evaluations are necessary for computing nearest neighbors. In addition,
evaluating L2 is more efficient than evaluating distance metrics commonly
used in motion planning, such as those in Sect. 2.3.

Quality Evaluation We determine the quality of ANNS(si, k) by using
two common measures based on distances between points in ANNS(si, k) and
NNS(si, k). Similar to [10], we use the ratio of false dismissals:
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rfdε =
1

k

∑

s∈ANNS(si,k)

{

1, ρ(s, si) > (1 + ε)maxs′∈NNS(si,k) ρ(si, s
′),

0, otherwise.

The rfdε error, ε ≥ 0, indicates the fraction of points in ANNS(si, k) that are
(1 + ε)-times farther away from the k-th nearest neighbor of si. Note however
that some s′, s′′ ∈ ANNS(si, k) could contribute the same value to rfdε even
when ρ(s′, si) � ρ(s′′, si). Thus, two different sets could have the same rfdε

value even when points in one set are farther away from si than points in the
other set. Therefore, as in [10], we also use the ratio of distance errors:

rde = 1−
∑

s∈NNS(si,k)ρ(s, si)/
∑

s∈ANNS(si,k)ρ(s, si).

The range of rfdε and rde is [0, 1] and smaller values indicate high quality.

2.3 Sampling-Based Motion Planning and Distance Metrics

In this study, we use roadmap-based algorithms, such as PRM with uniform
(PRMu) [17], bridge (PRMb) [13], Gaussian (PRMg) [5], and obstacle (PRMo) [1]
sampling, and tree-based algorithms, such as bi-directional RRT [20] and EST

[14]. We follow standard implementations as in [9, 22]. We consider problems
with multiple robots moving freely in 2D or 3D workspaces with static obsta-
cles. We gradually increase the number of robots until we reach the critical
dimension. We create data sets using configurations of the roadmap in PRM

and the initial tree in RRT and EST.
In 2D workspaces, we use ρSE(2), the geodesic distance in SE(2) [8], as

the distance between any two single robot configurations a and b, i.e., length
of shortest path in SE(2) from a to b. We also use ρwSE(2), which weighs,
as discussed below, the geodesic distances in R

2 and SO(2). Similarly, in 3D
workspaces, we use ρSE(3) [8], the geodesic distance in SE(3), and ρwSE(3),
which weighs the geodesic distances in R

3 and SO(3). We also use ρL2
, which

approximates the volume of the workspace region swept by the robot [9] .
We experimented with several weighting schemes for ρwSE(2) and ρwSE(3), but
found little variation in the results of nearest-neighbors algorithms. Therefore
in this study we set the weights to one. In the case of multiple robots, we sum
up ρSE(2), ρwSE(2), ρSE(3), ρwSE(3), and ρL2

distances between configurations
for each robot to obtain ρ∗SE(2), ρ∗wSE(2), ρ∗SE(3), ρ∗wSE(3), and ρ∗L2

, respectively.

3 Experimental Setup

Data Sets We use 2D and 3D workspaces, shown in Fig. 1, that provide a
representative benchmark for motion planners. The “maze2d” workspace is a
2D maze, as in Fig. 1(a). Robots must move from one of the borders of the
maze to the opposite border. The “narrow2d” workspace has several narrow
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(a) “maze2d” (b) “narrow2d” (c) robots3d (d) “maze3d” (e) “cons3d”

Fig. 1. Workspaces. (a), (b) The black and gray polygons indicate obstacles and
robots, respectively. (c),(d),(e) In the 3D workspaces, robots consist of 3D renderings
of English letters and the i-th robot corresponds to the i-th letter.

Table 1. Summary of data sets.

motion planner PRM[uniform, bridge, Gaussian, obstacle], RRT, EST

number of points (n) 10000, 50000, 100000

workspace maze2d, narrow2d maze3d, cons3d

distance ρ∗SE(2), ρ∗
wSE(2) ρ∗SE(3), ρ∗

wSE(3), ρ∗L2

dimension (d) 3, 6, 9, . . . , 60 6, 12, 18, . . . , 60

passages, as in Fig. 1(b). Robots must move from the left side to the right side
of the box. In the 3D workspaces, robots are objects in the shape of letters, as
in Fig. 1(c). The “maze3d” workspace is a 3D maze, as in Fig. 1(d). Robots
must move from one corner of the maze to the other and always remain inside
the maze. The “cons3d” workspace has ten consecutive walls each with a small
hole, as in Fig. 1(e). Robots must move through all the ten holes.

We created many data sets as summarized in Table 1. We use 1, 2, . . ., 20
and 1, 2, . . ., 10 robots in each 2D and 3D workspace to obtain configurations
with 3, 6, . . ., 60 and 6, 12, . . ., 60 dimensions, respectively. As an example, a
60-dimensional “maze3d” problem is obtained by placing 10 robots, consisting
of 3D renderings of letters A through I as in Fig. 1(c), in the “maze3d”
workspace. We note that the choice of letters for the robots does not affect
the results of our experiments. For each dimension, we generate data sets with
10000, 50000, and 100000 points. For each dimension and number of points,
we use each motion planner to generate data sets using ρ∗SE(2) and ρ∗wSE(2) in
each 2D workspace and ρ∗SE(3), ρ∗wSE(3), and ρ∗L2

in each 3D workspace. During
data generation, each motion planner uses Linear for the kNN computations.

Experiments For each data set, we use Gnat and Linear to compute kNN
queries and DPES and Random to compute kANN queries for various values
of k ∈ {15, 45, 150}. We report only results obtained for k = 45, since the
results for the other values of k are similar. In each case, we measure the time
and distance evaluations required to compute nearest neighbors of a point
s ∈ S selected uniformly at random. In addition, for kANN algorithms, we
measure the rfdε, ε ∈ {0.00, 0.05, 0.10}, and rde errors. We obtain averages of
these quantities by repeating the above step 100 times. We choose |S ′| such
that the running time of Random is the same as that of DPES.



Quantitative Analysis of NN Search in Motion Planning 7

Platform We utilized three high-performance computing clusters, Rice
Terascale Cluster, PBC Cluster, and Rice Cray XD1 Cluster ADA.

4 Results

We compare the computational efficiency of Gnat and DPES relative to Linear
for kNN and kANN computations, respectively. We also focus on the accuracy
of DPES and Random. The use of Linear and Random provides a normal-
ization of the results obtained for data sets generated using various motion
planners, distance metrics, number of points, dimensions, and workspaces. We
present results for “maze2d” and “maze3d” workspaces, since the correlation
with results for “narrow2d” and “cons3d” workspaces is above 90%.

4.1 Exact k Nearest-Neighbors Algorithms

We compare Gnat to Linear for various distance metrics.

Using ρ∗

SE(2) We present the results in Fig. 2. These results are indicative
of other distances and illustrate general trends observed in kNN algorithms.
We indicate the workspace, motion planner, distance metric, and number of
points at the top and legend of each figure. In Fig. 2(a), we compare the
computation time of Gnat relative to Linear on data sets generated using PRM

with uniform sampling. We observe that Gnat is more efficient than Linear on
low-dimensional data sets. The efficiency of Gnat increases even more when
the number of points increases. However, as the dimension increases, the effi-
ciency of Gnat deteriorates rapidly. In fact, after a certain dimension, d > 18,
Gnat is even less efficient than Linear.

In Fig. 2(b), we focus on the number of distance evaluations. We observe
trends similar to Fig. 2(a). We note that Gnat evaluates far fewer distances
than Linear on low-dimensional data sets, especially on large low-dimensional
data sets. However, as in Fig. 2(a), the number of distance evaluations by Gnat
relative to Linear increases rapidly with the dimension and even approaches
1.0 when d > 18. Since Gnat has more computational overhead than Linear,
we observed in Fig. 2(a), that for d > 18, Gnat is less efficient than Linear.

In Fig. 2(c), we compare the computation time of Gnat relative to Linear
on data sets with n = 100000 points generated using PRM with different sam-
pling schemes. We observe that Gnat is unable to take advantage of the dif-
ferent distributions that result from changing the sampling in PRM. There is
almost no variation in the efficiency of Gnat when the sampling in PRM is
changed from uniform to bridge, Gaussian, or obstacle. Similar observations
also hold for the smaller data sets.

In Fig. 2(d) and (e), we focus on RRT and EST, respectively. As in
Fig. 2(a), the efficiency of Gnat relative to Linear is significantly better on
low-dimensional data sets, but quickly deteriorates as the dimension increases,
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(a) (b)

(c) (d) (e)

Fig. 2. Comparing Gnat to Linear when using ρ∗SE(2).

and becomes worse after the critical dimension. However, the critical dimen-
sion is higher for RRT and EST than for PRM due to the local nature of RRT and
EST which create samples that are more distinctly clustered and, consequently,
can be used by Gnat to eliminate certain distance computations.

Using ρ∗

wSE(2), ρ∗

SE(3), ρ∗

wSE(3), and ρ∗

L2
We present the results in Fig. 3.

We compare the computation time of Gnat relative to Linear. The filled region
indicates the variation in the efficiency of Gnat for the different PRM versions,
while the dashed and dotted lines indicate the results obtained for EST and
RRT, respectively. We show results only for data sets with n = 100000 points,
since we obtain similar results for the smaller data sets.

In Fig. 3(a), we focus on ρ∗wSE(2). As in the case of ρ∗SE(2), the efficiency
of Gnat relative to Linear is at least one order of magnitude better on low-
dimensional data sets, but rapidly decreases with the dimension. We note
there is almost no variation in the efficiency of Gnat when the sampling in
PRM is changed from uniform to bridge, Gaussian, or obstacle.
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(a) (b)

(c) (d)

Fig. 3. Comparing Gnat to Linear when using ρ∗
wSE(2), ρ∗SE(3), ρ∗

wSE(3), and ρ∗L2
.

Similarly, in Fig. 3(b) and (c), we observe that when using ρ∗SE(3) or
ρ∗wSE(3), the efficiency of Gnat remains the same for PRM variants, but im-
proves for RRT and EST due to the local sampling.

In Fig. 3(d), we focus on ρ∗L2
. The efficiency of Gnat remains the same

when PRM uses uniform, bridge, or obstacle sampling, as indicated by the
small area of the shaded region, but decreases when Gaussian sampling is
used. As before, due to the local sampling Gnat is more efficient when RRT

and EST are used.
A comparison between Fig. 2(c, d, e) and Fig. 3(a) and between Fig. 3(b)

and Fig. 3(c) indicates that in general the efficiency of Gnat is better when
geodesic distances are used instead of weighted distances. Our intuition is
that this is due to the decoupling of translational and rotational components
which reduces the number of distinct clusters in the data set. As mentioned in
Sect. 2.3, we obtained similar results for several different weighting schemes.

4.2 Approximate k Nearest-Neighbors Algorithms

In this section, we analyze the efficiency and accuracy of DPES using Linear
and Random as the basis of comparison, respectively. We present results for
various distance metrics. In the experiments presented in this section, DPES
uses m = 15 pivots for the projection. These results are indicative of the
behavior of DPES. In the next section, we present results where we vary m.
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(a) (b) (c)

(d) (e)

Fig. 4. kANN results for PRM and the ρ∗SE(2) distance metric.

Using ρ∗

SE(2) We focus on PRM variants in Fig. 4 and RRT and EST in Fig. 5.

In Fig. 4(a), we compare the computation time of DPES relative to Linear
on data sets generated using PRM with uniform sampling. We observe that for
low-dimensional and small data sets, DPES is less efficient than Linear, since
data sets are projected onto R

15. However, as the dimension increases, the
efficiency of DPES relative to Linear improves rapidly. The improvement is
even greater on the larger data sets.

In Fig. 4(b), we focus on distance evaluations for the same data sets as
in Fig. 4(a). Recall that DPES uses L2 in R

15, while Linear uses ρ∗SE(2). We
note that although the number of distance evaluations by DPES relative to
Linear increases with the dimension, it decreases with the number of points.
In general, DPES evaluates only a fraction of distances to the query point.

In Fig. 4(c), we compare the computation time of DPES relative to Linear
on data sets with n = 100000 points generated using different PRM variants.
We observe only small changes in the computational time of DPES when the
sampling in PRM is changed from uniform to bridge, Gaussian, and obstacle.
We obtain similar results for the smaller data sets as well.

In Fig. 4(d), we compare the rde error of Random and DPES on data
sets with n = 100000 points generated using PRM with uniform sampling.
The rde error of Random is high on low-dimensional data sets but decreases
with the dimension. This is due to the sparsity of data on high-dimensional
spaces which as shown in [4] implies that the relative distances between points
decrease as the dimension increases. On the other hand, the rde error of DPES
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(a) (b) (c)

(d) (e) (f)

Fig. 5. kANN results for RRT and EST and the ρ∗SE(2) distance metric.

is small on low-dimensional data sets but increases, although only slightly,
with the dimension. The increase in the rde error of DPES is a consequence of
the projection onto a low-dimensional Euclidean space, i.e., R

15. In all cases
however the rde error of DPES relative to Random is at least 2.5 times smaller.

In Fig. 4(e), we focus on the rfd error using the same data sets as in
Fig. 4(d). The rfd error of Random remains very high even when the dimen-
sion increases. Such high values indicate that even though relative distances
between points decrease with the dimension, as seen in Fig. 4(d), there is a
clear distinction between the nearest neighbors and other points in the data
set. A similar observation has also been made in [12], where it is shown that un-
der certain conditions nearest neighbors are meaningful on high-dimensional
data sets. In the case of DPES, we observe that the rfd error increases with
the dimension. The increase is more rapid when ε = 0.00. This is expected
since rfd0.00 indicates how many points in ANNS(si, k) are not in NNS(si, k).
However, as ε increases, the rfd error of DPES decreases significantly and for
ε = 0.10 comes close to zero even on the high-dimensional data sets.

The accuracy results in Fig. 4(d) and (e) indicate that although the ap-
proximate nearest neighbors computed by DPES are not the same as the
exact nearest neighbors, the differences between them are small. In Sect. 4.3,
we show how to further improve the accuracy of DPES.

In Fig. 5(a) and (d), we compare the efficiency of DPES relative to Linear
on data sets generated using RRT and EST, respectively. As in the case of PRM
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in Fig. 4(a), the relative efficiency improves rapidly with the dimension and
for d > 12, DPES is several times faster than Linear.

In Fig. 5(b) and (e), we compare the rde error of Random and DPES on
data sets with n = 100000 points generated using RRT and EST, respectively.
We obtain similar results on the smaller data sets. In addition to the obser-
vations made for Fig. 4(d), we note that for RRT and especially EST the rde
error of Random is larger while the rde error of DPES is smaller than for PRM.
This is due to the local sampling of RRT and EST, which generate data sets
where relative distances between points are more distinct, especially in the
case of EST which expands slower than RRT. Consequently, the likelihood that
a random point is a nearest neighbor decreases while the projection done by
DPES better preserves the relative distances between points.

In Fig. 5(c) and (f), we focus on the rfd error using the same data sets as
in Fig. 5(b) and (e). In addition to the observations made for Fig. 4(e), we
note that the rfd error of Random remains high, while the rfd error of DPES
decreases when RRT and especially EST are used instead of PRM. In fact, in the
case of EST, even the rfd0.00 error of DPES is less than 0.1, which indicates
that DPES computes above 90% of the exact nearest neighbors.

Using ρ∗

wSE(2), ρ∗

SE(3), ρ∗

wSE(3), and ρ∗

L2
We summarize the results ob-

tained for the other distance metrics in Table 2. We focus on data sets with
n = 100000 points and d = 60 dimensions generated using the “maze2d” and
“maze3d” workspaces. The results for the other data sets are similar. For each
motion planner, we present the computation time of DPES relative to Linear
and the rde and rfdε, ε ∈ {0.00, 0.05, 0.10}, errors of DPES and Random.

As in the case of ρ∗SE(2), DPES is more efficient than Linear. The improve-
ments vary between 2–4 and 12–16 times on the high-dimensional data sets,
in the worst and best cases, corresponding to ρ∗L2

and ρ∗SE(3), respectively. In
addition, the efficiency of DPES remains almost the same when the sampling
in PRM is changed from uniform to bridge, Gaussian, or obstacle. However,
DPES is generally more efficient in the case of RRT and EST.

We observe in Table 2 that DPES achieves high quality especially in the
case of ρ∗L2

. The small values of rde indicate that approximate nearest neigh-
bors computed by DPES are very close to exact nearest neighbors. This is
further confirmed by the small values of the rfd error of DPES for ε ≥ 0.05
when ρ∗L2

is used and ε ≥ 0.10 when the other distance metrics are used.

4.3 Improving the Quality of kANN Queries Computed by DPES

The quality of DPES can be improved by increasing the dimension of the
Euclidean space onto which data sets are projected. The results in Sect. 4.2
are obtained by using m = 15 pivots. In Fig. 6, we present results where
we vary the number of pivots m ∈ {10, 30, 50}. We focus on large data sets
generated using ρ∗SE(2) and PRM with uniform sampling, since we obtain similar
results with the other data sets and distance metrics.
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Table 2. Summary of kANN results for various distance metrics.

Accuracy (•DPES ?Random)
n = 100000 Efficiency rfd
d = 60 (tDPES/tLinear) rde ε=0.00 ε=0.05 ε=0.10

• .. ? • .. ? • .. ? • .. ?

PRMu 0.40 0.07 0.17 0.80 0.99 0.46 0.95 0.04 0.84 ρ∗
wSE(2)

PRMb 0.38 0.06 0.17 0.79 0.99 0.42 0.95 0.04 0.84
PRMg 0.42 0.07 0.17 0.80 0.99 0.45 0.95 0.05 0.84
PRMo 0.39 0.06 0.17 0.79 0.99 0.42 0.96 0.03 0.85
RRT 0.36 0.06 0.28 0.54 0.99 0.30 0.97 0.06 0.93
EST 0.24 0.03 0.49 0.14 0.99 0.08 0.98 0.06 0.98

PRMu 0.08 0.07 0.19 0.78 0.99 0.45 0.96 0.08 0.88 ρ∗SE(3)

PRMb 0.08 0.07 0.19 0.79 0.98 0.46 0.96 0.08 0.88
PRMg 0.08 0.07 0.19 0.78 0.99 0.46 0.96 0.09 0.89
PRMo 0.08 0.07 0.19 0.80 0.99 0.51 0.96 0.11 0.88
RRT 0.06 0.05 0.25 0.55 0.99 0.20 0.97 0.02 0.94
EST 0.07 0.06 0.25 0.58 0.99 0.27 0.97 0.06 0.94

PRMu 0.14 0.07 0.17 0.81 0.99 0.48 0.95 0.07 0.84 ρ∗
wSE(3)

PRMb 0.15 0.07 0.17 0.81 0.99 0.49 0.96 0.08 0.85
PRMg 0.14 0.07 0.17 0.82 0.99 0.49 0.96 0.09 0.86
PRMo 0.14 0.07 0.17 0.82 0.99 0.50 0.95 0.10 0.85
RRT 0.11 0.05 0.25 0.56 0.99 0.22 0.97 0.03 0.95
EST 0.11 0.05 0.25 0.57 0.99 0.25 0.97 0.04 0.94

PRMu 0.50 0.02 0.24 0.39 0.99 0.04 0.97 0.00 0.94 ρ∗L2

PRMb 0.46 0.02 0.24 0.38 0.99 0.03 0.97 0.00 0.94
PRMg 0.49 0.02 0.24 0.37 0.99 0.04 0.97 0.00 0.94
PRMo 0.46 0.03 0.22 0.45 0.99 0.07 0.97 0.01 0.93
RRT 0.29 0.01 0.29 0.20 0.99 0.00 0.98 0.00 0.96
EST 0.44 0.01 0.28 0.14 0.99 0.00 0.98 0.00 0.95

In Fig. 6(a), we compare the computation time of DPES relative to Linear.
As expected, the computation time of DPES relative to Linear increases as the
number of pivots increases. However, even for m = 50, DPES is still several
times faster than Linear. As the dimension increases, the improvement in the
computation time of DPES relative to Linear increases as well.

In Fig. 6(b), we focus on the rde error of DPES. As before, we observe
that the rde error of DPES increases with the dimension but still remains
small even when d = 60 and m = 10. Furthermore, as the number of pivots
increases, the rde error of DPES quickly approaches zero.

In Fig. 6(c), we focus on the rfd error for ε = 0.00. We note that the
rfd0.00 error of DPES increases with the dimension but decreases rapidly as
the number of pivots increases. In fact, when d = 54 and m = 50, the rfd0.00

error is less than 0.20. This indicates that DPES includes at least 80% of the
exact k nearest neighbors in the computed approximate k nearest neighbors.
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(a) (b)

(c) (d)

Fig. 6. Improved kANN results for PRM and the ρ∗SE(2) distance metric.

In Fig. 6(d), we focus on the rfd error for ε = 0.05. We again note that
the rfd0.05 error of DPES increases with the dimension but decreases rapidly
and approaches 0 as the number of pivots increases. In fact, when m = 50,
the rfd0.05 error of DPES is 0.00, i.e., all the approximate nearest neighbors
are no more than 1.05 times farther away from the k-th nearest neighbor.

5 Discussion

In this work, we quantitatively analyzed exact and approximate nearest-
neighbors algorithms for points obtained from sampling-based motion plan-
ning methods in high-dimensional problems.

Our analysis indicates that the computational efficiency of exact nearest-
neighbors algorithms deteriorates rapidly as the dimension increases. After
a critical dimension, which in our experiments varied between 15 and 30,
exact nearest-neighbors algorithms evaluate almost as many distances as the
brute-force Linear method and are thus impractical when a considerably large
number of samples is necessary for solving motion planning problems.

Motivated by the impracticality of exact nearest-neighbors algorithms on
high-dimensional motion planning problems, we developed a simple approxi-
mate nearest-neighbors algorithm, DPES, which achieves high computational
efficiency and only a negligible loss in accuracy. The computational efficiency
of DPES relative to Linear improves rapidly as the dimension increases. This
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is due to (i) the distance-based projection of high-dimensional data sets onto
low-dimensional Euclidean spaces reduces to a certain extent the computa-
tional dependencies on the dimension (ii) the number of distance computa-
tions by DPES relative to Linear is only a small fraction; and (iii) DPES
uses L2 which is computationally more efficient than ρ∗SE(2), ρ∗SE(2), ρ∗wSE(3),
ρ∗wSE(3), or ρ∗L2

. Our analysis also shows that DPES is highly accurate. In the
computed queries, DPES includes many of the exact nearest neighbors and
the rest are close to the exact nearest neighbors.

Since in motion planning the purpose of nearest neighbors is to provide
candidates which the local planner can connect to the query point, using ap-
proximate nearest neighbors that are similar to exact nearest neighbors may
indeed be sufficient. This paper shows that in high-dimensional motion plan-
ning problems nearest neighbors can be computed more efficiently by using
highly accurate approximate nearest-neighbors algorithms, such as DPES, in-
stead of exact nearest-neighbors algorithms.
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