
Sampling-Based Motion
Planning: A Comparative
Review

Andreas Orthey and Constantinos Chamzas and
Lydia E. Kavraki

xxxxxx 0000. 00:1–25

Copyright c© 0000 by Annual Reviews.

All rights reserved

Abstract

Sampling-based motion planning is one of the fundamental paradigms

to generate robot motions, and a cornerstone of robotics research. This

comparative review provides an up-to-date guideline and reference man-

ual for the use of sampling-based motion planning algorithms. This

includes a history of motion planning, an overview about the most suc-

cessful planners, and a discussion on their properties. It is also shown

how planners can handle special cases and how extensions of motion

planning can be accommodated. To put sampling-based motion plan-

ning into a larger context, a discussion of alternative motion generation

frameworks is presented which highlights their respective differences to

sampling-based motion planning. Finally, a set of sampling-based mo-

tion planners are compared on 24 challenging planning problems. This

evaluation gives insights into which planners perform well in which sit-

uations and where future research would be required. This compar-

ative review thereby provides not only a useful reference manual for

researchers in the field, but also a guideline for practitioners to make

informed algorithmic decisions.

1



1. Introduction

The last decades have seen remarkable progress in the field of robotics. An area of growth

has been the development of sampling-based motion planning methods (1, 2, 3, 4), which

have enabled applications such as robotics construction (5), multi-robot coordination (6),

autonomous driving (7), industrial manufacturing (8), and protein folding (9).

Sampling-based motion planning (SBMP) is an approach to the problem of finding a

motion for a robot to move from A to B. The distinguishing characteristic of SBMP is

that it relies on sampling configurations (placements of the robot) in order to quickly find

feasible and, in certain cases, optimal robot motions. Studies (10) have shown this to be

one of the most efficient ways to solve problems with high numbers of degrees of freedom.

However, despite this success, incoming researchers and practitioners have currently no

up-to-date guideline to use SBMP methods. In particular, there is currently no historical

treatise recapping the development of the field until the present day. There exists also no

categorization of planners summarizing the developments of the last decade. Moreover, it

is often unclear how SBMP methods differ from alternative motion generation frameworks

such as motion optimization, motion primitives, search-based planning or control-based

planning. Finally, it is often unclear which planner class is best suited for a particular

application area, and which planner performs best for a particular scenario.

To mitigate those gaps, this comparative review makes four core contributions:

1. an overview and brief history of SBMP methods, which spans the years 1979 to 2023,

2. an analysis and categorization of SBMP algorithms to give insights into different

planners classes and extensions,

3. a discussion of how SBMP compares to alternative motion generation frameworks

(e.g., (11, 12, 13, 14)), and its advantages and disadvantages,

4. a large-scale comparative evaluation on 24 scenarios, comparing several SBMP meth-

ods in terms of success, runtime, and optimality.

Those contributions make this comparative review an extensive guideline and reference

manual to leverage the power of SBMP methods.

2. Motion Planning History and the Emergence of Sampling-based Methods

The history of motion planning begins around 1979 (15) and continues as an ever-growing

research field into the present. This 40-year period can be divided into four eras. First,

the pre-sampling era, where fundamental results were discovered and the problem was

rigorously analyzed. Second, the sampling-advent era, where the first planners based on

random sampling were discovered. Third, the sampling-consolidation era, where many

improvements on sampling-based planners were made. Fourth, the optimality and learning

era, where the first asymptotically-optimal planners were discovered and where learning

algorithms became a focus of the community.

2.1. Pre-sampling Era (1979-1989)

The start of the motion planning era can be placed around 1979, when Lozano-Pérez (15)

introduced the concept of the configuration space as a general framework to plan motions

for arbitrary kinematic systems. This idea of planning through a configuration space (16)

put the research field on a solid foundation and helped properly articulate the problem of

2



finding a path through the configuration space as the motion planning problem, sometimes

also called the piano mover’s problem (17).

After the motion planning problem was articulated, many researchers focused on the

topic of computational complexity (17, 18, 19, 20). Fundamental results of that time were

the proof that motion planning in configuration space is NP-hard (19, 20) and the devel-

opment of the celebrated Canny algorithm which solves the problem in single exponential

time (20). While the proposed motion planning algorithms have strong guarantees, they

were not suited for practical, relevant problems due to their high computational complexity.

This was partially overcome by Khatib (21), who introduced the artificial potential-

fields. This method uses attractive and repulsive artificial potential fields to drive the robot

towards a desired goal while avoiding obstacles. Potential-fields were a popular method to

control robots, with several extensions like the Laplacian potential field method (22), addi-

tion of circular directions (23), navigation functions (24), and numerical potential fields (25).

While all those methods had tremendous influence on later algorithms like task-space con-

trol, they do sacrifice guarantees like completeness or optimality of the solution.

2.2. Sampling-advent (1990-1999)

The second era of motion planning comprises the years 1990 until 2000, where sampling-

based algorithms were first pioneered and showed remarkable results in terms of efficiency

of computation (26). This era roughly starts with the works of Barraquand (27), who im-

proved the potential field approach using a Monte-Carlo random walking method which

were instrumental for subsequent sampling-based planners. Sampling-based planners dif-

fered from other approaches by estimating the connectivity of the free configuration space

through sampling. Despite not having an explicit representation of the configuration space,

several of them were able to hold the property of probabilistic completeness, meaning that

they will find a solution when time goes to infinity.

The most popular sampling-based approaches came in two categories. The first cate-

gory were graph-based planners, like the probabilistic roadmap planner (PRM) (1), which

randomly samples configurations, connects them to a graph, and uses targeted sampling to

connect graphs. Several planning queries can then be answered using the same graph. The

second category were tree-based planners, like the expansive-space trees (EST) (2, 28) and

the rapidly-exploring random tree (RRT) algorithm (29, 3). They both grow a tree from a

start configuration by randomly sampling configurations and connecting them to the tree

till the goal is reached. The growth of sampling-based methods was starting (30).

2.3. Sampling-consolidation (2000-2009)

After several sampling-based planners were developed, it became clear that there are several

areas where improvements could lead to another leap in terms of runtime. One of those

areas were biased sampling functions, which do not sample uniformly the space, but bias

samples towards certain areas. Several approaches were developed during this time, like

sampling near or on the surface of obstacles (31), sampling inside narrow passages (32, 33),

Gaussian sampling around current frontier states and obstacles (34), sampling restricted to

workspace geometries (35) and workspace decompositions (36, 37), sampling on the medial

axis of the environment (38), utility-based sampling to connect separate regions of roadmaps

to each other (39), and sampling in areas that are deemed difficult (1). The dynamic-domain

RRT (40, 41) extended tree nodes based on their estimated exploration ability.

www.annualreviews.org • 3



2.4. Optimality and Learning period (2010-today)

Before the year 2010, sampling-based planning algorithms did not explicitly consider opti-

mality. Instead, optimality was supposed to be a post-processing step, where a sampling-

based planner provides a path which is then fed to an optimizer (42) for further improve-

ment (43, 44, 45). In 2010, another breakthrough occured, where the star versions of PRM

and RRT, PRM* and RRT* (4, 46), were developed. PRM* and RRT* are guaranteed to

be asymptotically optimal, meaning they converge to the optimal solution in terms of path

length at the limit, as the number of samples goes to infinity.

Besides achieving optimality guarantees, another important step was the integration of

machine learning into motion planning. Robots often operate in similar environments solv-

ing similar motion planning problems. This motivated the use of past planning experiences

to expedite the search in future problems. One approach of leveraging past experiences

included retrieving a past solution that is similar to the current problem and repairing

it. Past solutions are stored either in the form of path libraries (47), sparse roadmaps

(48), or local obstacle roadmaps (49). Other approaches learn sampling distributions that

can be used to bias the search of sampling based planners. Some methods learn sampling-

distributions that are problem invariant (50) conditioned on the workspace description (51).

More recent approaches based on deep learning can learn sampling distributions from past

examples conditioned on workspace information, start, and goal information (52, 53). A

recent review on learning for sampling-based planners summarizes those works (54).

3. Motion Planning

The goal of motion planning is to develop algorithms to move mechanical systems (robots)

from a start state to a goal region (55, 56, 57). A mechanical system consists of links and

joints which can exist in different configurations or states based on the position or velocity

of their joints. The set of all states of a system is called the state space1. The state-space

is denoted by the letter X and its elements as x.

State space: The set
of all states uniquely

describing a system

plus additional
structure like

metrics, constraints,
dynamics, or

topology.

Not all states in the state space are physically feasible—they might violate a constraint

(see Sec. 3.3). Constraints divide the state space X into the constraint-free region Xfree and

its complement X\Xfree. A motion planning problem is a tuple (Xfree, xI , XG), representing

the task of finding a path, a continuous function p : [0, 1] → Xfree, from a start state

xI ∈ Xfree to a goal region XG ⊆ Xfree. The set of all feasible paths P is defined as the

path space P (Xfree, xI , XG).

Motion planning problems can have several variations. The most important ones are

• Path planning. The geometrical problem ignoring the velocity, time, or dynamics

of the system (57). This is often referred to as the piano mover’s problem (17).

• Kinodynamic planning. Planning with a dynamical system and possible con-

straints on velocity, acceleration, or torque. A kinodynamic planning problem can be

defined as a tuple (Xfree, xI , XG, f), where f are the dynamical equations (Sec. 4.5).

• Optimal planning. The problem of finding a global optimal path. An optimal path

is a path p which minimizes a given cost functional c : P → R≥0. An optimal motion

planning problem is a tuple (Xfree, xI , XG, c), where the goal is to find a feasible path

1State space is used here as a general umbrella term to denote all spaces like configuration space,
joint space, Cartesian space, parameter space, or phase space.

4



p?, such that c(p?) = c∗ and c∗ is the minimum cost over the path space P .

The discussion that follows will focus on path planning, while kinodynamic planning is

discussed in Sec. 4.5. Optimal planning is interleaved with the description of path planning

and kinodynamic planning.

3.1. State Space Structure

The state space X needs to have additional structures. This includes it being a topological

space (58), which is required to define the notion of a path and of path-connectedness. Most

planners further assume that the state space is a manifold. A manifold is a topological space,

which locally resembles an Euclidean space Rn. This is an important assumption, because

mechanical systems are naturally modelled by manifolds (59). Additional structures also

include metric functions and constraints.

3.2. Metric Function

Most planners require a way to measure distances. This can be achieved by adding a metric

function defined as d : X ×X → R≥0. Given any elements x, y, z ∈ X, a metric function is

characterized by the following three assumptions:

M.1 d(x, y) = 0⇐⇒ x = y (Identity of indiscernibles),

M.2 d(x, y) = d(y, x) (Symmetry),

M.3 d(x, y) ≤ d(x, z) + d(z, y) (Triangle inequality).

If a metric cannot be defined on a problem, less-restrictive functions can be defined,

which sacrifice one of the assumptions of a metric. The most important ones are:

• Pseudometric: Replace M.1 by the assumption d(x, x) = 0 for all x ∈ X (60). An

example is end-effector distance, which is zero for different inverse kinematic solutions.

• Quasimetric: Remove assumption on symmetry M.2 (61). An example are time-

dependent state spaces, where the robot can only move forward in time (62).

• Semimetric: A metric invalidating the triangle inequality M.3 (63). A simple ex-

ample are measurement errors violating the triangle inequality (64).

However, one has to be careful sacrificing metric properties, because some methods

like nearest neighbor computations can depend on them. There exists also sampling-based

planners that operate without a metric (65).

3.3. Constraint Functions

A constraint function codifies what a state has to satisfy to be considered feasible. Feasibility

is problem-dependent and often involves avoiding obstacles, pushing an object, turning an

object, or requiring that the robot stays close to a surface. Those tasks can be formalized

using a constraint function φ : X → R, which evaluates to less or equal to zero if a state is

satisfied (or constraint-free), or to a value larger than zero otherwise. Most classical motion

planning problems can be formulated using one of the following constraints.

• Collision constraint. Reject all states where robot links are in collision, either to other

robot links (self-collisions), or to links in the environment. The constraint function

www.annualreviews.org • 5



often only returns binary values, but can also be extended to return clearance or

penetration depth.

• Joint limit constraint. Reject all states which violate joint limits on the robot. This

might be a simple interval check for some actuators, but might also involve coupled

joint checks where cables restrict the motion.

• Tool-center-point (Tcp) constraint. Reject states where the Tcp of the robot is outside

certain limits. The Tcp is usually a predefined coordinate frame on the robot, where

a tool is attached e.g., for spraying, painting, or welding.

• Kinodynamic constraint. Reject states which do not fulfil velocity, acceleration, or

jerk limits on the robots joints. This is important for dynamical systems, where not

all geometric paths have a valid velocity profile.

4. Sampling-based Motion Planning

Sampling-based motion planning is the idea of implicitly representing the state space

through the use of a sampling function (Sec. 4.1). The sampling function generates a

sequence of states which can be connected using a local planner (Sec. 4.2). To coordinate

sampling and local planning, different planners have been developed, which are categorized

in Sec. 4.3 either as tree-based planners (often used in single query problems), or graph-

based planners (often used in multi-query problems). Over the years several general-purpose

improvements have been proposed (Sec.4.3.1) that enhance different planner aspects. Be-

sides performance improvements, there are many special-purpose sampling-based planners

addressing variations of the canonical motion planning problem such as planning in un-

bounded spaces (Sec. 4.4.1), infeasible problems (Sec. 4.4.2), planning with kinodynamic

constraints (Sec.4.5), and other motion planning extensions (Sec. 4.6).

4.1. Sampling Function

A sampling function generates an infinite sequence of elements of the state space as S =

{s1, s2, · · · }. For planners to offer guarantees, the sequence S is required to be dense in the

state space X, which means that every point of X is arbitrarily close to a member of S.

Sampling functions are classified as unbiased or biased methods. An unbiased method,

or uniform sampling, draws elements of the state space, whereby each outcome has an

equal chance (66). Biased methods, however, change the probability distribution by biasing

sampling towards interesting regions of the state space. While different biases can be used,

sampling-based systems often favor one of the following three.

A first method is obstacle-based sampling (31). States close to an obstacle have a

higher chance of being selected, i.e., there is a bias towards the boundary of the free state

space Xfree. Well known obstacle-based samplers are the Gaussian sampling method (34),

and the bridge-based sampling method (33). This bias often improves planning in narrow

passages (31), but also imposes an implicit bias on path length, which might interfere with

other cost functionals like clearance.

A second method is clearance-based sampling (38). Those samplers prioritize sam-

ples which increase clearance, i.e., the distance between robot and environment. This can

be achieved by sampling a feasible state, and making random steps to improve its clear-

ance (67). Clearance-based sampling can mitigate execution uncertainty on real robots, but

computing clearance queries is often expensive.

6



A third method is deterministic sampling (68, 69). Deterministic samplers reproduce

the same sampling sequence in each run. Those sequences can be learned from similar

environments to bias samples towards optimal paths (52), or they can achieve better dis-

tributions by minimizing the largest uncovered area (low-dispersion). Examples of low

dispersion sequences are Halton sequences and Sukharev grids (56).

4.2. Local Planning

To find a continuous connected path, it is necessary to connect two state-space samples to

each other and return a path segment (an edge) connecting them. This is accomplished

using a local planner. A local planner is called local because the path segment often connects

samples over a short distance using simple path segments (e.g., a straight line). It is not

global in the sense that it does not address the complete global motion planning problem.

A local planner is usually fast, but the produced path might not satisfy the constraints of

the problem e.g., it might be in collision.

Depending on the category of the motion planning problem (Sec. 3) the local planner

might need to satisfy additional constraints. In the case of optimal planning the produced

path must be a lower-bound on the true solution cost. In the case of kinodynamic motion

planning the differential constraints must be satisfied (see Sec. 4.5). Having efficient and

optimal local planners is an active area of research with different methods leveraging local

optimization (70) or learning (71) to improve their performance.

4.3. Categorization of Sampling-based Planners

Algorithm 1 Basic-PRM

1: procedure Basic-PRM(xI)
2: G.addNode(xI)
3: while PTC is false do
4: xnew ← valid sample from Xfree

5: G.addNode(xnew)
6: N (xnew)← K closest neighbors of xnew

7: for each xnear ∈ N (xnew) do
8: e← Local plan xnew to xnear

9: if e ∈ Xfree and e /∈ G.edges() then
10: G.addEdge(e)

11: return G

Algorithm 2 Basic-RRT

1: procedure Basic-RRT(xI)
2: T.addNode(xI)
3: while PTC is false do
4: xrand ← sample from X
5: xnear ← nearest node in T to xrand

6: xnew ← Extend xnear towards xrand

7: e← Local plan xnew to xnear

8: if e ∈ Xfree then
9: T.addEdge(e)

10: return T

Sampling-based planners can be classified

into two main categories (55, 56, 57),

graph-based (or roadmap-based) and tree-

based planners. Algorithm 1 includes the

basic-prm (1) as a representative example

of graph-based planners. A graph-based

planner produces a graph by sampling

(Sec. 4.1) constraint-free states and adding

them to the graph (Line 4-5). Edges to

nearest neighbors are added using a local

planner (Sec. 4.2) (Line 6-10) to connect

to the graph. The planner terminates if a

planner terminate condition (PTC)2 is ful-

filled (Line 3). These planners are often

called multi-query, because the graph can

be reused for changing start states or goal

regions. Examples include the probabilis-

tic roadmap planner (PRM) (1, 4), and the

sparse roadmap method (72).

A representative tree-based planner is

basic-rrt (Algorithm 2) (3). Using a sam-

2The planner terminate condition can for example be a successful solution, a timeout, or a
maximum number of iterations.

www.annualreviews.org • 7



pling function, a random sample from the state space is chosen (Line 4). This random

sample is used to extend from the nearest state in the tree (Line 5-7), that is to generate

a path starting from the nearest state to the random sample with a local planner. If the

resulting edge is constraint-free, it is added to the tree (Line 8-9). These planners are often

called single-query, because the trees need to be recomputed for different start states or

goal regions. Examples include the rapidly-exploring random trees (RRT) planner (3, 4),

the expansive-space trees (EST) planner (2), the lower-bound trees RRT (LBT-RRT) (73),

and the fast-marching trees planner (FMT) (74).

4.3.1. General-purpose Planner Improvements. Planner efficiency can improve by adding

or improving one of the following components. Efficiency here can mean reducing memory

footprint, decreasing runtime, decreasing number of samples, or improving path cost.

Lazy Checking. A lazy version of a planner (28, 75, 76, 77) ignores edge constraint

checking during planning. This reduces memory footprint and speeds up runtime. Once a

solution has been found, the edges are checked for constraint violations. In the case of a

constraint violation, the edge is removed from the tree or graph and planning is continued.

This method can be seen as a constraint relaxation method, where a simplified problem is

solved first, and this information is leveraged to solve the original problem (78).

Bidirectionality. Most tree-based planners can be extended to plan not only with one,

but two or more trees. An example is the bidirectional RRT planner (3) which alternates

between extending two trees grown from start and goal, respectively. On each successful

extension, a connection between the nearest states in the trees are tried. This approach can

also be extended to optimal versions (79). In general, this decreases runtime significantly.

Sparsity. Most planners can also be made sparse. A sparse planner often ignores

samples which are inside of a visibility radius of a given node in the graph or tree (80).

Another way to ensure sparsity is to only keep the best cost-to-come states in certain regions

of the state space (81). This is a good way to reduce the memory footprint of the planner.

Optimality. In the pioneering work by Karaman and Frazzoli (4), the authors show

that many planners can be adapted to make them converge to the global optimal solu-

tion (asymptotic optimality). This involves having an adaptive nearest neighbors radius

for graph-based planners (46), or using a tree-rewiring operation after each sampling itera-

tion (82). This approach usually improves the cost of paths significantly.

Admissible Heuristics. Admissible heuristics are lower bound estimates on the cost to

reach a goal (83). One important category are informed sets (84), which describe all states

which can improve the solution quality. Examples include the batch-informed trees planner

(BIT*) (85), and the advanced-informed trees planner (AIT*) (86). Another category are

constraint relaxations (78), where (multiple) levels of projections are used to simplify the

problem, as in the KPIECE method (87, 88), the quotient-space rapidly-exploring random

tree planner (QRRT*) (78), and the hierarchical fast marching tree planner (HFMT*) (89).

A good admissible heuristic can decrease the planner runtime significantly without sacrific-

ing completeness or optimality.

Parameter-Tuning. Most planners have parameters e.g., the number of nearest neigh-

bors K in Basic-PRM (Algorithm 1), that need to be chosen before planning. In certain

problem scenarios these parameters can significantly affect planning performance. Although

planning frameworks such as OMPL (90) often offer reasonable defaults, choosing an appro-

priate set of hyperparameters is considered an open research problem. Some recent works

have investigated bayesian optimization to automatically choose these parameters (91, 92).

8



4.3.2. Planner Properties. Sampling-based planners set themselves apart from competing

motion generation frameworks (see Sec. 5) by providing desirable guarantees. One guarantee

is probabilistic completeness. Probabilistic completeness states that a planner will find a

solution path if one exists, when time goes to infinity.

Probabilistic
Completeness: The

planner will find a

solution if one
exists, when time

goes to infinity.
Another important guarantee is asymptotic optimality (4, 93). Asymptotic optimality

states that a planner will find the global optimal solution path when time goes to infinity.

Algorithms with this property, like RRT*, PRM* (4), or BIT* (94), are able to continuously

improve the solution cost until they eventually converge to the global optimal solution (4).

A slightly weaker notion is asymptotic near-optimality. This is a variant of asymptotic

optimality stating that a planner will find a solution when time goes to infinity whereby the

solution cost is ε-near to the cost of the optimal solution. Some planners like SPARS (72)

provide this weaker notion to trade-off memory consumption with optimality guarantees.

Asymptotic
Optimality: The

planner will find the
global optimal

solution when time

goes to infinity.

4.4. Special Cases of Motion Planning

Figure 1: Unbounded time-
dependent state space, with
no natural time limit.

While several sampling-based planners are general enough to

solve any motion planning problem, there are some special

cases, which require special care.

4.4.1. Unbounded Space. Some problems, like planning in

space-time, require sampling of an unbounded state space

(see Fig. 1). However, most sampling sequences require a

bounded space to generate dense samples. To resolve this

discrepancy, one option is to use adaptive goal regions (62),

where lower and upper bounds are shifted to keep asymp-

totic optimality while having a bounded region to enable

sampling. Another option is to select existing nodes using a

selection-extension scheme, where nodes are selected at ran-

dom or based on their utility for expansion (40). Those nodes can be extended into random

directions or via dynamics-driven propagation functions (81).

Figure 2: Infeasible problem,
where a disk robot (grey) can
plan motions (green), but can-
not reach a goal (orange) due
to obstacles (grey).

4.4.2. Infeasible Problems. While sampling-based plan-

ners usually provide probabilistic completeness guaran-

tees, they often cannot deal with infeasible planning prob-

lems (see Fig. 2). To handle infeasible problems, there are

different methods which can be applied. One method is

based on sparse roadmaps (80, 72). A sparse roadmap has

a given visibility radius, such that new samples inside the

visibility radius are rejected, and the number of samples

added to the roadmap goes to zero if time goes to infinity.

If no samples can be added for a certain period, a prob-

abilistic estimate of infeasibility can be given (80, 95).

Another method is based on infeasibility certifi-

cates (96, 97, 98). Such methods can tackle lower-

dimensional problems, where samples are used to create

a closed hull around the start state or around the goal

region to verify that a problem is infeasible (98).

www.annualreviews.org • 9



4.5. Kinodynamic Motion Planning

In addition to kinematic constraints, many realistic systems have to satisfy dynamics and

constraints on velocity, acceleration, or torques. This is known as kinodynamic motion

planning (56). The dynamics of kinodynamic systems can be expressed as:

ẋ = f(x, u),

whereby ẋ is the derivative of x, u ∈ U the controls of the system, U the space of applicable

controls, and f the dynamical systems equation. This dynamics equation can be seen as

imposing a constraint on the allowable paths the system can take. There are two main ways

of how planners can handle dynamics.

Steering method. In this approach, given an initial state x1 and a target state x2,

the dynamics f are used to analytically or numerically compute a control u and time t

which respects the dynamics and moves the state from x1 to x2. This simplifies planning,

but steering might be difficult and costly to compute. Examples of systems with analytical

steering methods are Dubin’s car (99) and the Reeds-Sheep car (100). In general, a two-

point boundary value problem (BVP) between two states needs to be solved. The solution

of a BVP provides a local planner which can be used in any geometric planning algorithm

to eventually solve the kinodynamic problem.

Forward propagation The second approach uses forward propagation, whereby an

initial state x1 and a control u is used, and the system is forward propagated for a specified

time t to compute the next state x2. This is advantageous since the dynamics can be treated

as a black box. Kinodynamic planners like Kinodynamic-RRT (3) can solve those problems

by using random control sampling to propagate states forward. Asymptotic optimality can

be achieved using the meta planner AO-RRT (101) which relies on the Kinodynamic RRT

to produce feasible solutions in a combined cost-state space. A kinodynamic planner which

combines asymptotic near-optimality and efficiency is the stable sparse RRT (SST) (81),

which grows a tree in state space while using pruning to maintain only the locally best solu-

tions (67). An asymptotic optimal version (SST*) can be achieved by iteratively decreasing

the pruning resolution (81).

4.6. Extensions Solved by Sampling-based Motion Planning

An extension of motion planning is defined as a problem which imposes additional structures

onto the state space. This additional structure can either be dictated by the problem itself,

such as contact constraints, or partial-observability. Or the structure is added intentionally

to improve planner performance, like projections, or differentiability. This section gives

a non-exhaustive list of additional structures, and how sampling-based planners can be

extended to accommodate them.

4.6.1. Projection-based Motion Planning. Many high-dimensional problems can often be

simplified by introducing projections (78, 88, 89). Projections allow planning over different

levels of abstraction. There are different ways to plan with projections, either by using

them as biased samplers (88), or by using projections to adjust and guide the sampling. If

projections are admissible, i.e., solving a simplified problem is a necessary conditions on the

original problem, properties like asymptotic optimality can be guaranteed (78, 89). While

projections usually speed up planning significantly (78), it is often difficult to define them

for a new problem domain.

10



4.6.2. Differentiable Motion Planning. Most functions used in motion planning, like costs,

goals, or constraints, are often differentiable. Exploiting those functions is studied under

the topic of differentiable motion planning (102). While most sampling-based planner avoid

differentiable information, there is evidence that differentiable information can be useful to

converge faster to optimal solutions (103). Differentiable planners need to carefully weigh

when and if computing differentiable information is useful. Recent work in this direction

combines optimization with sampling by adding graph optimization (104), improving ap-

proximately valid paths (103), or optimizing the steering function (70).

4.6.3. Planning with Manifold Constraints. Most constraints in classical motion planning

can readily be sampled to construct satisfiable state space elements. However, complex

constraints, like contacts between robot and environment, often introduce regions in the

state space having zero measure, which have zero chance to be sampled. Dealing with such

constraints is called motion planning with manifold constraints (105). There are different

ways of how to deal with those constraints. For example, the volume of the constraints

can be relaxed to simplify the problem, or random samples can be projected back to the

constraints (105, 106).

4.6.4. Motion planning in Dynamic Environments. Often, robots have to deal with obsta-

cles which might move, appear, or disappear. Dealing with such obstacles is studied under

the topic of planning in dynamic environments (107). Since successful plans might get in-

validated, specialized planners are required. Examples include RRTX (108), which updates

a goal-centered search tree on the fly, and precomputed roadmaps to quickly recompute

solution paths (8).

4.6.5. Belief Space Planning. Many realistic robots do not have access to a fully observable

environment, but need to discover the world using sensors. This leads to the problem of

planning in partially-observable environments (109). To solve those scenarios the belief-

space can be sampled (110), which contains hypotheses about the world plus robot states.

Since the space of hypotheses might get large, it is important to properly simplify those

spaces to make them searchable (111).

4.6.6. Planning in Force Fields. Often, robots need to handle external forces arising from

gravity, friction, or wind. Sampling-based motion planning frameworks can integrate forces

as vector fields on the state space of the robot (112). Planning methods in this area mostly

focus either on handling wind disturbances in Unmanned Aerial vehicles (UAV) (113), or

handling water draft in Autonomous Underwater Vehicles (AUV) (114, 115).

5. Competing Motion Generation Frameworks

Sampling-based motion planning is a framework to generate motions for arbitrary me-

chanical systems. However, there are competing frameworks to generate motions. Those

frameworks are briefly surveyed and advantages and disadvantages are listed relative to

sampling-based motion planning.

www.annualreviews.org • 11



5.1. Motion Optimization

A framework with complementary strengths to sampling-based planning is motion opti-

mization. The idea behind motion-optimization is to formulate motion generation as an

optimization problem (116), and often focus on improving an existing path.

A distinction can be made between gradient-free and gradient-based methods. Gradient-

free methods include shortcutting (42) or hybridizing3 (44) to improve path length. Inter-

polation of splines (117) can be used to improve path smoothness. Gradient-based methods

often make the cost, the goal, and the constraints differentiable, which allows them to

quickly find low-cost paths. Examples include general-purpose optimization frameworks

like CHOMP (118), TrajOpt (119) KOMO (12), GPMP(102), to optimize motions condi-

tioned on arbitrary task requirements.

Advantages. Since most optimization-based methods use second-order information,

they can quickly converge to low-cost solutions. Most algorithms can also handle informa-

tion to push robots out of collisions, which makes those methods applicable even when a

returned path is in collision (118).

Disadvantages. Optimization-based methods usually can only find locally optimal

solutions, and lack guarantees on completeness or optimality. If the starting path is not

constraint-free, one may end up with an invalid path—even if a feasible solution exists.

5.2. Motion Primitives

Motion primitives (120, 121, 122, 123) are predefined or learned motions to accomplish a

certain task. They can be defined as dynamical systems in the state space, which provide

a vector field along which the robot can move to reach a target, fulfill a task, or avoid an

obstacle. Those primitives are loosely based on insights from neuroscience (124), which have

shown that animals are often moving by composing sets of motion primitives for reaching

or walking motions (125).

To equip robots with motion primitives, they can either be learned or predefined based

on task requirements like avoiding obstacles or reaching a target pose. Motion primitive

frameworks like Riemannian motion policies (13), are able to compose complex motions

by combining several simple task policies, whereby a policy is a function telling the robot

where to move from anywhere in the state space.

Advantages. Policies can be used for reactive planning, where obstacles can be avoided

in realtime (126). This can be a good choice for problems where feedback is crucial, like

playing table tennis (122).

Disadvantages. Motion primitives usually do not provide guarantees on complete-

ness or optimality. Finding primitives is often difficult and task-dependent. To make the

methods work, it is often necessary to fine-tune the primitives and control policies.

5.3. Search-based Planning

Search-based planning (127, 11, 128) differs from sampling-based motion planning by im-

posing a grid onto the state space. By connecting neighboring states in this grid, a state

space graph can be constructed. Based on this graph, search-based planners like A* (129)

3Hybridizing refers to the operation of combining a set of (possibly high-cost) input paths to
generate a single (low-cost) output path.

12



can find optimal motions with respect to the resolution of the grid. This is an efficient

method to quickly find solutions in lower-dimensional state spaces (130).

Advantages. Variants of A*-like algorithms can directly be used, which are guaranteed

to solve a problem to the optimal solution—w.r.t. the resolution of the graph. Open-source

software is available in the search based planning library (SBPL)4.

Disadvantages. Only resolution-completeness can be guaranteed depending on the

grid resolution. If the resolution is too fine, planning time might be exceptionally expensive.

If the resolution is too coarse, narrow passages cannot be found or traversed. Search grids

are also difficult to employ in high-dimensions due to the curse of dimensionality.

5.4. Control-based Planning

Control algorithms are useful to drive a robot towards a desired goal state. An exam-

ple is the Proportional–integral–derivative (PID) controller (131), which uses current state

information to compute the next input to the system. This can be combined with repul-

sive forces to push the system away from obstacle regions, as in the artificial potential

fields approach (21). More global approaches are the Linear–quadratic regulator (LQR)

method (132) which optimizes a (locally) optimal path, and the Model predictive control

(MPC) method (133) which can find optimal path segments over a receding horizon. Con-

trollers can often also be chained together to provide some form of guarantee, as in the

funnels approach (134), where multiple local controllers cover the state space.

Controllers can also be learned using Reinforcement Learning (135) approaches, where

the learned controller (policy) tries to maximize the given reward signal. A reinforcement

learning (RL) algorithm improves itself by updating an underlying value function, which is

a measure for how desirable states are depending on the reward signal. Over time, learning

algorithms like Q-learning (136) will eventually converge to the optimal policy. For long-

horizon plans, controllers are often combined with planning methods from the previous

sections which compute a reference trajectory which is subsequently given to the controller.

Advantages. The above approaches achieve fast computation of locally optimal paths,

whereby most controllers are reactive and simple to implement. Additionally, a controller

can can continuously incorporate execution feedback.

Figure 3: Success-cost plot explanation.

Disadvantages. Controllers might

get stuck in local minima, or return a sub-

optimal path. There is often no guaran-

tee on either completeness or optimality. If

used inside a planning framework, compu-

tation time for the controller might become

the bottleneck.

6. Comparative Evaluations

To reveal the relative performance of plan-

ning algorithms, several motion planners

from the open motion planning library

4https://github.com/sbpl/sbpl

www.annualreviews.org • 13

https://github.com/sbpl/sbpl


Barriers Maze Polygons Apartment Cubicles Home

0

50

100

su
cc

es
s 

[%
] Barriers

10-2 10-1 100 101

run time [s]

90

100

co
st

0

50

100

su
cc

es
s 

[%
] Maze

10-2 10-1 100 101

run time [s]

50

75

co
st

0

50

100

su
cc

es
s 

[%
] Random Polygons

10-3 10-2 10-1 100 101

run time [s]

25

50

co
st

0

50

100

su
cc

es
s 

[%
] Apartment

10-2 10-1 100 101

run time [s]

50

75

co
st

0

50

100

su
cc

es
s 

[%
] Cubicles

10-2 10-1 100 101

run time [s]

25

50

75

co
st

0

50

100

su
cc

es
s 

[%
] Home

10-2 10-1 100 101

run time [s]

50

60

70

co
st

Figure 4: Classical Experiments with planners RRT-Connect, PRM, RRT*, FMT,

EST, LBTRRT, AIT*, and BIT*.

(OMPL)5 (90, 137) are evaluated on a set of 24 scenarios. For each scenario, a set of

applicable planners is selected and run for 100 runs with a scenario-dependent timeout

up to 300s. For all experiments the default OMPL parameters of the planners were used.

Changing those parameters could potentially influence the results (10), but the size of the

experimental dataset prevents fine tuning. As hardware, a 4-core, 8GB RAM laptop running

Ubuntu 16.04 is used. The results are shown as success-cost plots (see Fig. 3), with time

on the x-axis, success rate and solution cost6 on the y-axis. In the case of a non-optimizing

planner, the average cost of the first solution is displayed as a single cross. When a color is

not displayed, this means that the planner was not able to find any solution paths.

6.1. Classical Experiments

This set of experiments includes classical motion planning problems, which frequently ap-

pear in the motion planning literature. In each scenario, the task is to move a rigid body

from a start to a goal region. The scenarios are

1. Barriers: A 3-dof problem consisting of a horseshoe-like robot having to traverse a

rectangle with several obstacles.

5https://github.com/ompl/ompl and https://ompl.kavrakilab.org
6Solution cost is in all cases path length if not explicitly mentioned.

14

https://github.com/ompl/ompl
https://ompl.kavrakilab.org


Baxter Shelf Fetch Thin UR5 Shelf Shadow Kitchen Panda Cage Baxter Table

0

50

100

su
cc

es
s 

[%
] Baxter Tall Bookshelf

10-2 10-1 100 101 102

run time [s]

−0.001

0.000

0.001

co
st

0

50

100

su
cc

es
s 

[%
] Fetch Thin Bookshelf

10-1 100 101 102

run time [s]

−0.001

0.000

0.001

co
st

0

50

100

su
cc

es
s 

[%
] UR5 Small Shelf

10-2 10-1 100 101 102

run time [s]

25

50

co
st

0

50

100

su
cc

es
s 

[%
] Shadow Robot Kitchen

10-2 10-1 100 101 102

run time [s]

50

100

co
st

0

50

100

su
cc

es
s 

[%
] Panda Cage

10-2 10-1 100 101 102

run time [s]

25

50

co
st

0

50

100

su
cc

es
s 

[%
] Baxter Table

10-2 10-1 100 101 102

run time [s]

20

40

co
st

Figure 5: Manipulation experiments using planners RRTConnect, PRM, PRM*,

RRT*, EST, KPIECE, and AIT*.

2. Maze: A 3-dof problem, where a small disk-like robot has to traverse a maze.

3. Random polygons: A 3-dof problem, where a a disk-like robot has to traverse a

room with random polygonal obstacles.

4. Piano movers problem: A 6-dof problem, with a piano moving across a room.

5. Cubicles: A 6-dof problem with a floating L-shape which has to traverse a cubicle.

6. Apartment: A 6-dof problem, where a table moves through an apartment with

furniture.

Fig. 4 shows the results. It can be seen that BIT*, EST, FMT and RRT-Connect

perform well in terms of success rate on 4 out of 6 scenarios. FMT is slightly slower than

the other planners, but is the only one solving the Home scenario in 50% of the cases.

In terms of cost, BIT* has the best convergence in 5 out of 6 scenarios. Graph-based

planners like PRM take longer to solve those problems. However, this performance is

offset by the reusability of graphs for future planning queries. This evaluation underlines a

common observation among practitioners, that there is no single planner that has the best

performance across all scenarios. Choosing a suitable planner depends significantly on the

robot and environment.

6.2. Manipulation Experiments

This set of experiments includes problems from the MotionBenchMaker dataset (53). In

each problem the position of objects is varied relative to the robots.

www.annualreviews.org • 15



1. Ur5 Small Shelf : 6-dof problem where the ur5 robot starting outside a small shelf

reaches inside the shelf to pick up a cylindrical object.

2. Franka-Emika cage: 7-dof problem where the franka-emika robot starting out-

side a caged-box is reaching inside to pick up a cube.

3. Baxter table: 7-dof problem where the baxter robot starting with the arm under

the table is reaching to pick a cylindrical object on a cluttered table.

4. Fetch narrow bookshelf : 8-dof problem where the fetch robot is starting from

the home (stow) position and reaches for a cylindrical object deep in this narrow

bookshelf.

5. Baxter large bookshelf : 14-dof problem where the baxter robot s starting out-

side the shelf reaches to pick two objects with both arms.

6. Shadow-Kuka kitchen: 31-dof problem where a shadowhand mounted on a kuka

arm starts inside the dish-washer and reaches inside the kitchen’s shelf.

As shown in Fig. 5, RRT-Connect has the best overall success rate and is the only planner

reaching 100% in 5 out of 6 scenarios. Only KPIECE is able to reach 100% quicker than

RRTConnect in 1 out of 6 scenarios. In terms of cost, PRM* converges quickly to a low-cost

solution in 4, while AIT* in 3 out of 6 scenarios. RRT* only finds a low-cost solution in 1

scenario.

6.3. Narrow Passage Experiments

This set of experiments includes six different types of narrow passages. Narrow passages

are difficult to solve for sampling-based motion planners, because the passages constitute

bottlenecks, i.e. regions of the state space, which have near-zero measure, and near-zero

probability to sample states (138).

1. 2d-Disk room: A 2-dof problem where a small disk moves through a slit in a wall.

2. Bugtrap: A 6-dof problem, where a cylindrical object (the bug) escapes a trap.

3. Double L-shape: A 6-dof problem, where an object consistent of two L-shapes has

to traverse a square hole in a wall.

4. Rings on a helix: A 6-dof problem, where a ring has to move along a helix.

5. Franca-Emica box: A 7-dof problem, where a Franca-Emica robot has to move its

endeffector inside of a box.

6. Twister snake: A 10-dof problem, where snake-like robot traverses a twisted pipe.

In terms of success rate, the best planners are RRT-Connect and TRRT, which can solve 3

scenarios to almost 100% success (see Fig. 6). While optimal planners can only find low-cost

solutions in one scenario, is is noteworthy to mention that FMT can find low-cost solutions

in five out of six scenarios. The twister scenario was not solved by any planner.

6.4. Extension Experiments

The extension experiments include contact-constraints, where robots are restricted to move

along surfaces, and dynamic scenarios, where a dynamic model is used to actuate the robot.

1. Implicit chain: A 5-dof problem where the end-effector of an articulated chain is

bounded to the surface of a sphere (139).

2. Constrained sphere: A 3-dof point robot which is bounded to the surface of a

sphere with obstacles (139).

16



Disk Bugtrap Double L Rings Panda Twister

0

50

100

su
cc

es
s 

[%
] Disk

10-3 10-2 10-1 100

run time [s]

25

50

co
st

0

50

100

su
cc

es
s 

[%
] Bugtrap

10-2 10-1 100 101

run time [s]

50

75

co
st

0

50

100

su
cc

es
s 

[%
] Double L Shape

10-1 100 101

run time [s]

20

40

co
st

0

50

100

su
cc

es
s 

[%
] Rings on Helix

10-1 100 101

run time [s]

50

60

70

co
st

0

50

100

su
cc

es
s 

[%
] Panda

10-2 10-1 100 101

run time [s]

10

20

30

co
st

0

50

100

su
cc

es
s 

[%
] Twister Snake

10-2 10-1 100 101

run time [s]

−0.001

0.000

0.001

co
st

Figure 6: Limitations Experiments. Using planners RRT-Connect, PRM*, RRT*,

KPIECE, FMT, EST, TRRT and BIT*.

3. Maze on Torus: A 3-dof point robot which is bounded to the surface of a torus

plus a maze-like obstacle (139).

4. Dubin’s car: A 3-dof simple car model which can drive forwards at a constant

speed (using a steering function).

5. Dynamic car: A 3-dof dynamic model of a car with a 2-dof action space, which

can accelerate and steer (using a propagator function).

6. Single-thruster UAV: A 9-dof dynamic model of an unmanned aerial vehicle

(UAV), which has a single actuated thruster which can be pivoted.

Fig. 7 shows the result. Using the constraint-based framework (139), EST, BIT*, and RRT-

Connect can solve two scenarios to 100% , while BIT* finds low-cost solutions in three. In

the dynamic cases, only Kinodynamic-RRT is able to find solutions, while the optimal

planner SST* cannot solve any of the scenarios.

7. Discussion

This comparative review provided a reference manual for using sampling-based motion plan-

ning algorithms. A large-scale evaluation of different planners showed which ones perform

best on 24 challenging scenarios. The results indicate that planning algorithms can success-

fully solve a broad class of problems, even with narrow passages, constraints, or dynamics.

However, there is not a single planner that performs best across all problems. Due to space

www.annualreviews.org • 17



Implicit Sphere Torus Dubin’s Car Kinematic Car UAV

0

50

100

su
cc

es
s 

[%
] Implicit Chain

10-2 10-1 100 101

run time [s]

25

50

co
st

0

50

100

su
cc

es
s 

[%
] Constrained Sphere

10-2 10-1 100 101

run time [s]

5

10

co
st

0

50

100

su
cc

es
s 

[%
] Constrained Torus

10-2 10-1 100 101

run time [s]

30

40

co
st

0

50

100

su
cc

es
s 

[%
] Dubins Car

10-2 10-1 100 101

run time [s]

5

10

co
st

0

50

100
su

cc
es

s 
[%

] Kinematic Car

10-2 10-1 100 101

run time [s]

30

40

co
st

0

50

100

su
cc

es
s 

[%
] SingleThrustUAV

10-1 100 101 102

run time [s]

45

50

co
st

Figure 7: Extension Experiments. For the geometric experiments, the planners are RRT-

Connect, PRM, EST, BIT*, RRT*, and FMT. For the dynamic system experi-

ments, the planners are SST*, Kinodynamic RRT

limitations, a topic not covered in these experiments was the choice of hyper-parameters

of sampling-based planners. Hyper-parameters, however, can drastically affect the perfor-

mance of a motion planning problem. This is an active area of research and we refer the

reader to (91) for a starting point that discusses hyper-parameter tuning for sampling-based

planners. Apart from the comparative evaluations, this review provided a comprehensive

overview about state space structures, categories of sampling-based planning algorithms,

motion planning extensions, and a comparison to alternative motion generation frame-

works. This should give researchers and practitioners the tools to make better decisions

about which sampling-based planners to use in a specific motion planning scenario.

8. Other Reviews of Interest

In the last decades, researchers in sampling-based motion planning have published several

comprehensive review papers. An early account of the history of the field is found in

the treatise by Latombe (26). Focusing more on sampling-based approaches, the work

by Tsianos et al. (140) discusses developments of the field during the early 2000’s. A

more comprehensive resource is the work by Elbanhawi and Simic (141) which provides an

overview of different planners, together with a set of general primitives for all planners.

There is also an ever-growing list of review papers focusing on a specific variant of motion

planning or on a specific application field. A comprehensive overview of asymptotically-

18



optimal planners is a recent survey by Gammell and Strub (93). Similarly, but with a focus

on heuristic approaches, is the work by Mac et al. (142). Excellent overviews exist also

on motion planning inspired methods for molecular simulations (143, 144), where different

required extensions are discussed. For the field of Unmanned Aerial Vehicles (UAVs), the

work by Goerzen et al. (145) provides an overview and discusses more advanced planning

problems like surveillance and reconnaissance. Learning and sampling-based planning is

discussed in (54). Excellent reviews for the role of motion planning in task planning can be

found in Garrett et al. (146), and Kingston et al. (105), respectively.

While all these works provide good overviews about sampling-based planning and spe-

cific areas, this review provides a broader guide for sampling-based motion planning. This

review is also more application-oriented, in that it also shows the relative performance of

popular planners on different problem areas.

LITERATURE CITED

1. Kavraki LE, Svestka P, Latombe JC, Overmars MH. 1996. Probabilistic roadmaps for path

planning in high-dimensional configuration spaces. IEEE Transactions on Robotics 12(4):566–

580

2. Hsu D, Latombe JC, Motwani R. 1999. Path planning in expansive configuration spaces.

International Journal of Computational Geometry and Applications 9(4-5):495–512

3. Kuffner JJ, LaValle SM. 2000. RRT-connect: An efficient approach to single-query path plan-

ning. In IEEE International Conference on Robotics and Automation, vol. 2, pp. 995–1001

4. Karaman S, Frazzoli E. 2011. Sampling-based algorithms for optimal motion planning. Inter-

national Journal of Robotics Research 30(7):846–894

5. Hartmann VN, Orthey A, Driess D, Oguz OS, Toussaint M. 2023. Long-horizon multi-robot

rearrangement planning for construction assembly. IEEE Transactions on Robotics 39(1):239–

252

6. Hönig W, Preiss JA, Kumar TKS, Sukhatme GS, Ayanian N. 2018. Trajectory planning for

quadrotor swarms. IEEE Transactions on Robotics 34(4):856–869

7. Claussmann L, Revilloud M, Gruyer D, Glaser S. 2019. A review of motion planning for

highway autonomous driving. IEEE Transactions on Intelligent Transportation Systems

21(5):1826–1848

8. Murray S, Floyd-Jones W, Qi Y, Sorin DJ, Konidaris GD. 2016. Robot Motion Planning on a

Chip. In Robotics: Science and Systems, vol. 6

9. Al-Bluwi I, Siméon T, Cortés J. 2012. Motion planning algorithms for molecular simulations:

A survey. Computer Science Review 6(4):125–143

10. Chamzas C, Quintero-Peña C, Kingston Z, Orthey A, Rakita D, et al. 2022. Motionbench-

maker: A tool to generate and benchmark motion planning datasets. IEEE Robotics and

Automation Letters 7(2):882–889

11. Cohen BJ, Chitta S, Likhachev M. 2010. Search-based planning for manipulation with motion

primitives. In IEEE International Conference on Robotics and Automation, pp. 2902–2908

12. Toussaint M. 2017. A tutorial on newton methods for constrained trajectory optimization

and relations to slam, gaussian process smoothing, optimal control, and probabilistic infer-

ence. In Geometric and Numerical Foundations of Movements, ed. JP Laumond, N Mansard,

JB Lasserre, pp. 361–392. Cham: Springer International Publishing

13. Cheng CA, Mukadam M, Issac J, Birchfield S, Fox D, et al. 2021. Rmpflow: A geometric

framework for generation of multitask motion policies. IEEE Transactions on Automation

Science and Engineering 18(3):968–987

14. Kober J, Bagnell JA, Peters J. 2013. Reinforcement learning in robotics: A survey. Interna-

tional Journal of Robotics Research 32(11):1238–1274

www.annualreviews.org • 19

https://ieeexplore.ieee.org/document/508439/
https://ieeexplore.ieee.org/document/508439/
https://ieeexplore.ieee.org/document/844730/
https://ieeexplore.ieee.org/document/844730/


15. Lozano-Pérez T, Wesley MA. 1979. An algorithm for planning collision-free paths among

polyhedral obstacles. Communications of the ACM 22(10):560–570

16. Lozano-Perez T. 1983. Spatial planning: A configuration space approach. IEEE Transactions

on Computers 2(C-32):108–120

17. Schwartz JT, Sharir M. 1983. On the “piano movers” problem. II. General techniques for

computing topological properties of real algebraic manifolds. Advances in Applied Mathematics

4(3):298–351

18. Reif JH. 1979. Complexity of the mover’s problem and generalizations. In Conference on

Foundations of Computer Science, pp. 421–427

19. Canny J, Reif J. 1987. New lower bound techniques for robot motion planning problems. In

28th Annual Symposium on Foundations of Computer Science (sfcs 1987), pp. 49–60. IEEE

20. Canny J. 1988. The complexity of robot motion planning. MIT press

21. Khatib O. 1986. Real-time obstacle avoidance for manipulators and mobile robots. In Au-

tonomous Robot Vehicles. Springer

22. Sato K. 1992. Deadlock-free motion planning using the laplace potential field. Advanced

Robotics 7(5):449–461

23. Koditschek D. 1987. Exact robot navigation by means of potential functions: Some topological

considerations. In IEEE International Conference on Robotics and Automation, vol. 4, pp.

1–6

24. Koditschek DE, Rimon E. 1990. Robot navigation functions on manifolds with boundary.

Advances in Applied Mathematics 11(4):412–442

25. Barraquand J, Langlois B, Latombe JC. 1992. Numerical potential field techniques for robot

path planning. IEEE Transactions on Systems, Man, and Cybernetics 22(2):224–241

26. Latombe JC. 1999. Motion planning: A journey of robots, molecules, digital actors, and other

artifacts. International Journal of Robotics Research 18(11):1119–1128

27. Barraquand J, Latombe JC. 1991. Robot motion planning: A distributed representation ap-

proach. International Journal of Robotics Research 10(6):628–649

28. Sánchez G, Latombe JC. 2003. A single-query bi-directional probabilistic roadmap planner

with lazy collision checking. In International Journal of Robotics Research. Springer

29. Lavalle SM. 1998. Rapidly-exploring random trees: A new tool for path planning. Tech. rep.,

Iowa State University

30. Barraquand J, Kavraki L, Latombe JC, Li TY, Motwani R, Raghavan P. 1996. A random sam-

pling scheme for path planning. In Robotics Research: The Seventh International Symposium,

pp. 249–264. Springer

31. Amato NM, Bayazit OB, Dale LK, Jones C, Vallejo D. 1998. OBPRM: An obstacle-based PRM

for 3D workspaces. In Robotics: The Algorithmic Perspective, ed. PK Agarwal, LE Kavraki,

MT Mason, pp. 155–168. CRC Press

32. Hsu D, Kavraki LE, Latombe JC, Motwani R, Sorkin S. 1998. On finding narrow passages with

probabilistic roadmap planners. In Robotics: The Algorithmic Perspective, ed. PK Agarwal,

LE Kavraki, MT Mason, pp. 141–154. CRC Press

33. Hsu D, Jiang T, Reif J, Sun Z. 2003. The bridge test for sampling narrow passages with prob-

abilistic roadmap planners. In IEEE International Conference on Robotics and Automation,

vol. 3, pp. 4420–4426

34. Boor V, Overmars MH, Van Der Stappen AF. 1999. The Gaussian sampling strategy for prob-

abilistic roadmap planners. In IEEE International Conference on Robotics and Automation,

vol. 2, pp. 1018–1023

35. Van den Berg JP, Overmars MH. 2005. Using workspace information as a guide to non-

uniform sampling in probabilistic roadmap planners. International Journal of Robotics Re-

search 24(12):1055–1071

36. Yang Y, Brock O. 2005. Effcient Motion Planning Based on Disassembly. In Robotics: Science

and Systems. Cambridge, USA

20

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4568037


37. Kurniawati H, Hsu D. 2004. Workspace importance sampling for probabilistic roadmap plan-

ning. In IEEE International Conference on Intelligent Robots and Systems, vol. 2, pp. 1618–

1623

38. Wilmarth SA, Amato NM, Stiller PF. 1999. MAPRM: A probabilistic roadmap planner with

sampling on the medial axis of the free space. In IEEE International Conference on Robotics

and Automation, vol. 2, pp. 1024–1031

39. Burns B, Brock O. 2005. Toward Optimal Configuration Space Sampling. In Robotics: Science

and Systems, pp. 105–112. Cambridge, USA

40. Yershova A, Jaillet L, Siméon T, LaValle SM. 2005. Dynamic-domain RRTs: Efficient ex-

ploration by controlling the sampling domain. In IEEE International Conference on Robotics

and Automation, pp. 3856–3861

41. Yershova A, LaValle SM. 2009. Motion planning for highly constrained spaces. In Robot Motion

and Control 2009, ed. KR Koz lowski, pp. 297–306. London: Springer London

42. Geraerts R, Overmars MH. 2007. Creating high-quality paths for motion planning. Interna-

tional Journal of Robotics Research 26(8):845–863

43. Van den Berg J, Overmars M. 2008. Planning time-minimal safe paths amidst unpredictably

moving obstacles. International Journal of Robotics Research 27(11-12):1274–1294

44. Raveh B, Enosh A, Halperin D. 2011. A little more, a lot better: Improving path quality by

a path-merging algorithm. IEEE Transactions on Robotics 27(2):365–371

45. Luna R, Şucan IA, Moll M, Kavraki LE. 2013. Anytime solution optimization for sampling-

based motion planning. In IEEE International Conference on Robotics and Automation, pp.

5068–5074

46. Solovey K, Kleinbort M. 2020. The critical radius in sampling-based motion planning. Inter-

national Journal of Robotics Research 39(2-3):266–285

47. Berenson D, Abbeel P, Goldberg K. 2012. A robot path planning framework that learns from

experience. In IEEE International Conference on Robotics and Automation, pp. 3671–3678

48. Coleman D, Sucan IA, Moll M, Okada K, Correll N. 2015. Experience-based planning with

sparse roadmap spanners. In IEEE International Conference on Robotics and Automation,

pp. 900–905

49. Lien JM, Lu Y. 2009. Planning motion in environments with similar obstacles. Robotics:

Science and Systems

50. Lehner P, Albu-Schaeffer A. 2018. The repetition roadmap for repetitive constrained motion

planning. IEEE Robotics and Automation Letters 3(3):3884–3891

51. Chamzas C, Kingston Z, Quintero-Peña C, Shrivastava A, E. Kavraki L. 2021. Learning Sam-

pling Distributions Using Local 3D Workspace Decompositions for Motion Planning in High

Dimensions. In IEEE International Conference on Robotics and Automation, pp. 1283–1289

52. Ichter B, Harrison J, Pavone M. 2018. Learning sampling distributions for robot motion plan-

ning. In IEEE International Conference on Robotics and Automation, pp. 7087–7094

53. Chamzas C, Cullen A, Shrivastava A, E. Kavraki L. 2022. Learning to Retrieve Relevant Expe-

riences for Motion Planning. In IEEE International Conference on Robotics and Automation,

pp. 7233–7240

54. McMahon T, Sivaramakrishnan A, Granados E, Bekris KE. 2022. A survey on the integration

of machine learning with sampling-based motion planning. Foundations and Trends in Robotics

9(4):266–327

55. Choset H, Lynch KM, Hutchinson S, Kantor GA, Burgard W. 2005. Principles of robot motion:

theory, algorithms, and implementations. MIT press

56. LaValle SM. 2006. Planning Algorithms. Cambridge University Press

57. Lynch KM, Park FC. 2017. Modern robotics. Cambridge University Press

58. Farber M. 2003. Topological complexity of motion planning. Discrete and Computational Ge-

ometry 29(2):211–221

59. Lee JM. 2003. Introduction to Smooth Manifolds. New York, NY: Springer New York

www.annualreviews.org • 21

http://planning.cs.uiuc.edu/
https://www.springer.com/jp/book/9780387217529


60. Čech E, Froĺık Z, Katětov M. 1966. Topological spaces. Academia, Publishing House of the

Czechoslovak Academy of Sciences

61. Wilson WA. 1931. On quasi-metric spaces. American Journal of Mathematics 53(3):675–684

62. Grothe F, Hartmann VN, Orthey A, Toussaint M. 2022. ST-RRT*: Asymptotically-Optimal

Bidirectional Motion Planning through Space-Time. In IEEE International Conference on

Robotics and Automation, pp. 3314–3320

63. Wilson WA. 1931. On semi-metric spaces. American Journal of Mathematics 53(2):361–373

64. Wang G, Zhang B, Ng TE. 2007. Towards network triangle inequality violation aware dis-

tributed systems. In ACM SIGCOMM Conference on Internet Measurement, pp. 175–188

65. Ladd AM, Kavraki LE. 2004. Fast tree-based exploration of state space for robots with dy-

namics. In Algorithmic Foundations of Robotics VI, ed. M Erdmann, M Overmars, D Hsu,

F van der Stappen, pp. 297–312. Springer

66. Bertsekas D, Tsitsiklis JN. 2008. Introduction to probability, vol. 1. Athena Scientific

67. Verginis CK, Dimarogonas DV, Kavraki LE. 2023. KDF: Kinodynamic Motion Planning via

Geometric Sampling-Based Algorithms and Funnel Control. IEEE Transactions on Robotics

39(2):978–997

68. Janson L, Ichter B, Pavone M. 2018. Deterministic sampling-based motion planning: Optimal-

ity, complexity, and performance. The International Journal of Robotics Research 37(1):46–61

69. Palmieri L, Bruns L, Meurer M, Arras KO. 2019. Dispertio: Optimal sampling for safe deter-

ministic motion planning. IEEE Robotics and Automation Letters 5(2):362–368

70. Choudhury S, Gammell JD, Barfoot TD, Srinivasa SS, Scherer S. 2016. Regionally accelerated

batch informed trees (RABIT): A framework to integrate local information into optimal path

planning. In IEEE International Conference on Robotics and Automation, pp. 4207–4214

71. Faust A, Ramirez O, Fiser M, Oslund K, Francis A, et al. 2018. PRM-RL: Long-range Robotic

Navigation Tasks by Combining Reinforcement Learning and Sampling-based Planning. In

IEEE International Conference on Robotics and Automation, pp. 5113–5120

72. Dobson A, Bekris KE. 2014. Sparse roadmap spanners for asymptotically near-optimal motion

planning. International Journal of Robotics Research 33(1):18–47

73. Salzman O, Hemmer M, Halperin D. 2013. On the power of manifold samples in exploring

configuration spaces and the dimensionality of narrow passages. In Algorithmic Foundations

of Robotics X, ed. E Frazzoli, T Lozano-Perez, N Roy, D Rus, pp. 313–329. Berlin, Heidelberg:

Springer Berlin Heidelberg

74. Janson L, Schmerling E, Clark A, Pavone M. 2015. Fast marching tree: A fast marching

sampling-based method for optimal motion planning in many dimensions. International Jour-

nal of Robotics Research 34(7):883–921

75. Bohlin R, Kavraki LE. 2000. Path planning using lazy PRM. In IEEE International Conference

on Robotics and Automation, vol. 1, pp. 521–528

76. Hauser K. 2015. Lazy collision checking in asymptotically-optimal motion planning. In IEEE

International Conference on Robotics and Automation, pp. 2951–2957

77. Mandalika A, Choudhury S, Salzman O, Srinivasa S. 2019. Generalized lazy search for robot

motion planning: Interleaving search and edge evaluation via event-based toggles. In Interna-

tional Conference on Automated Planning and Scheduling, vol. 29, pp. 745–753

78. Orthey A, Toussaint M. 2019. Rapidly-exploring quotient-space trees: Motion planning using

sequential simplifications. In ISRR 2019: Robotics Research, ed. T Asfour, E Yoshida, J Park,

H Christensen, O Khatib, pp. 52–68. Springer International Publishing

79. Klemm S, Oberländer J, Hermann A, Roennau A, Schamm T, et al. 2015. RRT*-Connect:

Faster, asymptotically optimal motion planning. In IEEE International Conference on

Robotics and Biomimetics (ROBIO), pp. 1670–1677

80. Siméon T, Laumond JP, Nissoux C. 2000. Visibility-based probabilistic roadmaps for motion

planning. Advanced Robotics 14(6):477–493

81. Li Y, Littlefield Z, Bekris KE. 2016. Asymptotically optimal sampling-based kinodynamic

22

https://doi.org/10.1177/0278364913498292
https://doi.org/10.1177/0278364913498292


planning. International Journal of Robotics Research 35(5):528–564

82. Salzman O, Halperin D. 2016. Asymptotically near-optimal RRT for fast, high-quality motion

planning. IEEE Transactions on Robotics 32(3):473–483

83. Pearl J. 1984. Heuristics: intelligent search strategies for computer problem solving. Addison-

Wesley Longman Publishing Co., Inc.

84. Gammell JD, Srinivasa SS, Barfoot TD. 2014. Informed RRT*: Optimal sampling-based path

planning focused via direct sampling of an admissible ellipsoidal heuristic. In IEEE Interna-

tional Conference on Intelligent Robots and Systems, pp. 2997–3004

85. Gammell JD, Barfoot TD, Srinivasa SS. 2020. Batch informed trees (BIT*): Informed asymp-

totically optimal anytime search. International Journal of Robotics Research 39(5):543–567

86. Strub MP, Gammell JD. 2020. Advanced BIT*(ABIT*): Sampling-Based Planning with Ad-

vanced Graph-Search Techniques. In IEEE International Conference on Robotics and Automa-

tion, pp. 130–136

87. Şucan IA, Kavraki LE. 2009. Kinodynamic motion planning by interior-exterior cell explo-

ration. In Algorithmic Foundation of Robotics VIII, ed. GS Chirikjian, H Choset, M Morales,

T Murphey, pp. 449–464. Springer

88. Şucan IA, Kavraki LE. 2011. A sampling-based tree planner for systems with complex dynam-

ics. IEEE Transactions on Robotics 28(1):116–131

89. Reid W, Fitch R, Göktoğan AH, Sukkarieh S. 2019. Sampling-based hierarchical motion plan-

ning for a reconfigurable wheel-on-leg planetary analogue exploration rover. Journal of Field

Robotics 37(5):786–811

90. Şucan IA, Moll M, Kavraki L. 2012. The open motion planning library. IEEE Robotics and

Automation Magazine 19(4):72–82

91. Moll M, Chamzas C, Kingston Z, Kavraki LE. 2021. HyperPlan: A Framework for Motion

Planning Algorithm Selection and Parameter Optimization. In IEEE International Conference

on Intelligent Robots and Systems, pp. 2511–2518

92. Cano J, Yang Y, Bodin B, Nagarajan V, O’Boyle M. 2018. Automatic parameter tuning of

motion planning algorithms. In IEEE International Conference on Intelligent Robots and

Systems, pp. 8103–8109

93. Gammell JD, Strub MP. 2021. A survey of asymptotically optimal sampling-based motion

planning methods. Annual Review of Control, Robotics, and Autonomous Systems 4(1):295–

318

94. Gammell JD, Barfoot TD, Srinivasa SS. 2018. Informed sampling for asymptotically optimal

path planning. IEEE Transactions on Robotics 34(4):966–984

95. Orthey A, Toussaint M. 2021. Sparse Multilevel Roadmaps for High-Dimensional Robot Mo-

tion Planning. In IEEE International Conference on Robotics and Automation, pp. 7851–7857

96. McCarthy Z, Bretl T, Hutchinson S. 2012. Proving path non-existence using sampling and

alpha shapes. In IEEE International Conference on Robotics and Automation, pp. 2563–2569

97. Varava A, Carvalho JF, Pokorny FT, Kragic D. 2021. Free space of rigid objects: Caging,

path non-existence, and narrow passage detection. International Journal of Robotics Research

40(10-11):1049–1067

98. Li S, Dantam N. 2021. Learning Proofs of Motion Planning Infeasibility. In Robotics: Science

and Systems

99. Dubins LE. 1957. On curves of minimal length with a constraint on average curvature, and

with prescribed initial and terminal positions and tangents. American Journal of mathematics

79(3):497–516

100. Reeds J, Shepp L. 1990. Optimal paths for a car that goes both forwards and backwards.

Pacific Journal of Mathematics 145(2):367–393

101. Hauser K, Zhou Y. 2016. Asymptotically optimal planning by feasible kinodynamic planning

in a state–cost space. IEEE Transactions on Robotics 32(6):1431–1443

102. Mukadam M, Dong J, Yan X, Dellaert F, Boots B. 2018. Continuous-time gaussian pro-

www.annualreviews.org • 23

https://ieeexplore.ieee.org/document/6942976/
https://ieeexplore.ieee.org/document/6942976/
http://link.springer.com/chapter/10.1007/978-3-642-00312-7_28
http://link.springer.com/chapter/10.1007/978-3-642-00312-7_28
https://ieeexplore.ieee.org/document/6377468/


cess motion planning via probabilistic inference. International Journal of Robotics Research

37(11):1319–1340

103. Kamat J, Ortiz-Haro J, Toussaint M, Pokorny FT, Orthey A. 2022. BITKOMO: Combin-

ing Sampling and Optimization for Fast Convergence in Optimal Motion Planning. In IEEE

International Conference on Intelligent Robots and Systems, pp. 4492–4497

104. Alwala KV, Mukadam M. 2021. Joint sampling and trajectory optimization over graphs for

online motion planning. In IEEE International Conference on Intelligent Robots and Systems,

pp. 4700–4707

105. Kingston Z, Moll M, Kavraki LE. 2018. Sampling-based methods for motion planning with

constraints. Annual Review of Control, Robotics, and Autonomous Systems 1(1):159–185

106. Berenson D, Srinivasa S, Kuffner J. 2011. Task space regions: A framework for pose-

constrained manipulation planning. International Journal of Robotics Research 30(12):1435–

1460

107. Phillips M, Likhachev M. 2011. Sipp: Safe interval path planning for dynamic environments.

In IEEE International Conference on Robotics and Automation, pp. 5628–5635

108. Otte M, Frazzoli E. 2016. RRTX: Asymptotically optimal single-query sampling-based motion

planning with quick replanning. International Journal of Robotics Research 35(7):797–822

109. Kurniawati H. 2022. Partially observable markov decision processes and robotics. Annual Re-

view of Control, Robotics, and Autonomous Systems 5:253–277

110. Phiquepal C, Orthey A, Viennot N, Toussaint M. 2022. Path-tree optimization in discrete

partially observable environments using rapidly-exploring belief-space graphs. IEEE Robotics

and Automation Letters 7(4):10160–10167

111. Elimelech K, Indelman V. 2022. Simplified decision making in the belief space using belief

sparsification. International Journal of Robotics Research 41(5):470–496

112. Ko I, Kim B, Park FC. 2014. Randomized path planning on vector fields. International Journal

of Robotics Research 33(13):1664–1682

113. Tang Z, Chen B, Lan R, Li S. 2020. Vector field guided RRT* based on motion primitives for

quadrotor kinodynamic planning. Journal of Intelligent & Robotic Systems 100:1325–1339

114. Hernández JD, Vidal E, Moll M, Palomeras N, Carreras M, Kavraki LE. 2019. Online mo-

tion planning for unexplored underwater environments using autonomous underwater vehicles.

Journal of Field Robotics 36(2):370–396

115. Vidal E, Moll M, Palomeras N, Hernández JD, Carreras M, Kavraki LE. 2019. Online mul-

tilayered motion planning with dynamic constraints for autonomous underwater vehicles. In

IEEE International Conference on Robotics and Automation, pp. 8936–8942

116. Boyd S, Vandenberghe L. 2004. Convex Optimization. Cambridge University Press

117. Hauser K. 2014. Fast interpolation and time-optimization with contact. International Journal

of Robotics Research 33(9):1231–1250

118. Zucker M, Ratliff N, Dragan AD, Pivtoraiko M, Klingensmith M, et al. 2013. CHOMP: Co-

variant Hamiltonian Optimization for Motion Planning. International Journal of Robotics

Research 32(9-10):1164–1193

119. Schulman J, Duan Y, Ho J, Lee A, Awwal I, et al. 2014. Motion planning with sequential

convex optimization and convex collision checking. International Journal of Robotics Research

33(9):1251–1270

120. Schaal S. 2006. Dynamic movement primitives-a framework for motor control in humans and

humanoid robotics. In Adaptive motion of animals and machines. Springer

121. Kober J, Peters J. 2011. Policy search for motor primitives in robotics. Machine Learning

84(1-2):171–203

122. Kober J, Bagnell JA, Peters J. 2013. Reinforcement learning in robotics: A survey. Interna-

tional Journal of Robotics Research 32(11):1238–1274

123. Paraschos A, Daniel C, Peters J, Neumann G. 2018. Using probabilistic movement primitives

in robotics. Autonomous Robots 42:529–551

24

http://www.ri.cmu.edu/pub_files/2013/5/CHOMP_IJRR.pdf
http://www.ri.cmu.edu/pub_files/2013/5/CHOMP_IJRR.pdf


124. Giszter SF. 2015. Motor primitives—new data and future questions. Current Opinion in Neu-

robiology 33:156–165

125. Graziano M. 2008. The intelligent movement machine: An ethological perspective on the

primate motor system. Oxford University Press

126. Bhardwaj M, Sundaralingam B, Mousavian A, Ratliff ND, Fox D, et al. 2022. Storm: An

integrated framework for fast joint-space model-predictive control for reactive manipulation.

In Conference on Robot Learning, pp. 750–759. PMLR

127. Koenig S, Likhachev M, Furcy D. 2004. Lifelong planning A*. Artificial Intelligence 155(1-

2):93–146

128. Ren Z, Rathinam S, Likhachev M, Choset H. 2022. Multi-objective path-based D* lite. IEEE

Robotics and Automation Letters 7(2):3318–3325

129. Hart PE, Nilsson NJ, Raphael B. 1968. A formal basis for the heuristic determination of

minimum cost paths. IEEE transactions on Systems Science and Cybernetics 4(2):100–107

130. Liu S, Mohta K, Atanasov N, Kumar V. 2018. Search-based motion planning for aggressive

flight in SE(3). IEEE Robotics and Automation Letters 3(3):2439–2446

131. Araki M. 2010. Control systems, robotics and automation—vol ii—PID control. Kyoto Uni-

versity, Japan

132. Klemm V, Morra A, Gulich L, Mannhart D, Rohr D, et al. 2020. LQR-assisted whole-body

control of a wheeled bipedal robot with kinematic loops. IEEE Robotics and Automation

Letters 5(2):3745–3752

133. Grandia R, Farshidian F, Ranftl R, Hutter M. 2019. Feedback MPC for torque-controlled legged

robots. In IEEE International Conference on Intelligent Robots and Systems, pp. 4730–4737

134. Majumdar A, Tedrake R. 2017. Funnel libraries for real-time robust feedback motion planning.

International Journal of Robotics Research 36(8):947–982

135. Sutton RS, Barto AG. 2018. Reinforcement learning: An introduction. MIT press

136. Watkins CJCH. 1989. Learning from delayed rewards. Ph.D. thesis, King’s College, Cambridge

United Kingdom

137. Moll M, Şucan IA, Kavraki LE. 2015. Benchmarking motion planning algorithms: An exten-

sible infrastructure for analysis and visualization. IEEE Robotics and Automation Magazine

22(3):96–102

138. Hsu D, Latombe JC, Kurniawati H. 2006. On the probabilistic foundations of probabilistic

roadmap planning. International Journal of Robotics Research 25(7):627–643

139. Kingston Z, Moll M, Kavraki LE. 2019. Exploring implicit spaces for constrained sampling-

based planning. International Journal of Robotics Research 38(10–11):1151–1178

140. Tsianos KI, Sucan IA, Kavraki LE. 2007. Sampling-based robot motion planning: Towards

realistic applications. Computer Science Review 1(1):2–11

141. Elbanhawi M, Simic M. 2014. Sampling-based robot motion planning: A review. IEEE Access

2:56–77

142. Mac TT, Copot C, Tran DT, De Keyser R. 2016. Heuristic approaches in robot path planning:

A survey. Robotics and Autonomous Systems 86:13–28

143. Gipson B, Hsu D, Kavraki LE, Latombe JC. 2012. Computational models of protein kinematics

and dynamics: Beyond simulation. Annual Review of Analytical Chemistry 5:273–291

144. Al-Bluwi I, Siméon T, Cortés J. 2012. Motion planning algorithms for molecular simulations:

A survey. Computer Science Review 6(4):125–143

145. Goerzen C, Kong Z, Mettler B. 2010. A survey of motion planning algorithms from the per-

spective of autonomous uav guidance. Journal of Intelligent and Robotic Systems 57(1):65–100

146. Garrett CR, Chitnis R, Holladay R, Kim B, Silver T, et al. 2021. Integrated task and motion

planning. Annual Review of Control, Robotics, and Autonomous Systems 4:265–293

www.annualreviews.org • 25


	Introduction
	Motion Planning History and the Emergence of Sampling-based Methods
	Pre-sampling Era (1979-1989)
	Sampling-advent (1990-1999)
	Sampling-consolidation (2000-2009)
	Optimality and Learning period (2010-today)

	Motion Planning
	State Space Structure
	Metric Function
	Constraint Functions

	Sampling-based Motion Planning
	Sampling Function
	Local Planning
	Categorization of Sampling-based Planners
	Special Cases of Motion Planning
	Kinodynamic Motion Planning
	Extensions Solved by Sampling-based Motion Planning

	Competing Motion Generation Frameworks
	Motion Optimization
	Motion Primitives
	Search-based Planning
	Control-based Planning

	Comparative Evaluations
	Classical Experiments
	Manipulation Experiments
	Narrow Passage Experiments
	Extension Experiments

	Discussion
	Other Reviews of Interest

