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Abstract— In this work, we argue that new methods are needed
to generate robot motion for navigation or manipulation while
effectively achieving perception goals. We support our argument
by conducting experiments with a simulated robot that must
accomplish a primary task, such as manipulation or navigation,
while concurrently monitoring an object in the environment.
Our preliminary study demonstrates that a decoupled approach
fails to achieve high success in either action-focused motion
generation or perception goals, motivating further developments
of approaches that holistically consider both goals.

I. INTRODUCTION

Recent progress in machine learning and computer vision
has significantly enhanced robots’ perception capabilities [1],
opening possibilities for new robotic applications. However,
designing methods that efficiently integrate perception and
action objectives remains a non-trivial challenge. This is a
requirement for many promising robotic applications such
as collaborative robots [2], agile quadrotor flying [3] and
autonomous security robots [4].

While existing mobile robotics tasks such as inspection
planning [5] and surveillance [6] often require achieving
visibility of landmarks, there is a gap in understanding
how to integrate additional degrees of freedom (DOF) when
addressing field-of-view constraints. Recent hierarchical
tracking methods for manipulators using nullspace projections
and impedance control [7], while related, have yet to fully
address this challenge.

In this paper, we argue in favor of new methods capable
of generating robot motion for navigation or manipulation
while effectively accomplishing perception goals. Existing
methods focus on how to plan robot motion in the presence of
unseen [8] or dynamic [9] obstacles, or how to improve robot
localization [10, 11]. Furthermore, methods that consider point
of interest constraints simply rely on keeping the centroid
of the tracked features at the center of the image plane [3,
12]. Finally, the majority of existing methods are designed
for unmanned aerial vehicles [3, 9–12] and do not readily
generalize to high-DOF robots such as mobile manipulators
or robots with motion constraints. We posit that approaches
that holistically consider perception and motion goals are
needed to achieve effective multi-task capable robots—i.e.,
with simultaneous perception and action goals.

We support our argument by conducting experiments of a
simulated robot that must accomplish primary tasks, such as
manipulation or navigation, while concurrently maintaining
continuous monitoring of an object in the environment. To
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attain perception goals we use off-the-shelf computer vision
models for object detection and tracking [13, 14], while for
motion generation we use state-of-the-art motion planning
algorithms [15]. Our preliminary study demonstrates that the
prevalent decoupled approach falls short in achieving high
success rates for both action-centric motion and perception.

II. EXPERIMENTS AND RESULTS

In our experiments, we employ sampling-based motion
planning (SBMP) [16] for motion generation due to its
efficacy in navigating environments with numerous obstacles
and its algorithmic guarantee of probabilistic completeness.
We use object tracking as the perception goal because it is
popular in many applications such as human-robot interaction
and navigation [1].

To integrate monitoring into SBMP for high-DOF robots,
we introduce three methods that ensure objects remain within
the robot’s line of sight or camera frustum:

1) Path Post-Processing: This method involves motion
planning followed by post-processing to enforce monitoring.
Monitoring is not guaranteed due to joint limits and the
original path’s ignorance of monitoring needs.

2) Rejection Sampling: Here, SBMP rejects samples that
do not satisfy the monitoring constraint, i.e., if the object is
in the robot’s camera frustum.

3) Planning with Manifold Constraints: Here, we used
manifold-constrained SBMP [17] to satisfy monitoring
constraints. We use two models: the distance between the
object’s center and robot’s line of sight and the signed distance
between the object and the camera’s frustum.

We evaluate these methods along with a perception-
unaware baseline using a simulated Stretch RE1 mobile
manipulator [18] that must navigate to a goal configuration
while continuously monitoring an object (cup, suitcase or
monitor). We utilize YOLOv9 [13] and DeepSORT [14] for
real-time perception performance assessment and OMPL [19]
for motion planning.

Table I presents results across 1,500 planning problems
(500 per object), with metrics such as planning time, path
length, success rate, and constraint satisfaction rate. Perception
performance is gauged by detection rate, average confidence
score, tracking rate, and normalized tracking box variance.

We observe the Unaware method’s monitoring rate is less
than 50%, which is insufficient for practical applications. The
Post method increases monitoring but is still suboptimal due
to kinematic constraints. Methods enforcing monitoring dur-
ing planning (Rejection, Manifold-line, Manifold-frustum)
satisfy the constraints near-perfectly but at the expense of
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Motion Planning Object Tracking Norm. Track Box Var.
Method Plan. Time (s) Path Len. (rad) Cntr. Sat. Succ. Rate Det. Rate Conf. Score Track Rate Width Height

Unaware 0.02 6.53 48.95% 99.87% 42.41% 0.674 69.10% 9.45% 11.93%
Post 0.04 5.84 59.03% 99.93% 49.86% 0.669 78.68% 8.90% 11.55%

Rejection 0.66 7.58 100.00% 79.80% 72.11% 0.681 92.18% 8.96% 10.75%
Manifold-line 2.14 7.75 99.97% 95.60% 73.54% 0.684 92.75% 8.78% 10.37%

Manifold-frustum 8.17 7.64 99.99% 90.73% 73.93% 0.685 91.56% 8.89% 10.57%

Table I. Performance metrics of the evaluated methods. ”Plan. Time” is the average planning time. ”Path Len.” is the average length of the path. ”Cntr.
Sat. Rate” is the percentage of the path where the monitoring constraints are satisfied. “Succ. Rate” is motion planning’s success rate. “Det. Rate” is the
object detection rate. “Conf. Score” is the average confidence score of detections. “Track Rate” is the percentage of the frames that the object is tracked.
“Norm. Track Box Var.” denotes the variances of the bounding box, normalized as percentages of the image’s width and height.

longer planning times, increased path lengths, and lower
success rates.

The object tracking performance of our methods reveals
a perception-specific challenge, with detection rates below
75% and average confidence scores below 0.7. While the
Rejection, Manifold-line, and Manifold-frustum methods
achieve tracking rates slightly above 90%, the normalized
variance in tracking box dimensions suggests that the tracking
quality may not be consistently high. The results motivate the
need of novel perception-aware algorithms. Furthermore, the
off-the-shelf object tracking methods may need enhancement
to better leverage the motion characteristic of the problem.

III. CONCLUSION AND FUTURE WORK

Our experiments reveals the limitations of directly inte-
grating object monitoring into motion planning through the
line of sight or camera frustum. One key limitation that
is present in current decoupled approaches is the lack of
consideration for occlusion, which is a common issue in
dynamic environments. To address these shortcomings, there
is a clear need for holistic approaches to motion planning
that take perception goals into account. For example, more
sophisticated models for mapping perception goals to the
cost function or constraints of the motion planning should
be explored.

Building on these findings, our research shows that the
approach of separately handling robot motion generation
for navigation or manipulation—typically through motion
planning, control, or policy learning—and common perception
objectives like object tracking and scene understanding may
not be adequate. Consequently, there is a need for novel
research that integrates both perception and motion objectives.
The advancement of such research initiatives is crucial for
more versatile and robust robotic systems capable of handling
a broader range of tasks with simultaneous perception and
action goals.
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You Sweep: Visibility-Aware Motion Planning”. In: Algorithmic
Foundations of Robotics XIII. Ed. by M. Morales, L. Tapia, G.
Sánchez-Ante, and S. Hutchinson. Cham: Springer International
Publishing, 2020, pp. 373–388.

[9] J. Tordesillas and J. P. How. “PANTHER: Perception-Aware Trajec-
tory Planner in Dynamic Environments”. In: IEEE Access 10 (2022),
pp. 22662–22677.

[10] L. Bartolomei, L. Teixeira, and M. Chli. “Perception-aware Path
Planning for UAVs using Semantic Segmentation”. In: IEEE/RSJ
Int. Conf. on Intell. Robots and Syst. 2020, pp. 5808–5815.

[11] B. Ichter, B. Landry, E. Schmerling, and M. Pavone. “Perception-
Aware Motion Planning via Multiobjective Search on GPUs”. In:
Robotics Research. Ed. by N. M. Amato, G. Hager, S. Thomas, and
M. Torres-Torriti. Cham: Springer International Publishing, 2020,
pp. 895–912.

[12] H. Lu, Q. Zong, S. Lai, B. Tian, and L. Xie. “Real-Time Perception-
Limited Motion Planning Using Sampling-Based MPC”. In: IEEE
Transactions on Industrial Electronics 69.12 (2022), pp. 13182–
13191.

[13] C.-Y. Wang and H.-Y. M. Liao. “YOLOv9: Learning What You
Want to Learn Using Programmable Gradient Information”. In: arXiv
preprint arXiv:2402.13616 (2024).

[14] N. Wojke and A. Bewley. “Deep Cosine Metric Learning for Person
Re-identification”. In: 2018 IEEE Winter Conference on Applications
of Computer Vision (WACV). IEEE. 2018, pp. 748–756.

[15] J. J. Kuffner and S. M. LaValle. “RRT-connect: An efficient
approach to single-query path planning”. In: Proceedings 2000 ICRA.
Millennium Conference. IEEE International Conference on Robotics
and Automation. Symposia Proceedings (Cat. No.00CH37065). Vol. 2.
2000, 995–1001 vol.2.

[16] A. Orthey, C. Chamzas, and L. E. Kavraki. “Sampling-based motion
planning: A comparative review”. In: Annual Review of Control,
Robotics, and Autonomous Systems 7 (2023).

[17] Z. Kingston, M. Moll, and L. E. Kavraki. “Sampling-based methods
for motion planning with constraints”. In: Annual review of control,
robotics, and autonomous systems 1 (2018), pp. 159–185.

[18] C. C. Kemp, A. Edsinger, H. M. Clever, and B. Matulevich. “The
design of stretch: A compact, lightweight mobile manipulator for
indoor human environments”. In: IEEE Int. Conf. Robot. Autom.
IEEE. 2022, pp. 3150–3157.
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