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Low-Dimensional Projections for SyCLoP

Matthew R. Maly and Lydia E. Kavraki

Abstract— This paper presents an extension tdSyCLoP, a This paper investigates the use of low-dimensional pro-
multilayered motion planning framework that has been shown jections for SyCLoP, a synergistic multilayered motion
to successfully solve high-dimensional problems with diéren- - 3nning framework that has been successfully used to solve

tial constraints. SyCLoP combines traditional sampling-based high-di . | fi | ) bl ith differiaht
planning with a high-level decomposition of the workspace Igh-dimensional motion planning problems wi Ifena

through which it attempts to guide a low-level tree of motiors. ~ constraints [10].SyCLoP is a meta-planner that outper-
We investigate a generalization ofSyCLoP in which the high-  forms classic sampling-based planners for high-dimerdion
level decomposition is defined over a given low-dimensional problems with differential constraints by combining high-
projected subspace of the state space. We begin with a |ge| giscrete search with a low-level sampling-based amoti

manually-chosen projection to demonstrate that projectims ) : S
other than the workspace can potentially work well. We then Planner. On the high-level sid&yCLoP uses a projection

evaluate SyCLoP’s performance with random projections and ~ (called theworkspace projectionthat maps from the robot's
projections determined from linear dimensionality reduction  state space into the robot’s workspace. Using this prajecti
over elements of the state space, for which the results are SyClLoP partitions the workspace into cells and creates an
mixed. As we will see, fmdmg a useful projection is a dlfflcu_l adjacency graph of neighboring cely CLoP then searches
problem, and we conclude this paper by discussing the merits , . . . .
and drawbacks of various types of projections. th|s. adjacency graph to determlng a contlguous sequence of
regions (called dead) through which to guide a low-level
tree of motions defined in the state space. As the motions
in the tree are constrained by the dynamics of the robotic
The classic motion planning problem for a robot requiresystem Sy CLoP cannot easily force the tree to grow exactly
computing a trajectory that takes the robot from a starestathrough a given lead. Instead, information on where the tree
to a goal region and is free of collisions. Early work onis able to grow is passed 8y CLoP’s high-level layer which
this problem includes a proof of PSPACE-completeness faffects the generation of future leads, creating a two-way
the motion planning problem with respect to the number afhannel of information between the layers, as illustrated
degrees of freedom of the robot [1]. In response, much df Figure 1.SyCLoP has been shown to yield significant
the motion planning research community shifted its focuspeedups of up to two orders of magnitude when compared
to sampling-based approaches, which trade completengssclassic tree-based motion planners suclREE and EST
guarantees for tractable time and space complexity [2], [3]10].
Sampling-based algorithms include the roadmap-b&sdd

I. INTRODUCTION

planner [4], and the tree-basdeRT [5], EST [6], SBL SyCLoP

[7], PDST [8], and KPI ECE [9] planners, among many FoToR-pIanAING discrete | [ Pighievel
others. Such sampling-based algorithms offesbabilistic problem —»{ | decomposition | discrete search
completenesswhich means that the probability that such with dynamics

an algorithm will find a solution (assuming one exists) progress discrete
. . estimates leads

approaches as the algorithm spends more time on the prob- continuous

lem. A probabilistically complete motion planning algbirit solution trajectory ‘%

cannot in general detect if a solution does not exist. motion planning
The success of sampling-based motion planning algo-

rithms has prompted researchers to apply them to increas- Fig. 1. TheSyCLoP architecture.

ingly difficult problems. One class of such problems in-

cludes robotic systems with differential constraints.Hage We have reimplemente@yCLoP as part of the Open

systems, robots can only exhibit motions that are realizeddotion Planning Library OVPL) [11]. In the process, we

by the application of a sequence of controls. The classktave generalize®yCLoP’s high-level layer to accept an

motion planning problem can be generalized to incorporatbitrary linear projection as an additional input parasmet

robotic dynamics by including the additional requiremenAs a result, the subspace in whigiCLoP computes leads is

that the computed trajectory satisfies the differential-corcustomizable, determined by the linear projection givearas

straints imposed by the robot’'s equations of motion. Maninput parameter to our software. The original implementati

sampling-based planners can easily be generalized to sobfeSyCLoP computed leads exclusively in the workspace,

such problems, where a tree stataot only holds a pointer which is one example of such a subspace, determined by

to its parent stat@(q) but also stores the necessary controlthe workspace projection which maps the robot’s state to its

to realize a motion fronp(g) to g. (z,y) location.




In this paper we will investigate the use of varioussystem from the start statg to a stateg € Qgoa, With the
projections withSyCLoP and compare their performancerequirement thatal i d(¢) = 1 for all statesq along the
to the workspace projection that has been previously usetajectory realized by.

First, we will show that some nonworkspace projections can
improve SyCLoP’s performance. Then we will investigate B. SyCLoP

the use of random projections and projections obtained by The pseudocode foByCLoP is given in Algorithm 1.
linear dimensionality reduction. We will show that in gesler |jnes 1 and 8-11 comprise the behavior ®fCLoP's low
finding the best projection foBy CLoP is problem-specific |evel, in which the expansion of a tree is promoted within a
and often difficult. given decomposition regior8y CLoP’s high-level behavior
Section Il describes related approaches on guiding tregsseen in lines 3-6 and 12-15, in which high-level leads are
based motion planners through low-dimensional projestioncomputed, and aggregate information regarding states and
Section 11l formally introduces the motion-planning prebl  decomposition regions is collected to affect the compaitati
with dynamics and the original formulation @yCLOP.  of future leads. Lines 5 and 7 feature two 8§ CLoOP's
Section IV describes our extensions 3yCLoP. We have tynable parameters (“number of region expansions” and
tested our generalized reimplementatiorBgCLoP on mul-  “number of tree selections”), which in this work are set to

tiple control-based robotic systems with various pro@tsi 100 and 50, respectively. For complete details of3€LoP
these experimental results are given in Section V. Finallg|gorithm, we refer the reader to [10].
concluding remarks and a discussion of future work are given

in Section VI. Algorithm 1 SyCLoP

Il. RELATED WORK Input: A motion-planning problem with dynamics
) ] o . . (Q,U,ctrl  valid,gii, Qgoal),
The use of low-dimensional projections in sampling-based a workspace decompositidR, and a time boundmax.

motion planning is not new. As an example, tree-base@utput: A solution to the given problem, ddULL if one cannot

planners such aBDST and KPI ECE use low-dimensional be found within timetmax

projections to guide the tree of motiorRDST dynamically ~ 1: 7 < INITIALIZE TREH ginit)

subdivides a projected subspace of the state space in order & While TIME ELAPSED < Imax do

estimate coverage without the use of a metric, and has beejj (Riy, ..., Riy ) < COMPUTELEAD(D)

. "~ "4 Ravail + COMPUTEAVAILABLE REGIONY (R;,, ..., R,
shown to benefit from the use of a nonworkspace projection,. foz;var']'umber of region expansioro A 2

[8]. KPI ECE chooses where to expand its tree of motionse: Rs < SELECTREGION( Ravail)
by considering the tree’s coverage of a space determined for number of tree selectiorso
by some low-dimensional projection [9KPI ECE has been & SELECTANDEXTEND(T, Rs)
shown to benefit from random linear projections when planl—g'_ forifesceh C;'ew tshtztne added 107" in line 8 do
ning for high-dimensional systems [12]. This motivates ou. return. trajectory fromagn 1o s
investigation of nonworkspace projections fay CLoP. 12: R, + LOCATEREGION(s)
13: if R, & Ravai then
Ill. FRAMEWORK 14: Ravail + Ravail U {Rn }
We first introduce the motion-planning problem with dy-12: . UPDATEESTIMATES(Ry,s)

: . ; . 16: if no improvement to high-level estimattdsen

namics and then descrik8 CLoP, a hybrid motion planner . abandon current lead with probability

designed to solve it. 18: return to line 3 to compute new lead
19: return NULL

A. Problem Statement

A motion-planning problem with dynamics consists of SyCLoP is intended to be used with a low-level tree-

1) @ c R", a boundedn-dimensional state space, anpased planner. Notice that the low-level tree planner used
element of which completely determines the system’; syCLoP is not specified. Any tree planner that supports
state, planning with differential constraints can be used as the lo

2) U c R a boundedc-dimensional control space |evel tree planner foBy CLOP. In this work, we restrict our
consisting of control variables that can be applied t@ttention toSy CLoP with RRT as its low-level tree planner,

the system to change its state, _ which for simplicity we refer to aSyCLoP [10].
) ctrl : 9 xU — Q, a differential equation that
captures the system’s constraints, IV. GENERALIZING SYCLOP

4) valid: Q — {0,1}, a boolean function describing
whether a state is valid (used for collision avoidance)hi
5) ginit € Q, a start state for the system, and

We have generalized the discrete layeSgiCLOP so that
gh-level guides can be computed through any subspace
S d of the state spac® determined by some low-dimensional
6) Qgoal € Q, a goal region in which the system ShOUIdprojection. SpecificallySy CLoP has been extended to accept

achieve a state. : S
) , , ) ) as inputs a projection
A solution to a given motion-planning problem with dynam-

ics is a control functionu : [0,7] — U that moves the PrOJ: Q — RF,



wherek < dim(Q), a lift function such asRRT and its many variants, sample a random state
LIET: R 5 O g € Q and th_en attempt to grow the tree towargs
' The Sy CLoP-guided variant of such a planner should then
which approximates ®RoJ~!, and a decomposition sample a random state from regié, i.e., a state; € Q
so that RoJ¢q) € R;. In SyCLoP’s original formulation,
D={Ri,...,Rn}, accomplishing this task was simple. For example, if we were
where D is a geometric partition of the projected- Planning for a planar vehicle with staie = (z,y,0,v),
dimensional subspacerBJ Q), so thatU? ; R; = PROY Q) where (z,y) is the vehicle’s locationg is its heading,
and R, N R, = @ if a # b. For this work, we restrict our anduv is its forward velocity, then an workspace projection
attention to the case in whichrBJ is a linear projection; is defined so that ®oJ(x,y,0,v) = (z,y). To sample a

i.e., for each statg € Q, stateg so that RoJgq) € Rs, we would sample a point
(zr,yr) € Rs, and then return the state = (=, y., 6., v,.),
PROJ(q) = Mg, whered,. andv, are sampled at random.

for some fixedk x n matrix M. Additionally, we restrict ~ With an arbitrary projection, we must do some extra work
our attention to two-dimensional decompositiohs<{ 2); in  to accomplish this task. This is where the inpuft comes
general, some systems may benefit from a three-dimensioff3P play. To obtain a random stadeso that RoJq) € R;,
decomposition. we uniformly sample a random poipt € R, and use the
Computing the bounds of a given decomposition angtate LFT(p) € Q. In generalp € R, does not necessarily
sampling a full state from a decomposition region havénply that RROJLIFT(p)) € Rs. In addition, following a
stood out as the most challenging changesSyCLoP's  LIFT operation to obtain a statg it is possible that is

generalization to accept arbitrary linear projectionshsas outside of the bounds of. Hence we follow each IET
the ones described above. operation with an operation to bring the obtained stateiwith

] -~ the bounds of the state space. Specifically, IfLreturns a
A. Computing Decomposition Bounds stateq = (q1, .. .,¢,) Whoseith dimensional component
Knowing the bounds of RoJ(Q) is necessary when sam-is outside of the bounds of thgh dimensional component
pling states from a given decomposition region, a crucegg st Q; of the state spac€, then the value of;; is set to the
in theSy CLoP algorithm. InSy CLoP’s original formulation, lower or upper bound of);, whichever is closer. As long as
computing the bounds of the decomposition and each of itee returned state is within the bounds of the state space,
regions was trivial for vehicular exploration problemstlas it is acceptable ify is in collision. This is analogous to the
decomposition space was equivalent to the two-dimensionsampling step in th&kRT algorithm, in which the sampled
workspace, and the workspace could easily be extracted state toward which the tree is expanded does not need to
two dimensions of the state space. be collision-free [5]. Hence we do not follow this step with
When the decomposition space follows from an arbitrargollision checking.
linear projection, its bounds must be computed differently
Recalln = dim(Q), and letg; ow and g;ni gn denote the

lower and upper scalar bounds, respectively, of ttie di- V. EXPERIMENTS
mensional axis of the state spa@efor eachj € {1,...,n}.

Further suppose that®J is a linear projection defined by A. Dynamic Vehicles Used

somek x n matrix M. For eachi € {1,...,k}, we compute

Our experiments involve second-order models of two

the lower and upper scalar boundig ow andd; i gn of €ach dynamic vehicles, the car and the tractor-trailer.

ith dimensional axis of the decomposition spaco®Q)

as follows. 1) Car (adapted from [10]):A dynamic car has staig=
n (z,y,0,v,1), consisting of the planar positiofr,y) € R?,

ditow=Y min{Mi; - ¢ owMi, - Gnign} planar orientatiory € [, «], forward velocityv € R, and

o j; M- i om Mg g steering angle) € [—m, w]. We include the boundg|, |y| <

n 55m, |v] <1m/s,and|y| < 30°. The car is controlled with

dinigh = Zmax {M; ;- qjiow, Mi ;- Gjnignh}- the accelerationy and the steering angle velocity, with
j=1 the boundsug| < 5 m/s* and |u;| < 2°/s. The motions

of the car are constrained by the differential equations

The b ds of RoJ d to sample states fr L
© oounds o (<) are used to P o ), y = vsin(), § = vtan(y), ¥ = ug, andy = u;.

whose projections reside in specific decomposition regiongcos(

a process which we describe in the following section. 2) Tractor-Trailer (adapted from [10]): A dynamic
. ) tractor-trailer is modeled as a car that pulls behind it
B. Sampling States from Regions some numbet of trailers. A tractor-trailer has statg =

The SELECTANDEXTEND(T, R;) step of theSyCLoP  (z,y,00,v,,61,...,0;), where (z,y,6p,v,v) are con-
algorithm, which extends the low-level tree planner withirstrained the same as with the dynamic car in Section V-
a given nonempty regiorR;, becomes more difficult to A.1. Each traileri has planar orientatiof}; € [—,n]. The
implement given an arbitrary projection. Some plannergquations of motion for the tractor-trailer include those f



TABLE |

the car as well as DYNAMIC CAR EXPERIMENTSUSING VELOCITY PROJECTIONS

i—1
éi = v H 008(9]‘_1 — 9]‘) (sin(@i_l — Qi)) Environment || Vel. Coef. || Solved % || Avg. Soln. Time

d j=1 Free 0.0 100% 15.88 s
for eachi € {1,...,t}. 02 100% 141s
0.4 100% 15.12 s
B. Projections Used 0.6 100% 148s
We restrict our attention to three types of two-dimensional 0.8 100% 13.54 s
linear projections. Let: = dim(Q). 1.0 100% 13.01s
1) Velocity Projection: Under the assumption tha® Maze 0.0 100% 3159 s
contains dimensions corresponding to a plgaag) location 0.2 100% 305s
and a forward velocityy, we define a two-dimensional 04 100% 28.88 s
velocity projectionso that for each statg € Q, 0.6 100% 295s
0.8 100% 28.81s
PROXq) = (2 + cv,y + cv), 1.0 100% 2927 s

wherec is the velocity coefficientNotice that when: = 0,

ProJis simply the workspace projection, used by the original ) ) o
SyCLoP algorithm. projections thepath-inducedand space-inducegrojections,

We pair with the velocity projection the sameFrr op- respectively. Similar to the case of the random projections
eration that was described for the workspace projection ¥y use the transpose matrices to definetLoperations.
Section IV-B. This will be a reasonable approximation inc  Results
our experiments, as we will keep both the velocity bounds
and the coefficient much smaller than the bounds erand
Y.

2) Random Projections:We define a two-dimensional
random projection as the matrix

R — |:a171 [N a17n:| ’
a2n ... G2n
where each entry; ; is sampled from a Gaussian distribution
with mean 0 and variance 1, and the rowsofire made or-
thonormal. We define a two-dimensional random projection
so that for each state € Q,

PrRoOJ¢) = Rg.

SinceR is a real-valued matrix with orthonormal rows, its
pseudoinverse is equivalent to its transp®E. Hence we
pair with each random projection theAT operation defined

so that for eachy ¢ R¥, Fig. 2. A maze environment with a second-order car: the state is
located at the bottom-left of the environment, and the gegion is located
LIFT(p) = Rp + (I - RTR)w, at the top-right of the environment.

wherew is a randomly sampled vector. This is to capture all \ne nave run our generalized version 8CLoP on a
possible solutions to the equatiom®yq) = p. - _ second-order car model and a tractor-trailer model with 3
~3) PCA-induced ProjectionsWe also consider projec- yaijers. For the car, we consider a free space environment
tions taken from applying linear dimensionality reduction 4 opstacles) and a maze environment, which is pictured in
elements of a given state space. Specifically, we use panCigsigyre 2. For the tractor-trailer model, we consider only th
component analysust (PCA) with two approaches.: maze environment. We have tested these models and environ-
1) Run a sampling-based tree planner until a sampl@ents with all of the projections described in Section V-B.
solution path is found. Output just the states from thi\|| experiments were written in C++ usingVPL [11] and

path to PCA. were run on an Intel Core 2 Quad machine running at 2.83
2) Run a sampling-based tree planner for 30 s to covetHz with 8 GB of RAM.
the state space. Output all states to PCA. Table | contains planner performance data for a car travel-

Following each of the above two approaches, we takieg through free space and a maze environment using veloc-
the first two principal components (in descending order dfy projections. Each experiment ran 50 times per velocity
variance) from PCA to obtain a two-dimensional projecprojection. Notice that when the velocity coefficientisthe
tion, the rows of which are normalized. We call these twaelocity projection is equivalent to the workspace prajact



TABLE Il
DyYNAMIC CAR EXPERIMENTSUSING RANDOM PROJECTIONS

Environment || Random Proj. # || Solved % || Avg. Soln. Time

Free 1 93% 34.17 s
2 77% 63.81 s
3 100% 21.94 s
4 100% 20.23 s
5 100% 3459 s

Maze 6 73% 90.04 s
7 20% 115.44 s
8 27% 112.27 s
9 0% 120 s
10 67% 87.82s

TABLE Il

DYNAMIC CAR EXPERIMENTSUSING PCA PROJECTIONS

Environment || Projection || Solved % || Avg. Soln. Time
Free Path-induced 98% 27.66 s
Space-induced 100% 13.89 s
Maze Path-induced 100% 28.45 s
Space-induced 100% 3158 s
TABLE IV

TRACTOR-TRAILER EXPERIMENTSUSING VELOCITY PROJECTIONS

Environment || Vel. Coef. || Solved % || Avg. Soln. Time

Maze 0.0 97% 73.93 s
0.2 100% 62.1s
0.4 100% 72.78 s
0.6 100% 61.82 s
0.8 100% 55.38 s
1.0 100% 53.39 s
TABLE V

TRACTOR-TRAILER EXPERIMENTSUSING RANDOM PROJECTIONS

Environment || Random Proj. # || Solved % || Avg. Soln. Time

Maze 1 13% 228.87 s
2 30% 216.35 s
3 37% 210.84 s
4 20% 221.04 s
5 53% 185.05 s
TABLE VI

TRACTOR-TRAILER EXPERIMENTSUSING PCA PROJECTIONS

Environment || Projection || Solved % || Avg. Soln. Time
Maze Path-induced 100% 74.95 s
Space-induced 100% 74.02 s
TABLE VI

EXPERIMENTSUSINGRRT

Vehicle || Environment || Solved % || Avg. Soln. Time

Car Free 100% 19.15s
Maze 24% 112.73 s
Tractor Maze 23% 195.35 s

which is our baseline of comparison (the original version of
SyCLoP). Table Il contains planner performance data for
a car traveling through free space and a maze environment
using random projections. For each environment, five random
projections were used, with averages taken over 30 runs. Ta-
ble IIl contains planner performance data for a car tragelin
through free space and a maze environment using the path-
induced and space-induced PCA projections, with averages
taken over 50 runs. For each run of each car experiment, a
120 s timeout is enforced.

Table IV contains performance data for the tractor-trailer
model using velocity projections, with averages taken over
30 runs. As with the car, our baseline of comparison is
the velocity projection with coefficieri. Table V contains
performance data for the tractor-trailer model using ramdo
projections, and Table VI contains performance data for
the tractor-trailer model using the path-induced and space
induced PCA projections, with averages taken over 30 runs.
For each run of each tractor-trailer experiment, a 240 s
timeout is enforced.

Table VII contains performance data for the car and
tractor-trailer models usindRRT. Although the focus of
our work is an optimization withinSyCLoP, this table
is meant as a brief demonstration 8f/CLoP’s superior
performance over other sampling-based planning techaique
For a detailed comparison &y CLoP to other methods, we
refer the reader to [10].

D. Analysis

The velocity projection has improved performance of
SyCLoP. This is likely due to the fact that when we
incorporate velocity into the projection, the same physica
region in the workspace is potentially mapped to multiple
decomposition regions, differentiated by the velocitytates
that exist within that physical workspace region. This degb
SyCLoP’s high-level layer to compare the successes of dif-
ferent velocities in the same region of the workspace, which
allows it to value paths of higher velocity in open regions
of the workspace and similarly paths of lower velocity in
cluttered regions of the workspace. The m&geCLoP can
take advantage of high velocity paths, the faster the siredla
paths in its tree of motions will be, leading more quickly to
a solution path.

In Tables Il and VI, we see that the projections generated
from PCA yield mixed results. For the car, PCA projections
slightly improve performance compared to the workspace
projection. For the tractor-trailer, PCA projections blig
degrade performance.

Random projections degrade performanceSpCLoP in
all experiments, and they become almost unusable in the case
of the maze environment.

There are many ways in which a complex linear pro-
jection (such as a random projection or PCA projection)
can potentially degrad®yCLoP’'s performance. For one,
SyCLoP requires the ability to sample a state from a given
decomposition region by sampling a pojnfrom the region
and then computing IET(p) as defined in Section IV. Given



a sufficiently complex projection®®J for a state; sampled of high-dimensional goals and obstacles. All of the exper-
by SyCLoP given a decomposition regiok;, linearity imental setups presented in this paper use two-dimensional
ensures thay € LIFT(R;). However, by the definition of goal regions which are defined in terms of the workspace.
LIFT, the stateq may not even be within bounds a@. More realistic motion planning problems require goals of
In such cases, our algorithm bringswithin the bounds high dimension, and it may prove advantageous to incorpo-
of Q. SyCLoP will attempt to grow its low-level tree rate goal information into a low-dimensional projection fo
toward q, likely at the edge ofQ, where further collision- SyCLoP, in a similar approach to the velocity projection.
free operations may be impossible. This issue distorts thghe problem of how to manage high-dimensional goals and
information passed betweeSy CLoP's high-level and low- gpstacles is not unique t8yCLoP but instead could have
level Iayers:SyCLoP's high-level reacts to the failure to app“cations to motion p|anning in genera]l

promote low-level tree expansion in regidR; as if the
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