To appear in the Twenty-Eighth AAAI Conference on Artificial Intelligence (AAAI 2014), Quebec City, Canada

Optimal and Efficient Stochastic Motion Planning
in Partially-Known Environments

Ryan Luna and Morteza Lahijanian and Mark Moll and Lydia E. Kavraki
Department of Computer Science, Rice University
Houston, Texas 77005, USA
{rluna, morteza, mmoll, kavraki} @rice.edu

Abstract

A framework capable of computing optimal control
policies for a continuous system in the presence of
both action and environment uncertainty is presented
in this work. The framework decomposes the planning
problem into two stages: an offline phase that reasons
only over action uncertainty and an online phase that
quickly reacts to the uncertain environment. Offline, a
bounded-parameter Markov decision process (BMDP) is
employed to model the evolution of the stochastic sys-
tem over a discretization of the environment. Online,
an optimal control policy over the BMDP is computed.
Upon the discovery of an unknown environment feature
during policy execution, the BMDP is updated and the
optimal control policy is efficiently recomputed. De-
pending on the desired quality of the control policy, a
suite of methods is presented to incorporate new infor-
mation into the BMDP with varying degrees of detail
online. Experiments confirm that the framework recom-
putes high-quality policies in seconds and is orders of
magnitude faster than existing methods.

1 Introduction

Uncertainties arise in decision making when the conse-
quence of taking an action is not known exactly or when
the confidence in an observation is questionable. For exam-
ple, consider a search-and-rescue scenario where a robot is
tasked with finding survivors after a disaster. Motion plans
must be computed to combat (a) uncertainty in the robot’s
actions when moving over loose or uneven terrain, (b) uncer-
tainty in the environment if a building’s structure changes af-
ter a catastrophe, and (c) uncertainty in the robot’s observa-
tions due to unfavorable sensing conditions. However, find-
ing motion plans that consider all of these uncertainties is a
difficult computational challenge because the sources of the
uncertainty derive from both internal and external processes.

Robust motion planning under uncertainty can be cast as
a problem where the goal is to map every possible state and
observation of the robot to a single action. This mapping
is referred to as a policy. Construction of an optimal policy
with respect to a reward function representing the task re-
quires reasoning over all possible situations that the system

Copyright (© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

may encounter. In real-time problems, like the search-and-
rescue example, constructing an optimal policy that consid-
ers all sources of uncertainty is computationally prohibitive.
Consequently, current state-of-the-art methods for real-time
applications reason over a single kind of uncertainty. In con-
trast, this work considers motion planning scenarios where
the robot must make quick decisions under both action and
environmental uncertainties.

Related Work

Motion planning under action uncertainty is generally ac-
complished by computing a control policy a priori using
discrete Markov modeling techniques alongside a model of
the evolution of the robot (Dean et al. 1995; Burlet, Aycard,
and Fraichard 2004; Ong et al. 2010). Sampling-based al-
gorithms have proven particularly effective for computing
stochastic control policies for continuous systems with com-
plex dynamics. The stochastic motion roadmap (SMR) con-
structs a Markov decision process (MDP) by sampling a set
of states and simulating a discrete set of actions at each state
to obtain the transition probabilities (Alterovitz, Simeon,
and Goldberg 2007). The result is a multi-query MDP that
is able to compute a policy to reach any state in the ap-
proximating MDP. In the iMDP algorithm (Huynh, Karaman,
and Frazzoli 2012), an asymptotically optimal control pol-
icy for a continuous stochastic system is obtained by itera-
tively constructing an approximating MDP through sampling
of the state and control spaces. In contrast to SMR, iMDP is a
single-query structure that must be recomputed to find a pol-
icy to a different state. More recent work (Luna et al. 2014)
bridges the gap between SMR and iMDP by discretizing the
environment into regions, computing a set of local policies
within each region, and selecting one local policy from each
region using a bounded-parameter Markov decision process
(BMDP) (Givan, Leach, and Dean 2000). The resulting con-
trol policy is optimal with respect to the discretization, and
the approximating data structure allows for fast policy com-
putation by reasoning only over regions at runtime.

Many planning algorithms exist for handling uncertainty
in the environment. When the environment changes over
time, a Markov model can be used to compute a policy that
provides motion commands to the robot depending on the
current state of the environment (LaValle and Sharma 1997).
In dynamic environments when the trajectories of moving

obstacles are unknown, previous methods are typically reac-
tive rather than deliberative. For example, a partially closed-
loop receding horizon algorithm can be employed to ap-
proximate future configurations of obstacles (Toit and Bur-
dick 2012). In static environments where there is no knowl-
edge of the environment uncertainty, fast replanning ap-
proaches are employed to compensate for the unknown en-
vironment (Stentz 1994; Fox, Burgard, and Thrun 1997;
Kewlani, Ishigami, and ITagnemma 2009). A popular class
of algorithms for this problem derive from discrete search,
including D* (Stentz 1994; 1995; Koenig and Likhachev
2005), ARA* (Likhachev et al. 2008), and LPA* (Likhachev
and Ferguson 2009). These algorithms admit fast, optimal
replanning for a deterministic system in a discretized envi-
ronment. Their success derives from the ability to quickly
and repeatedly compute an optimal path, rather than a pol-
icy, often by reusing information from previous searches.

Planning under sensing uncertainty introduces a compu-
tational challenge whose complexity dominates both action
and environment uncertainty (Papadimitriou and Tsitsiklis
1987). When the system has noise in observation, planning
is typically performed in the space of beliefs (Thrun et al.
2005). Reasoning over belief states incurs significant over-
head since taking an action or making an observation in-
duces a convolution of probability distributions. For real-
time planning problems, however, this overhead is computa-
tionally prohibitive. For linear systems with Gaussian noise,
methods exist to construct a multi-query roadmap in belief
space from which an optimal policy to any state can be com-
puted (Prentice and Roy 2009; Agha-mohammadi, Chakra-
vorty, and Amato 2014).

Although many previous works consider just a single kind
of uncertainty, the computational complexity has not de-
terred methods that attempt to consider multiple kinds of
uncertainty. The partially-observable Markov decision pro-
cess (POMDP) provides a modeling framework that is ca-
pable of finding an optimal policy when faced with all
three kinds of uncertainty. However, computation of an op-
timal POMDP policy is notoriously intractable (Papadim-
itriou and Tsitsiklis 1987), limiting POMDPs to a restricted
class of real-time problems (Simmons and Koenig 1995;
He, Brunskill, and Roy 2011; Marthi 2012).

Contribution

The contribution of this work is a top-down framework for
efficient computation of an optimal control policy for a con-
tinuous system with complex dynamics in the presence of
both action and environment uncertainty. There is no knowl-
edge of the environment uncertainty; only partial informa-
tion is known a priori. Sensing is presumed to be perfect.
Although previous works like D* for navigation in an un-
known environment are both fast and optimal, these algo-
rithms assume a deterministic system operating in a discrete
world with discrete actions. A continuous system with com-
plex and stochastic dynamics does not conform well to these
assumptions and is likely to repeatedly deviate from a tra-
jectory; a policy is preferable in this case. The literature on
sampling-based motion planning for action uncertainty does
not emphasize computation time, and existing methods are

unsuitable for the fast policy recomputation required when
the environment is partially known. SMR can be used di-
rectly in a recomputation framework, but finding the policy
requires performing value iteration over an enormous MDP.
iMDP is attractive for its optimality properties, but the ap-
proximating data structure relies on a specific reward func-
tion and must be completely reconstructed to obtain a policy
when the reward changes (e.g., an obstacle is observed).

This paper builds upon the BMDP framework in (Luna et
al. 2014) which is able to quickly and effectively compute a
control policy for a continuous stochastic system at runtime.
Howeyver, the framework is unable to account for environ-
ment uncertainty because the construction of the BMDP is
performed offline and with respect to the environment. In
a partially-known environment where features exist that are
not known a priori, the BMDP abstraction is invalidated once
an additional feature is discovered online. Moreover, the re-
sulting control policy may no longer be optimal with respect
to the reward function representing the task.

The aforementioned BMDP framework is extended in this
paper to handle both action uncertainty and environment un-
certainty in the form of unknown features. The BMDP is
updated during execution when new environment informa-
tion arrives, and an optimal control policy is quickly recom-
puted. The efficiency of the recomputation derives from rea-
soning over regions rather than individual states at runtime.
Three different methods are presented to update the BMDP
when new environment information is obtained: (1) a fast,
conservative approach that assumes minimum reward across
a whole region, (2) recomputation of the expected reward
for existing local policies, and (3) recomputation of the lo-
cal policies given the new environment information and re-
ward structure. The choice of the discretization and update
method determine the quality and speed of policy recompu-
tation, and simulated results evaluating the update methods
confirm this trade-off. Nevertheless, a comparison with SMR
shows that the BMDP abstraction is able to compute a high
quality control policy in significantly shorter time.

2 Problem Formulation

Consider a robot with noisy actuation moving about a static
but partially-known environment. The stochastic dynamics
of the robot are presumed to be given in the following form:

de = f(x(t), u(t))dt + F(2(t), u(t))dw, (D)
reXCR™ | welUCR"™,

where X and U are compact sets representing the state and
control spaces, w(-) is an n,-dimensional Wiener process
(i.e., Brownian motion) on a probability space (92, F,P).
Functions f : X xU — R™ and FF : X x U —
R™=*"w are bounded measurable and continuous. It is as-
sumed that F'(-,-) in its matrix form has full rank, and the
pair (u(-),w(-)) is admissible (Kushner and Dupuis 2001).
The stochastic process x(t) is fully observable for all ¢ > 0
and stops as soon as the interior of X is left.

The robot moves in a workspace W that contains a set of
disjoint features Wy and a set of disjoint goal regions W,.
W; may consist of both obstacles and navigable regions of

interest. The robot has only partial, a priori knowledge of
Wr, but is equipped with a sensor that can perfectly detect
all features within a radius rppreer < 00. For simplicity, it
is assumed that if any portion of the feature is within range,
the entire feature is observed. This assumption can easily be
relaxed with an incremental representation of the feature.

The mission of the robot in W is specified by a continuous
reward function of the form

T
J=E[[Foawu@a M em)], o
0

where ¢ : X XU — Rand h : X — R are bounded
measurable and continuous functions called the reward rate
Sfunction and terminal reward function, respectively, and 0 <
v < 1is the discount rate. Conceptually, g(z(t), u(t)) is the
reward at state x for taking action w at time ¢, h(z(T)) is
the reward for reaching a terminal state (goal or obstacle) z
at time 7', and the goal is to maximize expectation over the
sum of action and terminal rewards. In a search-and-rescue
example, g(-, -) could correspond to the energy cost of a spe-
cific action, and h(-) is the reward for finding a survivor. T'
denotes the first time that the system (1) reaches a terminal
state. From the stochastic dynamics, 7" is random and de-
pends on the control u(t) at state z(t) forall 0 < ¢ < T.
The objective is to quickly compute a control policy 7 :
X — U that maximizes J (2) for a robot with stochastic
dynamics (1) moving in a partially-known workspace W.
Since the workspace is not completely known a priori, dis-
covery of new features necessarily changes ¢(-,-) and h(-)
and forces recomputation of the optimal policy at runtime.

3 Methodology

A fast policy computation framework is presented that is
able to handle both action and environmental uncertainty
when planning for a continuous stochastic system. The com-
plexity of considering two kinds of uncertainty is managed
by reasoning over just one kind of uncertainty at a time. Ac-
tion uncertainty is captured with a control policy, and the
system reacts to environmental changes during execution.

The efficiency of the approach derives from the aggrega-
tion of states into regions and reasoning only over regions
at runtime. The framework consists of two stages. First, an
offline stage discretizes the space into regions and computes
several local policies within each region, one to reach every
neighboring region. Abstracting the system’s evolution into
regions induces a second decision process during the online
stage that selects a local policy for each region. A Markov
decision process is not capable of fully representing the tran-
sition probabilities and rewards of this abstraction because
each local policy has a distribution of transition probabili-
ties and rewards that depend on the initial state. A bounded-
parameter Markov decision process (BMDP), however, pro-
vides a vehicle for state aggregation and tractable optimal
policy computation without loss of information. This frame-
work employs a BMDP to capture the probabilities and re-
wards when a stochastic system moves between discrete
regions. Given a BMDP abstraction computed offline, the
proposed framework incorporates new environment features
into the BMDP and recomputes a global policy online.

Bounded-parameter Markov Decision Process

A bounded-parameter Markov decision process (BMDP) (Gi-
van, Leach, and Dean 2000) is an MDP where the exact tran-
sition probabilities and rewards are unknown. Instead, these
values lie within a range of real numbers. Formally, a BMDP
isatuple (Q, A, P, P, R, R) where Q is a finite set of states,
A is a finite set of actions, P and P are pseudo-transition

probability functions that return the min and and max prob-
abilities for transitioning between two states under a spe-

cific action, and R and R are functions that return the min
and max reward for choosing an action at a particular state.
Conceptually, a BMDP represents a set of uncountably many
MDPs whose exact transition probabilities and rewards lie
within the range of values defined in the BMDP.

The following property must also hold: for all ¢, ¢’ € Q
and a € A(q), P and P are pseudo-distribution func-
tions where 0 < P(q,a,¢) < P(g,a,¢) < 1 and

Zq/eQ P(qaaaql) S 1 S Zq/eQ P(q,a’7q/)'

Offline BMDP Abstraction

A BMDP abstraction forms the basis for fast recomputation
of an optimal policy obtained by maximizing an approxima-
tion of the reward function (2). BMDP construction is only
highlighted here. For further details, see (Luna et al. 2014).

Discretization Discrete regions of the state space com-
pose the basic building block of the BMDP abstraction. A
desirable discretization depends on a number of factors in-
cluding the geometry and dynamics of the system as well as
the kind of task that is performed. A coarse discretization
allows for fast policy computation, but the approximation of
the reward function for this discretization can induce a large
error. Conversely, a fine discretization represents the reward
function more accurately, but the complexity of computing a
policy depends on the number of discrete regions. This work
utilizes a Delaunay triangulation of the workspace that re-
spects known obstacles and goal regions (Shewchuk 2002).
Empirically, this discretization also avoids skinny triangles
that may be difficult for a dynamical system to stay within.

Local Policy Computation Once the space has been dis-
cretized, local control policies are computed within each dis-
crete region of the space, one to transit to each neighbor
of the discrete region. Computation of each local policy is
performed using the iMDP algorithm (Huynh, Karaman, and
Frazzoli 2012), a method that samples the state and control
spaces to iteratively (and asymptotically) approximate the
optimal control policy for the continuous-time, continuous-
space stochastic system (1) to reach a particular goal.

For the case of a triangulated workspace, a local policy is
computed to move the system through each edge of the trian-
gles. To compute these policies, the area outside of the dis-
crete region is considered as terminal. Terminal states within
the desired destination region for the local policy receive a
high reward and all other terminal states are treated as ob-
stacles with zero or negative terminal reward. This reward
structure encourages computation of local control policies
that avoid all neighboring regions except the desired destina-
tion. An illustration of these concepts is shown in Figure 1.

(
@) (b) ©

Figure 1: Concepts of local policy computation. (a) A policy
is computed to each neighboring region. (b) Terminal states
bleed into the surrounding area. (c) Terminal states within
the desired destination have high reward; all other terminal
states are treated as obstacles with low reward.

BMDP Construction As noted earlier, a BMDP is analo-
gous to a Markov decision process, except that a range of
real-values are specified for all transition probabilities and
one-step rewards. The ranges emerge naturally as part of the
state aggregation that occurs when the space is discretized.
To construct the BMDP, each discrete region is added as a
state, and the actions at each of these states correspond to
the local policies computed within the respective region.

To complete construction of the BMDP abstraction, the
probability of successfully taking each action in the BMDP
and the reward associated with each action must be com-
puted. Since the actions in the BMDP correspond to stochas-
tic control policies within a discrete region, the probability
of successfully transitioning between two neighboring re-
gions and the associated reward depends on the initial state
within the region. Since the initial state is not known a pri-
ori, the probabilities and rewards for the BMDP action are
mapped to the range of all possible values that can emerge as
a result of executing a particular local policy. In the case of
the transition probabilities, the range consists of the min and
max probabilities of successfully transitioning to the desired
discrete region. These probabilities can be computed with an
absorbing Markov chain analysis (Kemeny and Snell 1976).
The reward range associated with each local policy requires
computing the min and max expected reward over all states
in the region. Formally, for BMDP state ¢ and action (local
policy) a, the lower bound expected reward is defined as:

zeq

Ty
R(q,a) = minE / ’ Yg(x,a(x))dt|zo = 2| ,
0

where 2 is a configuration of the system in region ¢, and T,
is the first expected exit time from ¢ with initial state x(us-
ing local policy a. Terminal regions in which no actions are
defined (obstacles or goal regions) receive a terminal reward
h(-). When the local policies are obtained using a sampling-
based method, as in iMDP, the expected reward can be com-
puted using the following discrete approximation:
K¢ —1

R(q,a) = minE Z Yig(z,a(z))At(z)|zg = 2| ,
=0

z€q

where K¢ is the first expected exit time step from region
q, z is a sampled state in g, At() is the holding time of
the control at state x, and ¢; is the total time up to step i.
This expectatlon can be computed usmg value iteration. The
upper bound, R, is analogous to R, except that the value is
the maximum expected reward rather than the minimum.

Online Execution and Policy Recomputation

Given a BMDP abstraction that describes the evolution of the
stochastic system over discrete regions of the state space, a
policy over the BMDP can be quickly computed to maximize
an approximation of (2). A policy over the BMDP abstraction
is a selection of one local control policy for each discrete re-
gion. Computing the optimal policy in a BMDP is similar to
computing a policy in an MDP. The key difference, however,
is that the expected reward for each state in the BMDP is a
range of possible values since the single step rewards are
also a range of values. The dynamic programming analog
for BMDPs is known as interval value iteration (Iv1) (Givan,
Leach, and Dean 2000). 1vVI computes the Bellman backup
of each state during each iteration for a representative MDP
selected based on the current estimation of the expected re-
ward. Selection of the MDP representative corresponds to
a pessimistic or optimistic policy that optimizes the lower
bound or upper bound transition probability ranges, respec-
tively. This framework advocates a conservative, pessimistic
policy. IVI converges in polynomial-time with respect to the
number of BMDP regions (Givan, Leach, and Dean 2000).

The kind of BMDP policy computed yields a set of tran-
sition probabilities for the MDP representative, denoted Py,
for a pessimistic and Py, for an optimistic policy. The dy-
namic programming equation (IVI) to compute an optimal
pessimistic policy over the BMDP is:

Vig) = max [R(g,0)+9" Y Pl a.q)V(@)],
q'€qQ

where T} is the expected exit time (¢ minimizes R(q,a)).
Computing an optlmlstlc policy (V) is done analogously,
substituting R for R and using Py, instead of Pyy,.

Feature Discovery and BMDP Update Departing from
the work in (Luna et al. 2014), new environment features
that are discovered during execution are incorporated into
the BMDP abstraction, and a policy over the BMDP is re-
computed at runtime. As shown in the previous work, the
BMDP policy is optimal with respect to the discretization of
the space. However, if environmental features are discov-
ered during execution, the BMDP policy is rendered sub-
optimal or even invalid because the reward that the sys-
tem expected to obtain in the affected regions is incorrect.
Detection of a new environmental feature can be cast as a
change in the action reward function g(-, -) and/or the termi-
nal reward function h(-). Three options are presented here
to update the BMDP with the new feature information so that
the BMDP policy can be recomputed. These update strate-
gies trade computation time for accuracy. The fastest update
method reasons only at the region level, and the most expen-
sive update method incorporates all new information in the
local policies before recomputing the global policy.
Conservative approximation The fastest BMDP update
method presumes the lowest expected reward throughout all
regions affected by the previously unknown feature for every
local policy. Formally, for every discrete region ¢ and local
policy a in q affected by a previously unknown feature:

R(g,a) = R(g,a) = min [g(z, a(2))T¢].

Figure 2: The maze environment. The goal region is shaded
yellow. Obstacles not known during the offline phase are
shaded in red. There are 759 triangles in the discretization.

Although the conservative approximation is very fast, this
method is the least optimal of the three update options pre-
sented here. For instance, if an obstacle is observed, this
method marks the entire discrete region as the obstacle even
if only a tiny portion of the region is touched by the obstacle.
Recomputation of Reward A more attractive update
method involves recomputing the true expected reward
ranges within all affected regions and local policies. For-
mally, this requires recomputing the reward bounds R and
R for all q € @ directly impacted by the new information.
By recomputing the reward, all new information obtained
regarding the workspace feature is utilized, and a better ap-
proximation of the expected reward for executing each local
policy in a discrete region is obtained. Note that the under-
lying local policies are no longer optimal with respect to the
single step action reward in the discrete regions, but the re-
ward values for executing those policies are correct.
Recomputation of Local Policies The third update method
recomputes all affected local policies, then patches the
BMDP with the new probability and reward ranges. Re-
computing the local policies is ideal because the BMDP is
patched from the bottom up to incorporate the new informa-
tion. This method, however, comes at great expense since
many regions could be affected, depending on the size of
the observed feature, implying that many local policies must
be recomputed. This method is attractive for systems with
a high action uncertainty or in cluttered spaces where the
previous two methods may fail to yield a robust policy.

4 Experiments

Experiments are conducted in a continuous 20x20 maze en-
vironment (Figure 2) to evaluate the computation time and
quality of the resulting policy (probability of success) for
the three BMDP update methods when new obstacles are ob-
served. The maze has four unknown obstacles that the sys-
tem may observe before reaching the goal. Careful consid-
eration is given to what the proposed methods can be com-
pared with. SMR (Alterovitz, Simeon, and Goldberg 2007)
allows for direct comparison since an MDP can be con-
structed offline to yield a policy of comparable size to the
resulting BMDP abstraction. The policy from SMR can be
recomputed online after removing states that intersect with

BMDP Update Strategy
Conservative | Reward | Policies | SMR
Time (s) ‘ 1.30 ‘ 9.34 ‘ 62.97 ‘ 184.90

Table 1: Policy recomputation times when an unknown ob-
stacle is discovered. All values averaged over 50 runs.

obstacles. Experiments consider an SMR with approximately
300,000 states, eight unit controls spanning the cardinal and
ordinal directions, and a convergence threshold of 10—,
iMDP (Huynh, Karaman, and Frazzoli 2012) is a one-shot
method and the time needed to recompute a similarly sized
policy is comparable to the BMDP and SMR abstraction times
(on the order of hours). This comparison can safely be omit-
ted. This problem can also be modeled with a POMDP, but a
distribution of the environment uncertainty is not assumed.
Furthermore, the complexity of optimally solving a POMDP
prohibits online computation once the number of states ex-
ceeds a few dozen (Papadimitriou and Tsitsiklis 1987).

For BMDP construction, the maze is discretized using a
Delaunay triangulation that respects known obstacles, where
no triangle exceeds more than 0.1% of the free space, re-
sulting in 759 discrete regions. Three local policies are com-
puted within each triangle until there are 1000 states per unit
area in each policy. All computations are performed using a
2.4 GHz quad-core Intel Xeon (Nahalem) CPU.

The system evaluated has 2D single integrator dynamics
with Gaussian noise. The dynamics are in the form of (1),
where f(z,u) = wand F'(z,u) = 0.11, and I is the identity
matrix. The system receives a terminal reward of 1 when it
reaches the goal and a terminal reward of O for colliding with
an obstacle. The reward rate for all non-terminal states is
zero (g = 0), and a discount rate of 0.95 is employed for the
local policies. The system can perfectly sense all unknown
features within a radius rpgrecr of 2 unit length.

A comparison of the computation times between SMR and
the proposed BMDP abstraction update methods is given in
Table 1. As expected, the conservative BMDP update per-
forms the fastest; computation time is dominated by 1V1, tak-
ing just over 1 second on average. Recomputing the BMDP
rewards takes about 9 seconds on average, and recomputing
all affected local policies affected by an unknown obstacle
takes an average of about one minute. Contrast these times
to a comparably sized SMR abstraction, where value itera-
tion takes an average of about three minutes, two orders-of-
magnitude slower than the conservative BMDP update and
when the BMDP rewards are recomputed, and one order of
magnitude slower than recomputing all affected local poli-
cies in the BMDP when an unknown obstacle is observed.

Comparing the control policies emitted from the different
methods is more difficult since the quality of a policy is not
easily quantified with a single value. Instead, the probabil-
ity of each state in the final control policy reaching the goal
is computed; each probability is weighted with the area of
the Voronoi cell induced by the state. For a given probability
of success, the percentage of the environment area that does
not meet this probability is computed and shown in Figure 3.
Results are averaged over 50 runs and the standard errors for
each bar are indicated with error bars. Although SMR is com-

5

S100-

5 BMDP: Conservative

=3 " '\BMDP: Update Reward

S 75- MBMDP: Recompute Policies

g ISMR

9

9 50-

o

o

Q 5-

I

g

<

< b — e e e e
5 15 25 35

s b B Ko B W ii_ iiii "l
75 85

45 55
Probability of success

65

——
17—
—— |

Figure 3: The percent area of the environment not covered with a given probability of success over three BMDP update methods
and the SMR method (lower is better). Results are averaged over 50 runs. Mean standard error is indicated with error bars.

VAAVA AP ’'N

ATAY K] N4
>

< ol

LR AN Y

NN\

VNV

Dy,

[AAKNDECKNOEK TN Pavadl

D NV AVAVAVAVAVAVAY
"ﬂ‘ R "V v vp“
RN

TR gs F'Ag’«; ‘5‘

Ay
s

0
=

“ N IK]
P NATANY

V4

RS

NAAANANANNNN
INYAVAVAV/\VAVAVAVAYAVATE

(a) Conservative approximation

AN \/ NVAvAY,
AV kgf«nr::vtv;v:u“
S >N

4

- INEEISI

\N\/\
#Aﬁ?ﬁﬁé}
AN
PRI
o VAVZAAV.

DAANANAANNNAN
IN\VAVAVAV/\VAVAVAVAYAVATS

(b) Recompute reward

4y, N
s N

NAN /4

vy,
LS eﬁmﬁ

A
o

0.30

MNMANNNN/NNNNVXK] -
RDQOODOOCKRXK | {017

0.00

(c) Recompute local policies

Figure 4: An example of the expected probability of success for each BMDP update method. Note the differences near the
unknown obstacles, particularly between (a) and (c). Recomputation of the reward for each affected local policy (b) tends to
negatively affect only those regions where each edge is affected by the unknown obstacle.

petitive with low success rate requirements, for high success
rates (highlighted with a rectangle in Figure 3), SMR perfor-
mance quickly starts to degrade. The BMDP reward update
and policy recomputation methods significantly outperform
SMR at the 95% probability of success rate. The BMDP con-
servative method has a consistent percentage of the space
covered with a small probability of success; this corresponds
to the area incorrectly labeled as an obstacle.

The differences between the three BMDP update methods
are further highlighted in Figure 4, which plots the prob-
ability of success for a representative control policy using
each of the update methods in the maze environment. Note
that the unknown obstacle approximations become progres-
sively finer from Figure 4a to Figure 4c. It is difficult to
characterize exactly how the recomputation of the reward
(Figure 4b) reflects in the final control policy; the quality
of the local policies plays an important role. Empirically, an
optimal BMDP policy avoids local policies that take the sys-
tem through an edge in the discretization obscured by an un-
known obstacle. The reward range for those policies can be
large, potentially from [0, 1], and a pessimistic BMDP policy
optimizes over the lower bound to avoid such a risk.

5 Discussion

A two-stage framework for efficient computation of an op-
timal control policy in the presence of both action and en-
vironment uncertainty is presented in this paper. The frame-
work abstracts the evolution of the system offline using a

bounded-parameter Markov decision process (BMDP) over a
discretization of the environment, and quickly selects a local
policy within each region to optimize a continuously valued
reward function online. As new environment features are
discovered at runtime, the BMDP is updated and experiments
show a global control policy can be recomputed quickly.

The quality of the control policy obtained online depends
on the amount of computation time allowed, but a compari-
son with the stochastic motion roadmap shows that even the
highest fidelity BMDP update method that recomputes every
local policy affected by an unknown feature yields a compa-
rable control policy in an order of magnitude less time. For
fast recomputation, a conservative update method is shown
to recompute a global control policy in just over one second.

The results of the proposed framework rely on the ability
to reason quickly over groups of similar states, represented
in this case by discrete regions. An interesting prospect for
future research is to investigate how the decomposition of
the motion planning problem into a series of smaller prob-
lems and then optimally concatenating the solutions of the
small problems together can potentially be extended to other
difficult problems outside of robotics.

6 Acknowledgments

RL is supported by a NASA Space Technology Research
Fellowship. ML, MM, and LK are supported in part by NSF
NRI 1317849, NSF 113901, and NSF CCF 1018798. Com-
puting resources supported in part by NSF CNS 0821727.

References

Agha-mohammadi, A.; Chakravorty, S.; and Amato, N. M.
2014. FIRM: Sampling-based feedback motion-planning
under motion uncertainty and imperfect measurements. Int’l
Journal of Robotics Research 33(2):268-304.

Alterovitz, R.; Simeon, T.; and Goldberg, K. 2007. The
stochastic motion roadmap: A sampling framework for plan-
ning with Markov motion uncertainty. In Robotics: Science
and Systems.

Burlet, J.; Aycard, O.; and Fraichard, T. 2004. Robust mo-
tion planning using Markov decision processes and quadtree
decomposition. In IEEE Int’l. Conference on Robotics and
Automation, volume 3, 2820-2825.

Dean, T.; Kaelbling, L. P.; Kirman, J.; and Nicholson, A.
1995. Planning under time constraints in stochastic domains.
Artificial Intelligence 76(1-2):35-74.

Fox, D.; Burgard, W.; and Thrun, S. 1997. The dynamic
window approach to collision avoidance. IEEE Robotics &
Automation Magazine 4(1):23-33.

Givan, R.; Leach, S.; and Dean, T. 2000. Bounded-
parameter Markov decision processes. Artificial Intelligence
122(1-2):71-109.

He, R.; Brunskill, E.; and Roy, N. 2011. Efficient planning

under uncertainty with macro-actions. Journal of Artificial
Intelligence Research 40(1):523-570.

Huynh, V. A.; Karaman, S.; and Frazzoli, E. 2012. An in-
cremental sampling-based algorithm for stochastic optimal
control. In IEEFE Int’l. Conference on Robotics and Automa-
tion, 2865-2872.

Kemeny, J. G., and Snell, J. L. 1976. Finite Markov Chains.
Springer-Verlag.

Kewlani, G.; Ishigami, G.; and lagnemma, K. 2009.
Stochastic mobility-based path planning in uncertain envi-
ronments. In IEEE/RSJ Int’l. Conf. on Intelligent Robotics
and Systems, 1183-1189.

Koenig, S., and Likhachev, M. 2005. Fast replanning
for navigation in unknown terrain. IEEE Transactions on
Robotics 21(3):354-363.

Kushner, H. J., and Dupuis, P. 2001. Numerical methods for
stochastic control problems in continuous time, volume 24.
Springer.

LaValle, S. M., and Sharma, R. 1997. On motion planning in

changing, partially predictable environments. Int’l Journal
of Robotics Research 16(6):775-805.

Likhachev, M., and Ferguson, D. 2009. Planning long dy-

namically feasible maneuvers for autonomous vehicles. Int’l
Journal of Robotics Research 28(8):933-945.

Likhachev, M.; Ferguson, D.; Gordon, G.; Stentz, A.; and
Thrun, S. 2008. Anytime search in dynamic graphs. Artifi-
cial Intelligence 172(14):1613-1643.

Luna, R.; Lahijanian, M.; Moll, M.; and Kavraki, L. E. 2014.
Fast stochastic motion planning with optimality guarantees
using local policy reconfiguration. In /IEEE Int’l. Conference
on Robotics and Automation.

Marthi, B. 2012. Robust navigation execution by planning
in belief space. In Robotics: Science and Systems.

Ong, S. C. W,; Png, S. W.; Hsu, D.; and Lee, W. S. 2010.
Planning under uncertainty for robotic tasks with mixed ob-
servability. Int’l Journal of Robotics Research 29(8):1053—
1068.

Papadimitriou, C. H., and Tsitsiklis, J. N. 1987. The com-
plexity of Markov decision processes. Mathematics of oper-
ations research 12(3):441-450.

Prentice, S., and Roy, N. 2009. The belief roadmap: Efficient
planning in belief space by factoring the covariance. Int’l
Journal of Robotics Research 8(11-12):1448-1465.

Shewchuk, J. R. 2002. Delaunay refinement algorithms for
triangular mesh generation. Computational Geometry 22(1-
3):21-74.

Simmons, R., and Koenig, S. 1995. Probabilistic robot nav-
igation in partially observable environments. In Int’l Joint
Conf. on Artificial Intelligence, 1080-1087.

Stentz, A. 1994. Optimal and efficient path planning for
partially-known environments. In IEEE Int’l. Conference
on Robotics and Automation, 3310-3317.

Stentz, A. 1995. The focussed D* algorithm for real-time
replanning. In Int’l Joint Conf. on Artificial Intelligence,
1652-1659.

Thrun, S.; Burgard, W.; Fox, D.; et al. 2005. Probabilistic
robotics, volume 1. MIT press Cambridge.

Toit, N. E. D., and Burdick, J. W. 2012. Robot motion
planning in dynamic, uncertain environments. /EEE Trans-
actions on Robotics 28(1):101-115.

