
Scaling Long-Horizon Online POMDP Planning
via Rapid State Space Sampling

Yuanchu Liang1*, Edward Kim1*, Wil Thomason2*, Zachary Kingston2*,
Hanna Kurniawati1, and Lydia E. Kavraki2

1 Australian National University, Canberra ACT 2601, Australia,
{Edward.Kim, Yuanchu.Liang, hanna.kurniawati}@anu.edu.au

2 Rice University, Houston TX 77005, USA,
{zak, wbthomason, kavraki}@rice.edu

Abstract. Partially Observable Markov Decision Processes (pomdps)
are a general and principled framework for motion planning under un-
certainty. Despite tremendous improvement in the scalability of pomdp
solvers, long-horizon pomdps (e.g., ≥15 steps) remain difficult to solve.
This paper proposes a new approximate online pomdp solver, called
Reference-Based Online POMDP Planner via Rapid State Space Sam-
pling (rop-ras3). rop-ras3 uses novel extremely fast sampling-based
motion planning techniques to sample the state space and generate a
diverse set of macro actions online which are then used to bias belief-space
sampling and infer high-quality policies without requiring exhaustive enu-
meration of the action space—a fundamental constraint for modern online
pomdp solvers. rop-ras3 is evaluated on various long-horizon pomdps,
including on a problem with a planning horizon of more than 100 steps
and a problem with a 15-dimensional state space that requires more than
20 look ahead steps. In all of these problems, rop-ras3 substantially
outperforms other state-of-the-art methods by up to several times.

Keywords: Motion Planning, Planning under Uncertainty, pomdp, Sampling-
based Motion Planning, Hardware Acceleration

1 Introduction

Motion planning in the partially observed and non-deterministic world is a
critical component of reliable and robust robot operation. Partially Observable
Markov Decision Processes (pomdps) [6,22] are a natural way to formulate such
problems. The key insight of the pomdp framework is to represent uncertainty
on the effects of actions, perception and initial state as probability distributions,
and then reason about the best strategy to perform with respect to distributions
over the problem’s state space, called beliefs, rather than the state space itself.

Although a pomdp’s systematic reasoning about uncertainty comes at the cost
of high computational complexity [18], the pomdp framework is practical for many
robotics problems [10], thanks in large part to sampling-based approaches. These

Authors with * have equal contributions

2 Liang et al.

approaches relax the problem of finding an optimal solution to an approximate one
by sampling of the belief space and computing the best strategies from only the
sampled beliefs. Scalable anytime methods under this approach (surveyed in [10])
have been proposed for solving large pomdp problems. However, computing a
good solution to long-horizon (e.g., ≥ 15 steps) pomdps remain difficult.

Early results [11] indicate that sampling based motion planning (sbmp)—
sampling-based approaches designed for deterministic motion planning—help al-
leviate the challenges of long-horizon problems in offline pomdp planning. Specif-
ically, sbmps can be used to generate suitable macro actions (i.e., sequences of
actions) to reduce the effective planning horizon for a pomdp solver. Macro actions
generated via sbmp automatically adapt to geometric features of the valid region
of the state space and tend to cover a diverse set of alternative macro actions.

Although the above approach performs well for offline pomdp planning, it is
often impractical for online planning for two reasons. First, the speed of sbmp,
which historically required hundreds of milliseconds to tens of seconds to find a
single motion plan. Second, most online pomdp planners [12,21,27] exhaustively
enumerate each action at each sampled belief in computing the best action to
perform. When macro actions are used, exhaustive enumeration is performed
over all macro actions; thus, the number of macro actions should be kept low,
thereby limiting action diversity in online pomdp planning.

However, the recently proposed Vector-Accelerated Motion Planning (vamp)
framework [25] enables sbmps to find solutions on microsecond timescales, multi-
ple orders-of-magnitude faster than prior approaches. Concurrently, recently pro-
posed Reference-Based pomdp Planners [8] can be used to drop the requirement
for exhaustive enumeration of actions at a small cost to full optimality. Leveraging
these two advances, we propose an online pomdp solver, called Reference-Based
Online POMDP Planner via Rapid State Space Sampling (rop-ras3). rop-ras3
uses vamp to generate diverse macro actions online and uses these macro actions
to bias belief space sampling for Reference-Based pomdp

We evaluate rop-ras3 on multiple long-horizon pomdps, including a problem
that requires over 100 lookahead steps and a 15-dimensional problem with a
planning horizon of over 20. Comparisons with state-of-the-art online pomdp
planners—including pomcp [21], a pomcp modification that uses vamp to gen-
erate macro actions, and despot [27,15] with learned macro actions—rop-ras3
substantially outperforms state-of-the-art methods in all evaluation scenarios.

2 Background and Related Work

2.1 Sampling-Based Motion Planners

Sampling-based motion planning (sbmp) is a common, effective family of al-
gorithms (e.g., [7,9]) for solving deterministic motion planning problems [13].
They are empirically able to find collision-free motions for high degree-of-freedom
(dof) robots in environments containing many obstacles by drawing samples
from a robot’s configuration space, the set of all possible robot states, q ∈ Q.

Online POMDP Planning via Rapid State Space Sampling 3

Constraints, such as (most commonly) avoiding collisions between the robot
and the environment or itself, partition the configuration space into valid—
Qfree—and invalid—Q \Qfree—states. A deterministic motion planning problem
is then a tuple (Qfree, qI , QG) representing the task of finding a continuous path,
p : [0, 1] → Qfree, from an initial state, qI , to a goal region, QG ⊆ Qfree (i.e.,
p(0) = qI and p(1) ∈ QG).

sbmps solve such problems by building a discrete approximation of Qfree as a
graph or tree connecting sampled states in Qfree by short, local motions. Once
both qI and Xg are connected by this structure, a valid robot motion plan can
be found with graph search methods. The solutions may not be robust against
uncertainties or changes in configuration spaces.

2.2 POMDP Background

An infinite-horizon pomdp is defined as the tuple ⟨S,A,O,Z, T , R, γ⟩ where S
denotes the set of all possible states of the agent, A denotes the set of all possible
actions the agent can perform, and O denotes all the possible observations that
the agent can perceive. The reward is a real-valued function R : S ×A → R and
is such that |R(s, a)| ≤ Rmax uniformly in S × A. The parameter γ ∈ (0, 1) is
the discount factor and sets the meaningful horizon of the pomdp.

In general, the agent does not directly observe the true state. So, at each
time-step, the agent maintains a belief about its state—a probability distribution
over the state space. More precisely, if b′ denotes the agent’s next belief after
taking action a and receiving the observation o, then the updated belief is given
by b′(s′) ∝ Z(o | s′, a)

∑
s∈S T (s′ | s, a) b(s) and we write b′ = τ(b, a, o) with

the belief update operator τ . The space of all possible beliefs is denoted by
B := ∆(S). For any given belief b and action a, the expected reward is given
by R(b, a) :=

∑
s∈S R(s, a)b(s). The quantity P (o | a, b) is the probability that

the agent perceives o ∈ O, having performed the action a ∈ A, under the belief
b ∈ B, and is intrinsic to the pomdp model.

A (stochastic) policy is a mapping π : B → ∆(A). We denote its distribution
for any given input b ∈ B by π(· | b). A policy is deterministic if it only has support
at a single point a ∈ A. Let Π be the class of all (stochastic) policies and Πd be
the class of all deterministic policies. By definition, it is clear that Πd ⊂ Π. Given
a policy π ∈ Π, we define the value function V π : B → R to be the expected total
discounted reward, V π(b) := E[

∑∞
t=0 γ

tR
(
bπt , A

π
t)
)
]. A solution to the pomdp is

a deterministic policy π∗ ∈ Πd satisfying V π∗
(b) = supπ∈Πd

V π(b) on B.
The Bellman equation

V (b) = max
a∈A

[
R(b, a) + γ

∑
o∈O

P (o | a, b)V
(
τ(b, a, o)

)]
(1)

is satisfied by the optimal value function V π∗
. Since the belief update is completely

determined by an action-observation pair, each reachable belief can be identified
with a history of action-observation sequences. Hence, (1) can be equivalently
expressed by interchanging the belief b with a history h.

4 Liang et al.

2.3 Long-Horizon POMDPs

Solving large long-horizon pomdps remains a significant challenge due to the dual
curses of dimensionality and history—i.e., respectively, the exponential growth
of the beliefs and histories with respect to the state space and time horizon.
The former challenge is partially addressed by recently proposed sampling-based
approximate solvers [12,21,27] that plan over action-observation histories and
maintain a state particle estimate of the true belief at each node. However, the
curse of history persists because of the exponential complexity associated with
the belief space due to long planning horizons.

A common approach to evade the curse is to plan over macro actions—which
are a pre-selected set of primitive action sequences [4,5,11,15,16,24]—and then to
employ an out-of-the-box pomdp planner on the abstracted problem. Although
this reduces the effective planning horizon, the approach is not without its limi-
tations. The choice of class is critical and, depending on the method, automatic
construction of such classes can require significant computational effort–e.g., the
learning time for magic [15] can be on the order of hours. Further, irrespective of
whether macro actions are used, most online pomdp planners [12,27,21] exhaus-
tively enumerate all actions from each sampled belief in order to compute the
gradient of the pomdp value function. Reference-Based pomdp Planners remove
this limitation by solving a related pomdp optimization problem analytically,
reducing the branching factor of the belief tree and the numerical computation
in planning to estimating expectations over the state, action, and observation
spaces.

3 POMDP Planning with SBMP-Generated Trajectories

We begin by presenting a general mechanism to integrate belief-space sampling
of a typical online pomdp planner with state space sampling and macro-action
generation via sbmp. To infer the best action, the pomdp planner samples a
set of beliefs reachable from its current belief and represents them as a belief
tree—i.e. a tree whose nodes represent beliefs (or, equivalently, histories) and
whose edges represent action-observation pairs. Methods vary in the construction
of the belief tree. Typically, state-of-the-art online planners are particle-based
planners—i.e., they maintain a value and a belief at each history node where
beliefs are represented as sampled state particles at each node. The planner then
searches the tree forward by judicious sampling—indeed, the choice of sampler is
the main difference between planners. When an unvisited node is encountered
during search, existing planners expand every action to receive a crude value
estimate before propagating newly obtained information back to the root node
via the Bellman equation.

The choice of sampler for forward search is the essential component for achiev-
ing high-quality policies online. Indeed, being able to exploit prior knowledge
about policies that cover the solution is key [14]. The development of hardware-
accelerated sbmp via simd-vectorization in [25] provides a powerful capability to
do this. Being able to generate computationally cheap, high-quality trajectories

Online POMDP Planning via Rapid State Space Sampling 5

Algorithm 1 Online pomdp Planner with sbmp-Generated Macro Actions

1: Initialize search tree T complete with belief state particles
2: while time permitting do
3: T ← SBMPExpandTree(T)
4: Re-estimate values on T and propagate back up to the root node
5: end while

SBMPExpandTree(T)

1: Search T (using a sampling heuristic or sbmp) recording data along the way
2: Arrive at a (set of) nodes H in T to expand
3: for h ∈ H do
4: Rapidly sample sbmp paths p between particles in h to “promising” targets
5: Add nodes corresponding to actions crafted from p to T
6: Sample new observations and histories, update state particles and add to T
7: while not stopping criteria (e.g. desired depth reached) do
8: Repeat lines 1–6 on the newly expanded tree T
9: end while
10: end for

at frequencies in the range of kilohertz enables a planner to sample a belief and
rapidly generate constraint-satisfying (e.g., collision-free) paths to goals or to
highly informative states; thus, promising macro actions can be dynamically
created as a subroutine within a pomdp planner itself in fractions of a sec-
ond. Algorithm 1 broadly outlines how accelerated sbmp can integrate with any
off-the-shelf online particle-based pomdp planner. Although, in principle, any
planner could be used to sample trajectories in Algorithm 1, the requirement for
speed is critical; indeed, the speed makes it tractable to create a rich covering
set of the pomdp’s solution space fast, over which a planner can then optimize.

Moreover, Algorithm 1 can generalize a large class of existing online particle-
based planners including (but not limited to) pomcp [21], despot [27] and their
derivatives [3,12,15,16]. While this procedure certainly enhances the power of
these algorithms—as demonstrated by our results in Sect. 5—the requirement
of existing planners to expand all actions before proceeding to deeper ones
significantly hinders the scalability of Algorithm 1 to large-scale pomdps with
complex domains. Typically, the belief tree coverage is good for short search
depths, but long-term information is seldom exploited and such planners perform
poorly for long horizon problems. Unfortunately, the requirement of exhaustive
enumeration seems baked in because of the form of the Bellman equation (1).

Notwithstanding this, the limitation can be softened by employing a Reference-
Based pomdp Planner [8]. The underlying idea is to solve a pomdp whose reward
objective is penalized for deviating too far from a given stochastic reference policy
π̄(· | b)—in the context of Algorithm 1, this can be viewed as a sbmp-induced
(macro) action sampler for any given belief (or history). The formulation yields
an analytic Bellman equation which allows Reference-Based Planners to always
search to a predefined depth by sampling the reference policy and maintaining
the empirical backups rather than enumeratively maximizing value estimates.

6 Liang et al.

Therefore, reference-based planners trade off algorithmic parsimony and long-
horizon exploitation for pure reward maximization—see [8] and Sect. 4.1 for
more discussion. Capitalizing on gains from simd-vectorized sbmp mitigates
this trade-off by inducing reasonable (albeit sub-optimal) stochastic reference
policies which can be deformed towards the solution by an online reference-
based planner. As with all approximate solvers, this does not yield truly optimal
rewards. However, policies generated by this procedure outperform benchmarks
in complex domains under uncertainty and are reasonably robust with respect
to the choice of reference. We emphasize that this modification is not negligible.
Indeed, in Sect. 5, experimental results show that the performance deteriorates
with problem complexity if the agent only executes policies derived from sbmp
that do not account for uncertainty.

4 ROP-RaS3

In this section, we proceed to instantiate Algorithm 1 with a specific online
anytime Reference-Based Planner—namely, Reference-Based Online POMDP
Planner via Rapid State Space Sampling (rop-ras3). To this end, we motivate
it by briefly recounting the Reference-Based pomdp formulation from [8] and
adapt it to our context before outlining vamp’s capability to induce high-quality
reference policies. The algorithm is then constructed on top of these techniques.

4.1 Reference-Based POMDPs

The concept of a Reference-Based pomdp was introduced in [8] as a gener-
alization of the mdp formulations using kl-penalization in [2,26] to pomdps.
The formulation provides a framework to simplify approximate pomdp plan-
ning. Specifically, a Reference-Based pomdp is completely specified by the tuple
⟨S,A,O,Z, T , R, γ, η, π̄⟩ where, in addition to the standard data, we have a tem-
perature parameter η > 0 and a given (stochastic) reference policy π̄. The value
V of a Reference-Based pomdp with respect to the stochastic policy π̄(· | b) for a
given b ∈ B satisfies the following Bellman equation

V(b) = sup
π∈Π

[
R(b, π)− 1

η
KL(π ∥ π̄) + γ

∑
a,o

P (o | a, b)π(a | b)V
(
τ(b, a, o)

)]
(2)

where R(b, π) :=
∑

a,s R(s, a)π(a | b)b(s) is the reward estimate. A solution is a
stochastic policy π ∈ Π that maximizes the value. A Reference-Based pomdp can
therefore be viewed as a penalized pomdp whose objective is modified to trade off
two (potentially competing) objectives: (1) abide by the reference policy, and (2)
maximize reward. The trade-off is balanced by η and the quality of the reference
policy—higher-quality reference policies are those that reduce the kl-divergence
between the solution of the unpenalized pomdp (1) and the reference policy. The
supremum in (2) can be attained analytically by extending an argument of [1,2]

Online POMDP Planning via Rapid State Space Sampling 7

to pomdps. This yields an equivalent form of (2)—i.e.,

V(b) = 1

η
log

[∑
a

π̄(a | b) exp
{
η
[
R(b, a) + γ

∑
o

P (o | a, b)V
(
τ(b, a, o)

)]}]
. (3)

Moreover, the exact solution of the Reference-Based pomdp is given by

π∗(a | b) ∝ π̄(a | b) exp
{
η
[
R(b, a) + γ

∑
o

P (o | a, b)V∗(τ(b, a, o))]}. (4)

The main point is that enumerative maximization can be avoided; instead,
the solution to a Reference-Based pomdp can be approximated by successively
iterating the analytic Bellman backup (3) exactly. This procedure is guaranteed
to converge to a unique solution V∗ from which the policy can be read off from
(4). Unfortunately, requiring exact backups is a significant one, given the cost
of computing exact beliefs and, consequently, the immediate expected rewards
R(b, a) for every node in the belief tree. Still, the expectations PV(b, a) :=∑

o P (o | a, b)V
(
τ(b, a, o)

)
and W(b) :=

∑
a π̄(a | b) exp{η[R(b, a) + γPV(b, a)]}

can be approximated by sampling the reference policy and generative model.
Hence, there is no limitation to exhaustively enumerate actions and improving
value estimates is extremely efficient as backups can be compute by maintaining
sums rather than enumeratively maximizing over actions.

Even so, the simplicity offered by the formulation comes at a cost. If the
optimal policy of the pomdp with an unmodified objective is too far from the
reference policy (in the sense of the kl-divergence), pure reward maximization
can be compromised. Of course, the optimal policy and hence this divergence are
not known a priori. Instead rop-ras3 assumes that reference policies generated
by accelerated sbmps provide a reasonable starting point (see Sect 4.2), leveraging
them to rapidly sample high-quality deterministic policies to induce a reasonable
partially observed reference policy.

4.2 Vector Accelerated Motion Planning

Towards achieving fast motion planning, recent works have introduced new per-
spectives on hardware-accelerated sbmps, using either cpu single-instruction,
multiple-data (simd) [25] or gpu single-instruction, multiple-thread (simt) [23]
parallelism to find complete motion plans in tens of microseconds to tens of
milliseconds. In particular, the authors of vamp [25] proposed a simd-vectorized
approach to computing sbmp primitives (i.e., local motion validation) that ap-
plies to all sbmps and is available on any modern computer without specialized
hardware; thus, it is now possible to generate probabilistically-complete, global,
collision-free trajectories for high-dof systems at kilohertz rates—on the scale
of tens of thousands of plans per second. The key insight of this work is to
lift the “primitive” operations of the sbmp to operate over vectors of states in
parallel. Functionally, this enables checking validity of a spatially distributed set
of states over a candidate motion in parallel for the cost of a single collision check,
massively lowering the expected time it takes to find colliding states along said

8 Liang et al.

motion. This development has called into question previously held perceptions
that sbmps are relatively time-expensive subroutines and—in the context of
planning under uncertainty—opens the door to using sbmps to guide pomdp
planning on the fly.

4.3 ROP-RaS3

We are now in a position to describe rop-ras3 in detail. Algorithm 2 presents the
pseudocode. rop-ras3 adds new history nodes h to the search tree by sampling
macro actions a⃗ from a reference policy induced from a simd-vectorized sbmp
up to a predefined depth D, keeping track of the states s, (macro) observations
o⃗ and rewards r sampled under a generative model G—i.e., a simulator for the
pomdp environment (this is largely handled by Simulate in Algorithm 2). When
the required search depth is reached, rop-ras3 obtains a crude estimate of the
root node’s value (e.g. the a* goal distance). The planner then approximates the
exact backup (function MaintainExpectation in Algorithm 2) by carefully
maintaining an empirical expectation, repeating backups on the simulated belief-
tree path up to the root node—this form of backup is justified by our discussion
in Sect. 4 and, in particular, Eq. (3). The above procedure is repeated until
timeout, at which point the optimal policy’s empirical estimate is read off and
executed—the form of estimate is given by (4).

The subroutine SampleMacroActionSBMP leverages vamp as the refer-
ence policy to sample macro actions. Our implementation of rop-ras3 instan-
tiates this subroutine with different strategies to select or design meaningful
target points, towards which vamp’s planners can be used to rapidly generate a
path. We emphasize that executing a reference policy designed only in this way
performs poorly under uncertainty (see Sect. 5), the point being to improve this
policy by planning under uncertainty. For environments with well-defined goal
and informative states (e.g. landmarks), examples include the following:

– Uniform Uniformly sample goal configurations with a given probability; oth-
erwise, sample an informative state configuration uniformly.

– Distance. Uniformly sample a goal configuration with given probability; oth-
erwise, sample an informative state with a probability inversely proportional
to a distance between the configurations of the current and informative states.

– Entropy. Given the normalized belief entropy H, sample goal configurations
with probability 1−H; otherwise sample remaining informative configurations
with probability inverse to a distance between the configurations of the current
and informative states.

5 Experiments

We evaluate rop-ras3 on long-horizon pomdp problems systematically analysing
the effects of its components—i.e., vamp and our instantiation of a reference-based
planner—on its performance.

Online POMDP Planning via Rapid State Space Sampling 9

Algorithm 2 rop-ras3

1: Initialize tree T rooted at h
2: while time permitting do
3: Simulate(h)
4: end while

Simulate(h)

1: Sample s from belief particles of h
2: if depth(h) > D then
3: return ValueHeuristic(h, s)
4: end if
5: a⃗← SampleMacroActionSBMP(h, s)
6: Sample (s′, o⃗, r(s, a⃗; γ)) from generative model G (s, a⃗)
7: Create nodes for ha⃗ and ha⃗o⃗ if not created already
8: Add s′ to belief particles of ha⃗o⃗
9: return log(MaintainExpectation(h, a⃗, o⃗, s′, r))/η

SampleMacroActionSBMP(h, s)

1: Get the current configuration qstart from s (assert free)
2: Select or design a “valuable” free goal configuration qgoal
3: Plan path p from qstart to qgoal using fast sbmp
4: return (macro) action a⃗ “fashioned” from p

MaintainExpectation(h, a⃗, o⃗, s′, r)

1: w ← N(h)W(h)−N(ha⃗) exp
(
η
[
r(ha⃗) + γ |⃗a|PV(ha⃗)

])
2: p← N(ha⃗)PV(ha⃗)−N(ha⃗o⃗)V(ha⃗o⃗)
3: N(ha⃗)← N(ha⃗) + 1
4: r(ha⃗)← r(ha⃗) + r − r(ha⃗)/N(ha⃗)
5: PV(ha⃗)←

(
p+N(ha⃗o⃗)Simulate(ha⃗o⃗)

)
/N(ha⃗)

6: N(h)← N(h) + 1

7: W(h)← w +N(ha⃗) exp
(
η
[
r(ha⃗) + γ |⃗a|PV(ha⃗)

])
/N(h)

8: return W(h)

5.1 Scenarios and Benchmark Methods

To achieve our aims, we evaluated rop-ras3 on 4 different scenarios:

Light Dark (Figure 1a). This is a variation of the classical Light Dark prob-
lem. The state and observation space are continuous and identical to those
in [15,16,19], but we modify the problem to make the action space discrete—at
each step, the robot can move in four cardinal directions with a fixed step-size
of 0.5. Moreover, the agent receives feedback when it reaches the goal. The step
and goal rewards and -0.1 and 100 respectively. The light stripe, the goal and the
initial positions are randomly drawn from an 8× 8 unit box but are constrained
to be 4 units away from each other. Hence, a minimum of 8 primitive actions are
required to navigate to the goal.
Maze2D (Figure 1b). This is a very long-horizon problem, modified from the
discrete 2D Navigation scenario in [11]. A 2-dof mobile cuboid robot needs to

10 Liang et al.

navigate from one of the spawn points to a goal region without colliding with
obstacles or entering a danger zone. The robot’s state is its position on the
map (S = [0, 50]2). At each time step, the robot can move in one of the four
cardinal directions (|A| = 4) with a fixed step size, but there is a 20% chance
that the robot moves in either direction orthogonal to the intended direction; if
the resulting action would cause a collision with an obstacle, it does not move.
The robot can only localize itself in landmark regions receiving position readings
with small Gaussian noise inside the landmarks and no observations otherwise.
The robot starts from one of the two spawn points marked by orange circles in
the maze. Each step costs the robot -0.1, the danger zone penalty is -800 and the
goal reward is 800. To perform well over the long horizon—a minimum of 100
primitive actions is required to reach the goal—this scenario requires the robot
to take detours to localize and avoid danger zones before navigating to the goal.
Random3D (Figure 1c). This is a 3D navigation problem with uniformly
random obstacles, landmarks, danger zones and goals; the only constraint is
that the goal needs to be at least 40 units from the robot’s spawn position
at the map’s center and a valid path must exist to the goal. The pomdp’s
state and action spaces are respectively S = [0, 50]2 × [0, 6] ⊂ R3 and the 3D
cardinal directions A = {North,South,East,West,Up,Down}. The observation,
transition and reward models are essentially the same as that of Maze2D except
that the error directions are randomized from the 3D cardinal ones. Our aim is to
systematically evaluate rop-ras3 on environments with progressively increasing
obstacle density. The chances that the sbmp fails to find a path within a given
time limit increases with the obstacle density and a pomdp planner needs to
consider more diverse macro actions to find a good motion strategy.
Multi-Drone with Teleporting Target (Figure 1d). This scenario is sim-
ilar to the multi-robot tag and predator-prey problems considered in [17,20].
Four drones, initialized at the center of the environment, need work together to
firstly detect and capture a point target (in green) whose initial position is not
known to the drones. The pomdp’s state space is S = ([0, 30]2 × [0, 4])5 ⊂ R15

consisting of the valid positions of the holonomic drones and an evading tar-
get. The action space is the space of all 4-tuples consisting of the 3D cardinal
directions (|A| = 24). Both the drones and the target move with a step size of
0.5. The target has a detection radius of 4; if any drones are within this range,
the target will move in the direction furthest from the closest drone’s location.
Otherwise, it moves randomly. Each drone has a detection radius of 5 units and
receives noisy readings of the target’s position when the target is within this
radius, otherwise no observation is received. If any drone receives an observation,
all drones share this collective knowledge. The target is captured when at least
one drone is within 1.5 units distance from the target. However, the target can
teleport to the opposite of the map once it collides with the map boundaries but
drones cannot. This problem requires drones to cooperate to capture the target
by either surrounding it within the map’s boundaries or by anticipating tele-
portation elswhere. A reward of 500 is given if the target is captured, otherwise
a -0.1 penalty is incurred by the drones for each step. A run terminates after

Online POMDP Planning via Rapid State Space Sampling 11

(a) Light Dark (b) Maze2D

(c) Random3D (d) Multi-Drone Tag

Fig. 1: Benchmark environments with obstacles (grey), landmarks (purple), danger
zones (red), starting locations (orange) and goals and targets (green)

40 steps. This is a long-horizon problem—even if the target’s initial position is
known, at least 20 primitive steps are required to capture the tag.

We compare rop-ras3 with several instantiations of Algorithm 1 with state-
of-the-art pomdp solvers, as well as our reference-based instantiation rop-ras3.
Specifically, we compare with the following:

Belief-VAMP (B-VAMP). The planner maintains the belief of the current
state of the agent but only takes actions returned by vamp’s macro action sampler
without planning.
Ref-Basic. The Reference-Based pomdp Planner from [8] (no vamp).
POMCP [21]. A standard benchmark for online pomdp planning.
R-POMCP. pomcp with macro actions generated by vamp in the same way
as rop-ras3, but a finite set of macro actions are fixed for each belief node over
which pomcp optimizes.
MAGIC [15]. A variation of despot [27] that uses learnable macro actions
generated via Actor-Critic approach. magic uses fixed-length macro actions, so
comparisons are for varying lengths (e.g. magic-x means the macro action length
is x).

12 Liang et al.

RMAG [16]. DESPOT with macro action learning boosted by Recurrent Neural
Networks. We compare against rmag over different macro-actions lengths.

5.2 Experimental Setup

For evaluation, all variants of rop-ras3 are implemented in Cython following [28].
vamp is implemented in C++ but used via a Python API. We avoid implementing
benchmark methods from scratch for a fairer comparison; the pomcp implementa-
tion is from [28] and the implementations of pomcp, magic, rmag and Ref-Basic
all use the code implemented by the their respective authors [15,16].

All methods are provided with the same planning time of 1 second across
scenarios with the except of Light Dark where the planning times 0.1s. We also use
the same discount factor (γ = 0.99) for all planners. The temperature parameter
η for the Reference-Based Planners rop-ras3 and Ref-Basic is η = 0.2. magic
and rmag are trained on a 4070 GPU with data collected across 500000 runs
(∼3 hours of training). Parameters have been tuned to optimize performance for
each problem. Aforementioned sampling strategies (see Section 4) are tested in
all environments where it is appropriate. For the multi-drone environment, the
sampler randomly samples a belief particle. For that particle, the drone nearest
to the target converges to it while other drones spread to a uniformly sampled
free configuration.

5.3 Results and Discussions

Table 1: Results on Light Dark and Maze2D
(Light Dark: x=4, y=8, z=16. Maze2D: x=8, y=16, z=24)

Light Dark Maze2D

Planners Heuristics
#

Episodes
Succ.
%

E[Tot.Reward]
(stdErr)

Steps
#

Episodes
Succ.
%

E[Tot.Reward]
(stdErr)

Steps

B-vamp entropy N/A 76 70.2 (7.9) 46 N/A 40 -65.6 385

pomcp N/A 282 77 72.6 (7.9) 42 314 0 -80 (0) 800

Ref-Basic entropy 44 50 45.1 (9.3) 49 33 0 -807 (3.2) 75

R-pomcp N/A 262 83 79 (6.9) 31 279 0 -146 (0) 784

magic-x N/A N/A 88 85.0 (1.1) 29 N/A 0 -80 (11) 800

magic-y N/A N/A 85 81.9 (1.2) 31 N/A 0 -106 (17) 800

magic-z N/A N/A 78 75.9 (1.3) 35 N/A 1.1 -408 (12) 716

rmag-x N/A N/A 88 84.8 (1.1) 29 N/A 0 -80 (0) 800

rmag-y N/A N/A 83 80.4 (1.2) 32 N/A 7.2 244 (13) 586

rmag-z N/A N/A 80 77.1 (1.3) 35 N/A 0 -80 (0) 800

rop-ras3 uniform 124 100 97.2 (0.1) 20 115 90 596 (57) 319

rop-ras3 distance 119 97 94.2 (3.3) 24 253 93 698 (38) 382

rop-ras3 entropy 26 100 97.0 (0.3) 23 46 100 761 (2.9) 293

For each scenario and each method, we ran the method 30×, and present the
statistics of these runs in Table 1, Table 2, and Table 3. Note that magic and
rmag were only run on Light Dark and Maze2D because they do not naturally
extend to high-dimensional state spaces. Whilst, pomcp and Ref-Basic fails in

Online POMDP Planning via Rapid State Space Sampling 13

Table 2: Results on Random3D
(#1: 100 obstacles, 15 danger zones. #2: 200 obstacles, 10 danger zones.

#3: 300 obstacles, 10 danger zones. #4: 400 obstacles, 5 danger zones.)

Heuristics
Exp
#

Ref.
Policy
Fail %

Success
%

E[Tot.Reward]
(stdErr)

Steps
Exp
#

Ref.
Policy
Fail %

Success
%

E[Tot. Reward]
(stdErr)

Steps

B-vamp N/A

1

N/A 0 -632 (52) 435

2

N/A 10 -307 (65) 526
R-pomcp N/A N/A 7 -89 (52.2) 741 N/A 7 -157 (64) 700
rop-ras3 uniform 6 60 236 (121) 287 12 63 224 (123) 319
rop-ras3 distance 6 63 266 (118) 272 12 60 204 (123) 373
rop-ras3 entropy 1 50 25.2 (130) 345 2 47 124 (116) 388

B-vamp N/A

3

N/A 3.3 -337 (70) 561

4

N/A 0 -243 (56) 750
R-pomcp N/A N/A 7 -158 (62.1) 665 N/A 0 -117 (28) 764
rop-ras3 uniform 15 63 297 (112) 463 24 67 353 (101) 504
rop-ras3 distance 17 67 367 (96.6) 452 18 50 237 (97) 505
rop-ras3 entropy 4 43 132 (105) 529 5 33 61.6 (97) 560

Table 3: Results on Multi Drones Tag

Episodes
Succ.
%

Acc.
Rewards

Steps

B-vamp N/A 7.5 -1.43 (25) 390

R-pomcp 99 20 64 (38) 345

rop-ras3 106 89 423 (29) 171

all runs of Random3D and Multi Drone Tag, and therefore excluded from the
tables for brevity.

The results indicate that all variants of rop-ras3 substantially outperform
all comparator methods in all evaluation scenarios.

The improvement provided by rop-ras3 is lowest in Light Dark (the simplest
evaluation scenario). All variants of rop-ras3 achieves a success rate of up to 28%
higher than R-pomcp, magic, and rmag, whilst in other scenarios, all variants
of rop-ras3 improves the success rate of the comparator methods by many folds.
The reason is Light Dark problem requires much lower planning horizon and has
less uncertainty, compared to other scenarios. This simplicity is indicated by the
good performance of methods that do not use macro actions, such as pomcp and
Ref-Basic, and by the good performance of B-vamp, which reasons with respect
to only a sampled state of the belief.

When the scenario requires much longer planning horizon (e.g., Maze2D) or
has higher uncertainty and more complex geometric structures, the benefit of
rop-ras3 increases. By using vamp, rop-ras3 can quickly generate much more
diverse macro actions that capture the geometric features of the problem well.
Whilst, Reference-based pomdp solver enables rop-ras3 to utilise much more
diverse macro-actions efficiently, compared to other comparator methods.

Learning-based methods perform poorly in Maze2D due to the difficulty in
learning suitable macro actions with fixed length. In contrast, by using sbmp,
rop-ras3 is able to better capture the twist and turns the agent needs to perform
due to geometric features of the environment.

14 Liang et al.

rop-ras3 is also robust to performance degradation from the underlying
reference policies. We ran 4 variants of Random3D with increasing number of ob-
stacles. The results shown in Table 2 demonstrates that rop-ras3’s performance
(especially with uniform random sampling heuristics) do not degrade much even
when the reference policy (i.e. rrt-Connect) fail percentage increases due to
increasingly narrower passages in the maze. The reason is rop-ras3 uses the
results of rrt-Connect only to provide a set of alternative sequences of actions to
perform. As long as there is sufficient diversity of macro-actions (aka., sufficient
support of the reference policy), the Reference-based pomdp solver component of
rop-ras3 can converge to a good strategy for solving the pomdp problem fast.

For the high dimensional planning problem – Multi-Drone Tag, rop-ras3
performs at least 4 times better than the rest of the methods. It is the only
method that exhibits strategies among drones to actively discover and surround
the tag.

Both B-vamp and pomcp cannot easily adapt to the uncertainties from deter-
ministic planning as the former do not incorporate any probability calculations
associated with actions and the latter fixes a set of macro actions from the
reference policy for each belief node which could either perform poorly if the
the reference policy keeps failing or the approximated values associated with
the action is poor due to limited number of simulated episodes within a tight
planning time.

Table 4: Ablation Study of Exploration Constants for rop-ras3 in Maze2D

ϵ
success

%
E[Tot.Reward]

(stdErr)
#Steps ϵ

success
%

E[Tot.Reward]
(stdErr)

#Steps

0 100 761 (2.9) 293 0.1 87 603 (79) 378

0.2 95 699 (44) 314 0.3 87 573 (83) 374

0.4 87 579 (75) 444 0.5 80 503 (82) 460

Now, one may be concern that limiting sub-goal sampling to only the set
of states where good observations or rewards can be gained is too restrictive.
Therefore, we also evaluate rop-ras3 when the sub-goals are sampled in an
ϵ-greedy fashion, where with ϵ probability rop-ras3 samples sub-goals from the
entire state space and (1− ϵ) probability, it follows the dynamic entropy sampling
herusitcs mentioned in Section 4. We evaluate this ϵ-greedy sampling strategy
on the Maze2D scenario. The results are shown in Table 4. In this scenario,
rop-ras3 performs better with lower ϵ. However, as ϵ increases, its performance
does not drop by much.

6 Summary

This paper presents a new online approximate pomdp solver Reference-Based
Online POMDP Planner via Rapid State Space Sampling (rop-ras3) which

Online POMDP Planning via Rapid State Space Sampling 15

uses vamp to sample the state space and rapidly generate a large number of
macro actions online. These macro-actions reduce the effective planning horizon
required and are adaptive to geometric features of the robot’s free space thanks
to sbmp. Since Reference-Based pomdp Planners use macro actions only to
bias belief-space sampling and do not require exhaustive enumeration of macro
actions, rop-ras3 can efficiently exploit many diverse macro actions to compute
good pomdp policies fast. Evaluations on various long horizon pomdps show
that rop-ras3 outperforms state-of-the-art methods by multiple factors.

7 Acknowledgements

YL, EK, and HK have been partially supported by the ANU Futures Scheme.
YL has been supported by Australia RTP scholarship. HK has been partially
supported by the SmartSat CRC. ZK, WT and LEK have been supported in part
by NSF 2008720, 2336612, and Rice University Funds. WT has been supported
by NSF ITR 2127309—CRA CIFellows Project.

References

1. M. G. Azar, V. Gómez, and H. Kappen. Dynamic policy programming with function
approximation. In Proc. of the Fourteenth International Conference on Artificial
Intelligence and Statistics, volume 15 of Proceedings of Machine Learning Research,
pages 119–127, 2011.

2. M. G. Azar, V. Gómez, and H. Kappen. Dynamic policy programming. JMLR,
13:3207–3245, 2012.

3. P. Cai, Y. Luo, D. Hsu, and W. S. Lee. Hyp-despot: A hybrid parallel algorithm
for online planning under uncertainty. IJRR, 40(2-3):558–573, 2021.

4. G. Flaspohler, N. A. Roy, and J. W. Fisher III. Belief-dependent macro-action
discovery in pomdps using the value of information. In H. Larochelle, M. Ranzato,
R. Hadsell, M. Balcan, and H. Lin, editors, NeurIPS, volume 33, pages 11108–11118.
Curran Associates, Inc., 2020.

5. R. He, E. Brunskill, and N. Roy. PUMA: planning under uncertainty with macro-
actions. In M. Fox and D. Poole, editors, AAAI, 2010.

6. L. Kaebling, M. Littman, and A. Cassandra. Planning and acting in partially
observable stochastic domains. Artificial Intelligence, 101(1–2):99–134, 1998.

7. L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars. Probabilistic
roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans-
actions on Robotics and Automation, 12(4):566–580, 1996.

8. E. Kim, Y. Karunanayake, and H. Kurniawati. Reference-based POMDPs. In
NeurIPS, 2023.

9. J. J. Kuffner and S. M. LaValle. RRT-connect: An efficient approach to single-query
path planning. In ICRA, volume 2, pages 995–1001.

10. H. Kurniawati. Partially observed Markov decision processes and robotics. Annual
Review of Control, Robotics, and Autonomous Systems, 5:254–277, 2022.

11. H. Kurniawati, Y. Du, D. Hsu, and W. S. Lee. Motion planning under uncertainty
for robotic tasks with long time horizons. IJRR, 30(3):308–323, 2011.

16 Liang et al.

12. H. Kurniawati and V. Yadav. An online POMDP solver for uncertainty planning
in dynamic environment. In ISRR, pages 611–629, 2013.

13. S. M. LaValle. Planning Algorithms. Cambridge University Press.
14. W. Lee, N. Rong, and D. Hsu. What makes some POMDP problems easy to

approximate? In J. Platt, D. Koller, Y. Singer, and S. Roweis, editors, NeurIPS,
volume 20. Curran Associates, Inc., 2007.

15. Y. Lee, P. Cai, and D. Hsu. MAGIC: Learning Macro-Actions for Online POMDP
Planning . In RSS, Virtual, July 2021.

16. Y. Liang and H. Kurniawati. Recurrent macro actions generator for POMDP
planning. In IROS, pages 2026–2033, 2023.

17. S. C. Ong, S. W. Png, D. Hsu, and W. S. Lee. Planning under uncertainty for
robotic tasks with mixed observability. IJRR, 29(8):1053–1068, 2010.

18. C. H. Papadimitriou and J. N. Tsitsiklis. The complexity of Markov decision
processes. Mathematics of Operations Research, 12(3):441–450, 1987.

19. R. Platt Jr, R. Tedrake, L. P. Kaelbling, and T. Lozano-Perez. Belief space planning
assuming maximum likelihood observations. In RSS, volume 2, 2010.

20. J. Schwartz, R. Newbury, D. Kulić, and H. Kurniawati. Posggym. https://github.
com/RDLLab/posggym, 2023.

21. D. Silver and J. Veness. Monte-Carlo planning in large POMDPs. In J. Lafferty,
C. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta, editors,NeurIPS, volume 23.
Curran Associates, Inc., 2010.

22. R. D. Smallwood and E. J. Sondik. The optimal control of partially observable
Markov processes over a finite horizon. Operations Research, 21(5):1071–1088, 1973.

23. B. Sundaralingam, S. K. S. Hari, A. Fishman, C. Garrett, K. Van Wyk, V. Blukis,
A. Millane, H. Oleynikova, A. Handa, F. Ramos, N. Ratliff, and D. Fox. CuRobo:
Parallelized collision-free robot motion generation. In ICRA, pages 8112–8119.

24. G. Theocharous and L. Kaelbling. Approximate planning in POMDPs with macro-
actions. In S. Thrun, L. Saul, and B. Schölkopf, editors, NeurIPS, 2003.

25. W. Thomason, Z. Kingston, and L. E. Kavraki. Motions in microseconds via
vectorized sampling-based planning. In ICRA, 2024.

26. E. Todorov. Linearly-solvable Markov decision problems. In B. Schölkopf, J. Platt,
and T. Hoffman, editors, NeurIPS, volume 19. MIT Press, 2006.

27. N. Ye, A. Somani, D. Hsu, and W. S. Lee. DESPOT: Online POMDP planning
with regularization. JAIR, 58:231–266, 2017.

28. K. Zheng and S. Tellex. pomdp py: A framework to build and solve pomdp problems.
In ICAPS 2020 Workshop on Planning and Robotics (PlanRob), 2020.

https://github.com/RDLLab/posggym
https://github.com/RDLLab/posggym

	Scaling Long-Horizon Online POMDP Planning via Rapid State Space Sampling

