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Abstract

IEEE 802.11b wireless Ethernet is rapidly becoming the stan-
dard for in-building and short-range wireless communica-
tion. Many mobile devices such as mobile robots, laptops and
PDAs already use this protocol for wireless communication.
Many wireless Ethernet cards measure the signal strength of
incoming packets. This paper investigates the feasibility of
implementing a localization system using this sensor. Us-
ing a Bayesian localization framework, we show experiments
demonstrating that off-the-shelf wireless hardware can accu-
rately be used for location sensing and tracking with about
one meter precision in a wireless-enabled office building.

1 Introduction

Recent advances in wireless networking has made it inex-
pensive and fast. The IEEE 802.11b wireless Ethernet stan-
dard has been deployed in office buildings, museums, hos-
pitals, shopping centers and other indoor environments [19].
Many mobile robots already make use of wireless networking
for communication. Wireless Ethernet devices measure sig-
nal strength as part of their normal operation. Signal strength
tends to vary significantly with position and obstacles in the
environment [12]. We believe that off-the-shelf wireless Eth-
ernet adapters on a mobile robot or other device such as a
laptop or PDA could be used for global pose estimation.

Determining the pose of the robot from physical sensors has
been referred to as “the most fundamental problem to provid-
ing a mobile robot with autonomous capabilities” [4]. Lo-
calization in an outdoor setting can readily be achieved using
GPS [18]. However, indoors, where there are many interest-
ing mobile robotics applications, position is determined using
a variety of sensors such as vision, sonar, IR and laser range-
finding. Choosing the appropriate sensors to infer position
depends on various design considerations such as cost, ease
of deployment and availability of computational resources.

Mobile robots already employing wireless Ethernet for com-
munication purposes could be retrofitted in software to make
use of their adapter as a location sensor. Location sensing with
wireless Ethernet might be very useful for a low-cost robot or
team of robots wishing to execute global localization, navi-

gation and exploration tasks. This is of particular interest for
some multi-robot configurations; while communicating, the
robots could measure signal strengths to each other and en-
gage in collaborative localization.

In the field of mobile computing, there are other important
uses for localization with wireless Ethernet. System adminis-
trators might want to track laptop users for security purposes
or users could execute tasks such as printing to the nearest
printer or getting help finding a particular office. There are
many examples in the mobile computing literature that would
benefit from reliable localization primitives [10, 3, 25].

The chief difficulty in localization with wireless Ethernet is
predicting signal strength. As a sensor, RF signal strength
measured indoors is non-linear with distance and has non-
Gaussian noise resulting for multi-path effects and environ-
mental effects such as building geometry, traffic and atmo-
spheric conditions.

This paper describes a set of experiments whereby localiza-
tion with IEEE 802.11b wireless Ethernet is shown to be fea-
sible. The focus of this work was to determine the usability
of wireless Ethernet as a sensor. To this end, we carried out
our experiments with a laptop carried by a human operator.
This is a minimalist approach which isolates the sensor we are
testing and generates results applicable to mobile robotics and
mobile computing. To compute position, we apply a scheme
in the spirit of other Bayesian techniques that have been suc-
cessfully employed in the context of robotics [22].

2 Related work

The simplest technique used for mobile robot localization has
been dead reckoning. With dead reckoning errors are added
to the absolute pose estimate and accumulated. Triangula-
tion techniques were also used, where various sensors were
used to extract landmarks from the environment and the land-
marks triangulated the robot’s positions. This works when
the sensors are reliable and relatively noise-free but leaves
several problems unaddressed [6]. Kalman filters were also
introduced to the problem of determining position [21, 17],
where various sensor data are fused to obtain a new position
estimate. This method relies on a linearity assumption or on
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Figure 1: Two examples of signal strength distributions, measured over time at a constant location.

the existence of a good linearization. Arguably the most pow-
erful algorithms to date are based on Bayesian inference, in
particular Markov models [15, 8] and Monte Carlo localiza-
tion [7, 23]. Various discretization schemes can be employed
but often occupancy grids and point sets are employed. If no
usable theoretical model is available, conditional probability
distributions can be sampled directly. Alternately, the envi-
ronment can be modeled with a topological map, e.g., as a
generalized Voronoi graph [2]; localization in this paradigm
is based on identifying nodes in the graph from geometric en-
vironmental information [16]. The literature in this field is
vast but other works offer an overview of current techniques
[14, 22]. The current paper is an example of a Bayesian ap-
proach. We sample the space, we measure the signal strength
at regularly spaced locations and explicitly integrate the prob-
ability distribution.

Localization is a problem that has been also explored in the
wireless community for a wireless device like a laptop com-
puter, usually carried by a human operator, is localized. Many
systems have been implemented that use specialized hardware
[24, 20]. The RADAR system [1], however, uses only the
802.11b wireless networking for localization. The algorith-
mic approach in RADAR is mainly based in nearest neighbor
heuristics and triangulation techniques, similar to early work
in the robotics community for robot localization. The authors
report localization accuracy of within 3 meters of their actual
position with about fifty percent probability. While our work
has similar design goals to RADAR, we have taken a very
different approach.

3 RF Signal Propagation in Wireless Ethernet

The IEEE 802.11b standard uses radio frequencies in the
2.4GHz band, which is license-free around the world. The
available adapters are based on spread spectrum radio technol-
ogy so that interference on a single frequency does not block
the signal [5]. Accurate prediction of signal strength is a com-
plex and difficult task since the signal propagates by unpre-
dictable means [19]. Due to reflection, refraction, scattering
and absorption of radio waves by structures inside a building,
the transmitted signal most often reaches the receiver by more
than one path, resulting in a phenomenon known as multi-

path fading [12]. In the 2.4GHz frequency band, microwave
ovens, BlueTooth devices, 2.4 GHz cordless phones and weld-
ing equipment can be sources of interference. Finally, 2.4GHz
is a resonating frequency of water and consequently people
absorb signal. Noise is introduced via sensitivity to atmo-
spheric parameters and interference. The signal components
arriving from indirect paths and the direct path, if this exists,
combine and produce a distorted version of the transmitted
signal. The received signal varies according to time and the
relative position of the transmitter and receiver. Fortunately,
signal profiles tend to remain approximately the same over
short distances [12].

Although efforts have been made to model radio signal distri-
bution in an indoor environment [9, 19], different experiments
have arrived at different distributions and a general model re-
mains unavailable. Experiments held in several office build-
ings have shown good log-normal fit [11, 9]. The parameters
for the model tends to be difficult to learn in practice, limiting
the value of these models [19]. Our experiments verified this;
we concluded that log-normal fits were only feasible when
line-of-sight between transmitter and receiver existed.

In our experiments, the noise distributions of signal strength
measured at a fixed location varied greatly. In Figure 1, we
show two typical examples of the signal. Although there is
a dominant mode, we observed the distributions were asym-
metric and multi-modal, in other words non-Gaussian.

4 Methodology

Hardware Our experiments were conducted by a human
operator carrying a HP OmniBook 6000 laptop with a PCM-
CIA LinkSys wireless Ethernet card. This particular card uses
the Intersil Prism2 chipset. We modified the standard Linux
kernel driver for this card to support a number of new func-
tionalities: the scanning and recording of hardware MAC ad-
dresses and signal strengths of packets, using promiscuous
mode, and the automatic scanning of base stations.

We needed a constant source of signal from all base stations
for optimum results. Unfortunately, this meant we could not
simply be a passive observer. While we could simply put the
network interface adapter into promiscuous mode and listen



Figure 2: Map of Duncan Hall.

to all packets being transmitted by base stations, this can only
guarantee a stream of packets from one base station: the one
that the card is currently associated with. While base stations
do send out beacon packets several times a second, the hard-
ware we were using did not give us access to this signal.

Instead, we were forced to use the base station probe facility
of 802.11b [13]. Client nodes can broadcast a probe request
packet on a wireless network. Base stations that receive such
a request respond with a probe response packet. The client
then collects these packets and, judging by the strengths of
the incoming signals, can determine the closest base station
to connect to. We analyze these signal strengths to determine
our location relative to the base stations.

Our initial experiments consisted of logging signal strengths
at various positions in the building, where the experiments
took place, to characterize the behavior of the hardware we
were using. A given base station can appear anywhere be-
tween zero and four times in the packets the firmware returned
to us. For each packet, we are given an � -bit signal strength.
It is interesting to note that unless the sender is very close to
the receiver, signals in the top half of this range rarely occur.
Certain other signal strengths simply never occur. The lowest
order bit tends to be very noisy. When compared to other sen-
sors, such as sonar, this signal is very thin: at most 5 usable
bits of signal per packet.

Building Geometry We operated on the third floor of Dun-
can Hall at Rice University, in the four hallways shown in
Figure 2. The two longer hallways (hallways 1 and 2) mea-
sure 105 feet, and the two shorter hallways (hallways 3 and 4)
measure 56 feet. Hallway 1 has a base station near one end,
and hallway 2 has a base station really close to the middle.
Hallways 3 and 4 are notable in that they are open above and
either partially (in the case of hallway 4) or totally (in the case
of hallway 3) open on the sides.

There were nine base stations on this floor. The base stations

were Apple AirPort base stations and were mounted between
two and three meters off the ground. We had a fairly pre-
cise map of the building that we had processed to mark off
free space and obstacles. The pixel resolution was roughly six
centimeters in this map.

Our Model The localizer that we implemented operates
in the general framework of Bayesian inference localization
[22, 8, 15]. We chose a state space and observation space, es-
timated the required conditional probability distributions and
explicitly integrated.

We chose various sets of points in the map for the state space.
A point for our experiments was chosen as a tuple �����	�
�	��
on the floor of the building our experiments took place in.
There is no indication that doing this in �� would be any
harder although we never did this experiment. To summarize,
our state space consisted of a set of � points ��� ����� ���� � �	� � �	� � ����������� ��� � ��� � �!� � �	� � �"� .
Our observation space consisted of the observations that oc-
curred in a single measurement from our base station scanner.
A packet consists of # pairs of base station MAC address and
signal strength. A single measurement consists of a count # of
the number of base station / signal pairs, a summary of the fre-
quency counts (the number of times each known base station
was seen in this measurement) and then the # pairs. We denote
this as a vector $%�'&(#
�*) � �+�������*)-,'�+�/. � �"0 � �1�+���������2.�34�*0536�87 ,
where # is the count, 9 is total number of base stations, )�: is
the frequency count for the ; th base station, ."< is base station
index of the = th measurement and 0>< is the signal strength at
that point.

At each point
� : , we take a sample of the observables. For

each base station we build two histograms at that point.
The first is a distribution of the frequency counts over the
sampled observations. The second is a distribution of sig-
nal strengths. Based on this sample, we can calculate two
kinds of conditional probability ?A@4�2)�<B�DCFE � :/� , the prob-
ability that the frequency counts for the = th base station isC when we are at state

� : and ?A@4�20 < E . < � � : � , the probability
that the base station . < has signal strength 0 < at state

� : . For$G�'&H#F�*) � �+�������*) � ���2. � �*0 � �����������+�/. 3 �*0 3 �I7 , we compute

?A@4�2$JE � :K�L� MN ,O<!P � ?A@Q�/)+<QE � :2�KRSUT
MN 3O<!P � ?A@4�204<4E .!<6� � :V�KRSW�

By explicitly integrating a probability distribution of position
based on a received measurement and selecting a representa-
tive point we obtain a position estimate. After trying several
possible schemes, we decided to solve a global localization
problem for each measurement rather than keep a running es-
timate because each measurement usually contains enough in-
formation to get a good guess of our position. We used uni-
form distributions as our prior distribution before each mea-
surement and selected the point of maximum probability as-
suming that the point exceeds a certain threshold probability.
The resulting stream can be further processed to improve pre-
cision as discussed in following section.



Sensor Fusion with a Hidden Markov Model The second
filter that we implemented takes the output of the inference
engine as a stream of timed observations and tries to stabi-
lize the distribution by noting that a person carrying a laptop
typically does not move very quickly. This sort of calculation
could be achieved with a much higher degree of precision us-
ing odometry from a mobile robot.

We model a moving operator trying to track her position as
a hidden Markov model (HMM). We use a more finely dis-
cretized state space than the Bayesian inference engine and
try to interpolate our position out of the stream of measure-
ments coming from this filter. This design decision was made
after noticing that naive averaging of the filter produced re-
sults with twice the precision we expected for points we had
not taken any training samples at.

For our purposes, an HMM is a set of states �X� ����� �+������� ��� � ,
a set of observations YZ� � $ � ���������!$-[\� , a conditional proba-
bility 0^]>�`_aYcbed fJ�+g�h , and a transition probability matrixi

. As in the Bayesian inference engine, each state is a point���j�	�
�!�� .
The transition probability matrix semantics describe how the
system being modeled evolves with time. In this case, it de-
scribes how a person travels through the state space. If k is a
probability distribution over � , then k�l5� i k is the probabil-
ity distribution after some discrete time step. The idea is that
the random state change occurs “hidden” from the observer.

The observation function 0 has semantics identical to observa-
tion in the Bayesian inference of position. 0j� � �!$6�m�n?A@4��$JE � � ,
the probability of observing $ while at

�
. As each observa-

tion arrives, 0 is used to update the probability of being in a
given state in � , and then

i
is used to transition states. If 0

accurately models the behavior of the inference engine and
i

accurately models the behavior of a person transitioning from
state to state, the sensor fusion will have superior results to
Bayesian inference alone.

In our case
i

was chosen to heuristically model human mo-
tion. The scheme we described could be implemented far
more precisely by making use of a dead reckoning sensor and
modeling the system as a partially observable Markov deci-
sion process (POMDP). By employing one of several variant
algorithms in the literature [22], significantly more accurate
position tracking could be achieved for a mobile robot.

5 Results

In this section we describe several experiments which try
to objectively measure the precision and reliability of using
wireless Ethernet for localization.

Training Process Our system was trained by taking sam-
ples at various points in the world by three different opera-
tor. Each operator, had to hold a laptop, to stand still for sev-
eral seconds at each sample point to do this. We assume that
sampled data was operator independent, that is to say that we
believed that measured distributions would be relatively un-

affected by who took the data. The amount of data taken at
each point is varied adaptively according to a simple heuristic
which measures the rate of convergence to a stable distribu-
tion. Once the sampled distribution at each visible base sta-
tion had converged beyond a threshold, we halt the process.
This allowed us to adaptively determine how much sampling
is necessary as a function of variation in the signal. In our
case, usual sampling times ranged from ten seconds to about
a minute.

Static Localization in a Hallway We describe experiments
executed in hallway 1 on the map in Figure 2, which was sam-
pled in two different orientations at every 5 feet. The purpose
of this is to test the precision of the Bayesian inference local-
izer. Timed tests occur at various positions and facing both
orientations in the hallway and bulk statistics are calculated.
The training data was taken by two different operators, with
each operator training the localizer in one of the two orienta-
tions. All experiments were executed by a third operator.

We measured a total of 1307 packets on 11 different positions
and for both orientations. The positions were spread every 10
feet to be exhaustive. The algorithm reported back positions
discretized to 5 feet. In Figure 3, we show the cumulative
probability of obtaining error less than a given distance. We
have observed that error is within g��po meters with probabilityf>�pqq .
Experiments with HMM Approach We attempted to im-
prove these results by implementing a more sophisticated sen-
sor fusion based on a hidden Markov model (HMM). The
HMM ran at a higher discretization than the Bayesian infer-
ence engine. The state transitions were heuristically chosen
to be a reasonable model of human motion. We then walked
round-trips of the four hallways in our test area, as shown on
the map in Figure 2. The quality of the results varied depend-
ing on the geometry of the building. For example, areas ad-
jacent to large open spaces tended to be noisier. Figure 4 and
Figure 5 show tracking experiments that took place in two of
the hallways. The operator walked the hallway varying speed
and periodically recording the time certain predefined markers
were passed. The operator attempted to keep constant speed
between markers. In the figures, we report both the Bayesian
inference static localization results and the HMM fused re-
sults. In the top figure, a significant improvement is obtained
and, overall, the results are excellent. In the bottom figure,
the signal was much noisier due to a large open area adjacent
to the hall and relatively poor base station placement. Note
that in both cases, errors of g� o m are still roughly within one
standard deviation.

6 Conclusions

In our experiments, we can measure and track position ro-
bustly with 1.5 meters of error distributed within a standard
deviation. We used the Intersil Prism2 chipset for our wireless
Ethernet cards and Apple AirPorts as base stations, both read-
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Figure 3: Bulk cumulative error distribution for 1307 packets over 22 poses in a hallway localized using the position of
maximum probability as calculated by direct application of Bayes’ rule.
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Figure 4: Tracking a round-trip walk of hallway 1 in our test area (see Figure 2 the building map). Measured error for the
track, shown on the right graph, is within one meter with probability f>� r�s , an improvement of sQot over static localization. This
improvement is illustrated in the actual tracking performance, shown in the left graph.
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Figure 5: Tracking a round-trip walk of hallway 4 in our test area (see Figure 2 the building map). While sensor fusion provided
some improvement, it was not significant due more pathological behavior of static localization in certain regions.



ily available and inexpensive hardware. The building we oper-
ated in had fairly complicated geometry and the base stations
were laid out more than a year before we began our work. The
base station layout was chosen for communication reliability
reasons. The experiments were conducted by human opera-
tors which introduced error due to signal absorption and lack
of odometry. Nevertheless, the results are valid for localiza-
tion carried with different hardware or with a mobile robot. In
fact, similar experiments carried out with a robot would likely
be significantly more precise as we avoid absorption errors
induced by the operator and have odometry as an additional
sensor. In this paper, we provide strong evidence that reliable
localization with wireless Ethernet can be achieved.
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