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Abstract
We present a review and reformulation of manifold constrained sampling-based motion planning within a unifying
framework, imacs (Implicit MAnifold Configuration Space). imacs enables a broad class of motion planners to plan
in the presence of manifold constraints, decoupling the choice of motion planning algorithm and method for constraint
adherence into orthogonal choices. We show that implicit configuration spaces defined by constraints can be presented
to sampling-based planners by addressing two key fundamental primitives: sampling and local planning, and that
imacs preserves theoretical properties of probabilistic completeness and asymptotic optimality through these primitives.
Within imacs, we implement projection- and continutation-based methods for constraint adherence, and demonstrate
the framework on a range of planners with both methods in simulated and realistic scenarios. Our results show that
the choice of method for constraint adherence depends on many factors and that novel combinations of planners and
methods of constraint adherence can be more effective than previous approaches. Our implementation of imacs is
open source within the Open Motion Planning Library and is easily extended for novel planners and constraint spaces.
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1 Introduction

Motion planning is an essential tool for robotic
systems. With motion planning, a robot can generate
a feasible path given start configurations and goal
specifications (Choset et al. 2005). Recently, there has
been rapid development in creating robotic systems
that are high-dimensional, such as humanoid robots,
mobile manipulators, and mechanically redundant arms.
Planning for these high-dimensional systems is hard
due to the inherent difficulty of the motion planning
problem (LaValle 2006). In addition, these complex
systems face increasingly complex manipulation tasks,
which require more information beyond start and
goal specifications (some example tasks are shown in
Figure 1 for nasa’s Robonaut 2 (Diftler et al. 2011)).
For example, consider a robot that must transfer a
glass of water; the robot should be constrained to
keep the glass level throughout the entire motion. Task
constraints encode restrictions on robot motion, and are
an important way to concisely specify complex robot
motions. Common task constraints include many end-
effector constraints and loop-closure constraints, as in
parallel manipulators or bi-manual systems carrying

an object. An important class of task constraints
with special structure are manifold constraints, which
encapsulate the examples above as well as many
geometric constraints. Planning for complex robotic
systems in the presence of manifold constraints is an
important and relevant problem as these systems face
greater manipulation challenges.

Sampling-based planners have proven effective at
planning motions for high-dimensional systems (Choset
et al. 2005). These planners randomly explore the
robot’s configuration space and build a discrete
representation of valid motions. Many sampling-
based planners have been developed with different
methods to explore and exploit the valid motions of a
robot. However, incorporating manifold constraints in
planning is still difficult, as finding configurations that
adhere to constraints is a challenging task. Recently,
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Figure 1. nasa’s Robonaut 2 executing geometric
constrained manipulation tasks. Clockwise from the top-left:
R2’s end-effector moves on the Z-axis to grasp a handrail,
R2’s legs form a closed-chain and a cargo bag is moved
linearly from its hold, and R2 turns a valve about its axis.

researchers have developed algorithms for planning
with manifold constraints that are effective on realistic
problems (Berenson et al. 2011b; Jaillet and Porta
2013b; Kim et al. 2016). Despite their performance,
these algorithms are somewhat limited in the sense
that they adapt a single sampling-based algorithm to
adhere to task constraints by using a specific method
for constraint adherence.

1.1 Contributions

The contribution of this paper is a review and
reformulation of methods for manifold constrained
sampling-based planning within a unifying framework,
imacs (Implicit MAnifold Configuration Space). imacs
enables a broad class of motion planners to plan in the
presence of manifold constraints, decoupling the choice
of motion planning algorithm and method for constraint
adherence. We provide an open source implementation
of said framework in the Open Motion Planning Library
(ompl) (Şucan et al. 2012), a widely-used open source
library for motion planning, and demonstrate its efficacy
on complex simulated and real environments.

The key insight of this work is to view geometrically
constrained motion planning as an unconstrained
planning problem in an implicitly defined, lower-
dimensional space. Sampling-based planners are
modular and readily adapted to any space or robotic
system. imacs exploits the modularity of the interface

between sampling-based planners and the configuration
space to decouple the method of constraint adherence
from a motion planner. That is, imacs represents
the implicitly defined space with primitives that are
necessary for sampling-based planning. In particular,
the primitives within the space representation are
augmented samplers and local planners, using some
method of constraint adherence. We present projection-
based (similar to cbirrt2 (Berenson et al. 2011b)) and
continuation-based (similar to Atlasrrt (Jaillet and
Porta 2013b) and tb-rrt (Kim et al. 2016)) methods
of constraint adherence as space representations within
imacs.

With imacs, a broad class of sampling-based planners
can use many previously proposed constraint adherence
methods and leverage planners and tools developed
by the motion planning community. For example,
asymptotically optimal planners (Karaman and Fraz-
zoli 2011), heuristic path optimization (Geraerts and
Overmars 2007), and domain specific planners for high-
dimensional problems (Şucan and Kavraki 2008) all
work without modification in imacs. imacs also shows
that different methods of constraint adherence can
all use the same underlying constraint representation.
Additionally, we present theoretical results showing
that imacs preserves the probabilistic completeness
and asymptotic optimality of sampling-based planners.
These theoretical results generalize prior results within
the literature. Finally, we demonstrate that different
problems can be solved more successfully using novel
combinations of planning algorithms and constraint
adherence methods compared to existing combinations.

This paper extends the work presented in (Kingston
et al. 2017). We present a more complete formulation of
the algorithms used by the projection- and continuation-
based space representations, proofs that the framework
preserves probabilistic completeness and asymptotic
optimality of sampling-based planners for both the
projection- and continuation-based spaces, an open
source implementation of the framework, and additional
empirical results including implementation of the
framework for nasa’s Robonaut 2.

The organization of this paper is as follows. Section 2
defines constraints, the constrained planning problem,
and other mathematical background. Section 3 con-
tains a survey of related work for constrained motion
planning. imacs, our framework which decouples con-
straints from sampling-based algorithms, is presented
in Section 4. Theoretical guarantees of imacs are
presented in Section 5. The implementation of imacs
and empirical results, both in simulated problems and
on the real Robonaut 2 system, are shown and discussed
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in Section 6. Section 7 contains concluding remarks and
directions for future work.

2 Preliminaries

This section presents mathematical background for
motion planning under manifold constraints, as well
as differentiating our framework from related work
described in the next section. We first present the
motion planning problem and associated terminology.
Next, we introduce manifold constraints, the type of
constraints we consider, and how they are represented.
Finally, we present the constrained motion planning
problem as used in this work.

2.1 Motion Planning

This work considers the geometric motion planning
problem, or the generalized movers’ problem, which
concerns finding a feasible path of a robot that avoids
collision with obstacles. Canonically, the robot is viewed
as a single point in an abstract space, the configuration
space (Lozano-Pérez 1983). The configuration space,
or C-space, of a robot system is the space defined by
all possible configurations of that system, denoted as
Q. A configuration q ∈ Q of a robot is a complete
specification of the position of every point of that
system, with respect to some reference frame. The
degrees of freedom (dof) of a robot system is equivalent
to the dimension of its configuration, denoted by n > 0.
Additionally, we assume that the C-space has a metric
defined between all points, thus the C-space is a metric
space. Here we assume that C-space is also closed and
bounded, and thus a complete metric space. We also
assume that Q is a measurable space (Q,BQ) where BQ
is the Borel σ-algebra on the C-space, generated from
the metric (Resnick 2014).

For the basic motion planning problem, the robot
also needs to avoid some set of obstacles. Obstacles
form a closed set Qobs, which in turn defines the free
configuration space Qfree = cl(Q \ Qobs), where cl(·)
denotes the closure of a set. We are interested in finding
a curve, or path, from a point qstart to some region of
interest Qgoal ⊂ Q, which is a continuous injective map
σ : [0, 1] → Qfree with σ(0) = qstart, σ(1) ∈ cl(Qgoal)
and bounded total variation (Karaman and Frazzoli
2011). Let us denote the set of all paths in Q as ΣQ,
and all collision-free paths as ΣQfree

. We also use the
notion of δ-clearance from (Karaman and Frazzoli 2011).
A configuration q ∈ Qfree is defined as a δ-interior
configuration of Qfree if a closed ball of radius δ > 0
centered at q is entirely inside of Qfree. The δ-interior
of Qfree, intδ(Qfree) is the set of all δ-interior states. A

collision-free path σ ∈ ΣQfree
has strong δ-clearance, or

is robust, if σ(t) ∈ intδ(Qfree) for all t ∈ [0, 1].

Definition 1. Feasible Motion Planning. Find a
robust collision-free path σ : [0, 1] → Qfree given a path
planning problem (Qfree, qstart, Qgoal) if one exists.

For simplicity of presentation, we consider configu-
rations spaces that are a closed subset of a Euclidean
space, i.e.,Q ⊂ Rn, using the Euclidean metric. We also
denote the Lebesgue measure of a set in Q as µ(·).

2.1.1 Asymptotically Optimal Motion Planning As
discussed in the next section, there has been
much recent work on asymptotically optimal motion
planning. These algorithms are concerned not only
with finding a collision-free path, but also finding
a path that is optimal with respect to some cost
function c : ΣQ → R+ that is at least Lipschitz
continuous (Janson et al. 2015). Generally, c is the
arclength of a path so that algorithms optimize for the
shortest path.

Definition 2. Optimal Motion Planning. Find a
robust collision-free path σ∗ : [0, 1] → Qfree given a
path planning problem (Qfree, qstart, Qgoal) and cost
function c such that c(σ∗) = minσ∈ΣQfree

c(σ) if one
exists.

2.2 Manifold Constraints

In many cases, avoiding collisions or optimizing a cost
function is the only concern for computing a valid path.
However, for the constrained motion planning problem
presented in this work, we would also like to adhere
to some set of constraints on the robot’s motion. In
particular, we consider constraints that are functions
of the robot’s geometry—constraints that only use
the robot’s current configuration q ∈ Q to evaluate if
they are satisfied—and lower the dimensionality of the
problem. These constraints are referred to as manifold
constraints, which we shorten to just “constraints”.
Manifold constraints encapsulate many possible path
constraints, such as end-effector constraints (e.g., task
space regions (Berenson et al. 2011b)), loop-closure
constraints, and many more. A brief discussion of non-
manifold constraints is given in Section 2.3

We define constraints as constraint functions
f1, . . . , fk, which are k functions (1 ≤ k < n) that are
at least C2-smooth, fi : Rn → R. We consider a con-
straint function adhered to when fi(q) = 0. We denote
the composite constraint function F : Rn → Rk:

F (q) =

f1(q)
...

fk(q)


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We say that F is adhered to when F (q) = 0, where
0 ∈ Rk is a vector of all zeros. In practice, F is adhered
to when ‖F (q)‖2 < ε, where ε > 0 is a small tolerance.
Constraint functions can also be concatenated together,

F (q) =
[
F1(q) F2(q) . . .

]T
.

As F is a concatenation of at least C2-smooth
functions, the first derivative can be taken at a point
q ∈ Rn, J : Rn → Rk×n (the Jacobian):

∇qF (q) = J(q) =


∂f1

∂q1
. . .

∂f1

∂qn
...

. . .
...

∂fk
∂q1

. . .
∂fk
∂qn


We assume that J(q) is of full rank when F (q) = 0, i.e.,
the gradients of the constraint functions are not linearly
dependent at q. Note that the pseudoinverse of J(q) is
a continuous function when J(q) is of full rank, a fact
used in Section 5.1.

Thus, the problem of constrained motion planning
results in finding a path in an implicitly defined
constrained configuration space:

M = {q ∈ Q | F (q) = 0}

Importantly, as constraint functions are smooth and
have a Jacobian of full rank when F (q) = 0, M is
an (n− k)-dimensional smooth submanifold of Rn via
the implicit function theorem (Gomes et al. 2009).
Additionally, M is a closed set as it is the preimage
of a closed set by a continuous function, and as the
configuration space is bounded, is thus compact. We
refer to M as the constraint manifold, and denote
Mfree =M∩Qfree as the free constraint manifold.
The codimension of the manifold, i.e., the number
of constraints, is denoted as k. Note the constraint
manifold is of lower dimension than the ambient
configuration space and is smooth, and as such is of
measure zero with respect to the ambient configuration
space, i.e., µ(M) = 0 (Lee 2003).

The fact that M is a manifold is leveraged by
the different methods for constraint adherence within
imacs. M also is a metric space, using the metric
induced from the configuration space, and a measurable
space (M,BM) where BM is the Borel σ-algebra
generated from the induced metric. Let us denote the
set of all paths in M as ΣM, and all collision-free
paths as ΣMfree

. We define a configuration q ∈Mfree

as a δ-interior configuration of Mfree if a closed ball of
radius δ > 0 centered at q is entirely inside of Mfree.
Note that, as we are using the induced metric from
the configuration space, all δ-interior configurations of
Mfree are also δ-interior forQfree. Similar to the case for

Qfree, the δ-interior ofMfree, intδ(Mfree) is the set of all
δ-interior states and a collision-free path σ ∈ ΣMfree

has
strong δ-clearance if σ(t) ∈ intδ(Mfree) for all t ∈ [0, 1].
Note that qstart and Qgoal must be path connected
in Mfree for a valid solution to be found. Thus, the
constrained motion planning problem is finding a path
σ : [0, 1] → Mfree from a point qstart ∈Mfree to some
region of interest Qgoal ⊂Mfree such that the path
is collision-free and for all t ∈ [0, 1], F (σ(t)) = 0. We
can now define two forms of the constrained motion
planning problem:

Definition 3. Constrained Motion Planning. Find
a robust collision-free path σ : [0, 1] → Mfree given
a path planning problem (Qfree, qstart, Qgoal) and
constraint function F if one exists.

Definition 4. Constrained Optimal Motion Planning.
Find a robust collision-free path σ∗ : [0, 1] → Mfree

given a path planning problem (Qfree, qstart, Qgoal),
constraint function F , and cost function c such that
c(σ∗) = minσ∈ΣMfree

c(σ) if one exists.

This representation of constraints encompasses a
broad set of constraints as presented in the literature.
For example, consider a simple point robot in R3.
The constraint function f1(q) = ‖q‖2 − 1 implicitly
defines the surface of the unit sphere, a two-dimensional
manifold in R3. We can also consider a simple
manipulator robot with n joints (a C-space in Rn) with
forward kinematics to the end-effector given by f By
defining a constraint function f1(q) = ‖f(q)x − c‖2 we
constrain the end-effector to some Y Z-plane.

Manifold constraints are also known as holonomic
constraints (Laumond 1986; Latombe 1991), as they
are integrable functions of the robot’s configurations.
Note that holonomic constraints do not fundamentally
change the motion planning problem.Sometimes, the
structure of constraints allows for direct reparameteri-
zation. One type of constraints that allows for repa-
rameterization are explicit constraints—constraints
that explicitly determine the value of some config-
uration parameters, e.g., a manipulator grasping an
object determines the objects configuration from the
manipulator’s forward kinematics. Under explicit con-
straints, the dependent configuration parameters are
not necessary. Another example of reparameterization
is any articulated robot. Typically, articulated robots
are parameterized by their joint angles. It is also
possible to model an articulated robot as a constrained
system—each of the links of the manipulator is a free-
flying rigid body (with SE(3) as its C-space), and
the constraints imposed by the mechanical linkage of
the joints introduce a lower-dimensional configuration
space. The lower-dimensional space induced by the
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constraints is equivalent to the space of joint angles.
However, it is not always possible to reparameterize the
configuration space according to a constraint function.
The framework presented in this paper provides a way
to plan in the implicitly defined configuration space
without reparameterization. We show an example of
constrained motion planning for both implicitly defined
kinematic chains as well as a realistic robot (shown in
Section 6.3 and 6.5).

Differential geometry is core to the representation
used in this work, which can broadly be described as
the study of smooth manifolds with some geometric
structure. A comprehensive overview can be found
in (Spivak 1999; Lee 2003). Additional definitions are
provided in Sections 4 and 5 as needed.

2.3 Volume-Reducing Constraints

In this work we do not discuss constraints other than
manifold constraints in detail. A brief discussion of
volume-reducing constraints and their relation to the
methods presented in this paper is given here.

Closely related to manifold constraints are volume-
reducing constraints, or inequality constraints. These
are constraints of the form G(q) ≤ 0. There are
many useful constraints that naturally are formulated
as inequalities, e.g., valid workspace volumes for an
end-effector or balance constraints for a humanoid
robot. But, inequality constraints do not introduce a
lower-dimensional manifold as manifold constraints do.
Assuming similar properties of G as in the constraint
functions above, inequality constraints instead define
an n-dimensional region within the configuration space:

V = {q ∈ Q | G(q) ≤ 0}

This volume either is of non-zero volume or is empty
due to being unsatisfiable. For some regions of non-zero
volume, rejection sampling and standard unconstrained
planning techniques can be used. This is similar to
what is done in some constrained sampling-based
techniques that “inflate” the manifold into a volume by
loosening the tolerance ε (e.g. (Bonilla et al. 2017)). If
the inequality constraint is violated (i.e., G(q) > 0),
the inequality constraint be folded into the set of
manifold constraints in an active set method, using
G(q) = 0 (Nocedal and Wright 2006). Some projection-
based methods (Section 4.2) have demonstrated this
method is effective in practice (Hauser et al. 2008;
Berenson et al. 2011b). Note that the theoretical
properties of the projection operator still hold when
using inequality constraints as a manifold constraints. A
discussion of continuation-based methods (Section 4.3)
with inequality constraints is left as future work.

However, it should be possible to apply continuation-
based approaches to volume-reducing constraints—
Henderson (2002) demonstrated that a continuation-
based approach can cover Rn, but this has not been
shown for general constraints.

3 Related Work

In this work we study sampling-based planning in
the presence of manifold task constraints. There is
a wide breadth of literature concerning techniques
to plan motions, represent constraints, and adhere
to constraints. Using task constraints to specify the
motion of a robotic system has its roots within
industrial control (Mason 1981; Khatib 1987). Task
constraints on robot motion can be used to specify
many useful manipulation tasks (Siméon et al. 2004),
generate valid motion for parallel manipulators and
closed chains (Tsai 1999; LaValle 2006) and even model
proteins in structural biology (Zhang and Hauser 2013).

The first applications of geometric constraints to
planning in low-dimensional spaces were reduced
to problems of finding geodesics on polyhedral
structures (Mitchell et al. 1987), similar to finding
shortest paths of visibility graphs (Asano et al. 1985;
Alexopoulos and Griffin 1992). Most early work with
task constraints did not focus on geometric constraints
and was directed at non-holonomic constraints,
such as differential drive cars (Barraquand and
Latombe 1993). However, as planners were applied
to more complex high-dimensional systems with more
interesting manipulation tasks, geometric constraints
were revisited as a difficult addition to the motion
planning problem; constraints within higher dimensions
(particularly those for articulated mechanisms) require
specialized constraint adherence techniques.

3.1 Other Methods

While not the focus of this paper, a short survey of
other methods for planning in the presence of manifold
constraints is given for completeness.

For end-effector constraints, one approach is to plan a
path for the end-effector, so constraints can be directly
evaluated and adhering poses can be sampled. After
planning a path within the workspace, a corresponding
path in the robot’s configuration space is generated
using inverse kinematics (ik) (Sentis and Khatib 2005;
James et al. 2015; Rakita et al. 2018). However,
these methods may not be efficient as re-planning is
required if a computed path cannot be mapped into
the configuration space of the robot. Completeness is
also not guaranteed unless all feasible ik solutions can
be generated from any given constraint. Additionally,
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if multiple end-effector constraints are placed upon
the system, null-space projection methods (Sentis and
Khatib 2005) will not yield a probabilistically complete
algorithm.

Another approach that operates within the robot’s
workspace is ik-based reactive control which uses
convex optimization to find constraint adhering
motions, e.g., those used at the darpa Robotics
Challenge (Fallon et al. 2015; Johnson et al. 2015;
Atkeson et al. 2015). While effective with operator
supervision, these controllers are usually incomplete
and are prone to reaching local minima created by the
interaction of the objective function and constraints. As
local controllers are optimization-based methods, hard
geometric constraints are relaxed into soft cost-based
constraints, and invalid motions can be generated.

Trajectory optimization approaches (e.g., (Zucker
et al. 2013; Schulman et al. 2014)) optimize
within trajectory space and are effective for everyday
manipulation tasks, but suffer from many of the same
shortfalls as reactive control. However, trajectory
optimization methods can generate motions that adhere
to task constraints by either adding the constraint as
a penalty to optimization objective or as an equality
constraint. Recently, Bonalli et al. (2019) presented a
method for trajectory optimization on an implicitly
defined manifold. No comprehensive comparison of
constrained non-sampling-based methods to sampling-
based methods exists, and a thorough analysis is outside
the scope of this paper.

3.2 Sampling-Based Planning

The key idea of sampling-based planning is to avoid
computing the free configuration space Qfree by instead
sampling the C-space. Sampling-based planners fall
broadly into two categories: multi-query planners
which are generally graph-based methods such as
prm (Kavraki et al. 1996) and single-query planners
that are generally tree-based methods such as est (Hsu
et al. 1999) or rrt (LaValle and Kuffner 2001).

Multi-query methods construct a “roadmap” within
the configuration space that can be queried multiple
times. Single-query methods build a tree of motions
rooted from the start or goal. Many techniques perform
a bidirectional search for efficiency (e.g., (Kuffner
and LaValle 2000)) or use coverage estimates to bias
search towards unexplored space (e.g., (Şucan and
Kavraki 2008)). For a more in-depth review of sampling-
based planning see (Choset et al. 2005; LaValle 2006;
Elbanhawi and Simic 2014; Kavraki and LaValle 2016).

3.2.1 Asymptotically Optimal Sampling-Based Planning
While sampling-based planners have been shown to be
very efficient in finding feasible paths, paths often have

poor quality with respect to a given cost function. One
approach to improve path quality is to post-process and
locally optimize paths with heuristic methods (Geraerts
and Overmars 2007) or a trajectory optimization-
based approach (Dai et al. 2018). Sampling-based
algorithms can also provide asymptotic optimality
guarantees (Karaman and Frazzoli 2011; Janson et al.
2015; Gammell et al. 2015). These methods guarantee
that the solution path converges to a globally optimal
path for a given cost function. If the connection radius is
greater than the threshold, then asymptotic optimality
is guaranteed. Note that in practice smoothing and
post-processing techniques typically generate solutions
comparable to paths from asymptotically-optimal
planners (Luna et al. 2013; Luo and Hauser 2014).

3.3 Constrained Sampling-Based Planning

Constraints introduce a new element of difficulty to the
problem: configurations must adhere to the constraint
function. The approaches to handling constraints
within a sampling-based framework can be organized
into a spectrum of the complexity used to compute
adhering configurations. As described in Section 2, the
constraint function implicitly defines a manifold within
the configuration space. The method of constraint
adherence is the way a particular method copes with
planning in this lower dimensional space. For this
paper, of particular importance are projection- and
continuation-based method:

• Projection: Finding configurations that adhere to
the constraint function F (q) = 0 requires finding
solutions to the constraint’s system of equations.
A projection operator takes a configuration and
maps it onto the implicit manifold.

• Continuation: From a known adhering configu-
ration, a tangent space of the implicit manifold
can be generated. Adhering configurations and
valid local motions can be generated by applying
projection to configurations sampled within the
tangent space. Tangent spaces can be composed
together to create a piecewise-linear approxima-
tion of the manifold, or a continuation. This
approximation can then be used for sampling
adhering configurations or for local planning.

A more detailed survey of constrained motion planning
techniques along with other classes of methods can be
found in (Kingston et al. 2018).

3.3.1 Projection-Based Methods In a constrained
motion planning problem, a path only contains
configurations that adhere to the constraint function.
Projection-based methods use a projection operator to
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find adhering configurations starting from potentially
invalid configurations, defined formally in Section 4.2.

The first projection methods capable of solving
constrained problems dealt with specialized cases
of constraints—specifically, loop closures in parallel
manipulators. Planning for loop closure problems in
robotics was first solved with prm variants using
active/passive chain methods (Han and Amato 2000;
Yakey et al. 2001; Cortés et al. 2002), and were
also relevant in structural biology (Wedemeyer and
Scheraga 1999). Active/passive chain methods use ik
as a projection operator to join the passive chain
to the active chain, closing the loop and creating
an adhering configuration. Typically, ik algorithms
are numerical methods that require computation of
manipulator Jacobian (pseudo-)inverses, but methods
such as Cyclic-Coordinate Descent (Canutescu and
Dunbrack 2003) and fabrik (Aristidou and Lasenby
2011) are Jacobian free.

The idea of projection to adhere to constraints was
applied to general end-effector constraints in (Yao
and Gupta 2005). Task Constrained rrt (Stilman
2010) further generalized the idea of constraints and
utilized Jacobian gradient descent (Buss 2004) for
projection. More recently, cbirrt2 (Berenson et al.
2011b) and the motion planner implemented for the
Humanoid Path Planner (hpp) System (Mirabel et al.
2016) utilize projection with general constraints and
can solve complex combinations of constraints. hpp
combines explicit constraints and implicit manifold
constraints into a more effective and efficient projection
routine (Mirabel and Lamiraux 2018).

Projection methods have been extended to find low-
cost paths Gradient-rrt (Berenson et al. 2011a) (note
that this is not an asymptotically optimal motion
planner), and to asymptotically optimal planners (albeit
without formal guarantees) in (Jaillet and Porta
2013a). We show how imacs emulates projection-
based methods (such as cbirrt2 and other previous
approaches) in Section 4.2.

3.3.2 Continuation-Based Methods Projection, while
effective at adhering to constraints, utilizes very little
information from the constraint. It is possible to locally
approximate the manifold defined by the constraint
using a tangent space of an adhering configuration.
In this case, the tangent space is a chart of the
manifold, locally parameterizing the neighborhood
around a configuration. The tangent space can be
used to generate new configurations that are close
to the manifold, and close to the original adhering
configuration. As the complexity of the constraint
manifold approximation increases, sampling in the

tangent space becomes more accurate at the price of
increased computational cost per sample.

Projection from tangent spaces was utilized within
the work of (Yakey et al. 2001) to generate nearby
samples, which are then projected to adhere to the
constraint. Tangent spaces have been used by (Weghe
et al. 2007; Stilman 2010) for manipulators under
general end-effector constraints. The technique has also
seen many applications in curve tracking constraints for
redundant manipulators (Oriolo and Vendittelli 2009;
Vendittelli and Oriolo 2009; Cefalo et al. 2013) and
structural biology to generate valid motions of proteins
with loop closures (Zhang and Hauser 2013; Pachov
and van den Bedem 2015; Fonseca et al. 2018).

Rather than discarding a tangent space after
computation, some methods assemble the collection
of tangent spaces into an atlas of the manifold. The
atlas is composed of many charts (in this case tangent
spaces), a concept borrowed from the definition of
differentiable manifolds (Spivak 1999). To be precise,
the atlas is defined as a piece-wise linear approximation
of the constraint manifold using tangent spaces, which
fully cover the manifold (Henderson 2002). These
methods are derived from numerical continuation
techniques, which are designed to compute solutions
to nonlinear systems of equations (e.g., the constraint
manifold). The key difference between continuation
methods (Henderson 2002) and continuation-based
planners is the incremental construction of the atlas
interleaved with space exploration, allowing the planner
to explore online or reuse results from previous runs.

Atlasrrt (Jaillet and Porta 2013b) and tb-rrt (Kim
et al. 2016) both construct an atlas by incrementally
building the set of tangent spaces that approximate
the manifold. tb-rrt evaluates the manifold lazily and
does not separate tangent spaces, leading to overlap
and potential problems with invalid points. Atlasrrt
computes halfspaces to separate tangent spaces into
tangent polytopes to guarantee uniform coverage in
the limit at additional computational cost. Atlasrrt
has been extended to an asymptotically optimal
algorithm Atlasrrt* (Jaillet and Porta 2013a) and
to kinodynamic planning (Bordalba et al. 2018). Like
projection-based methods, both tb-rrt and Atlasrrt
are emulated within imacs, shown in Section 4.3.

3.3.3 Other Methods There are many other
approaches to constrained sampling-based planning.
One class of methods are reparameterization-based
approaches which are similar in spirit to imacs—they
create a new representation of the space that adheres
to constraints. However, in the case of “Deformation
space” (Han et al. 2008) and “Reachable volume
space” (McMahon 2016), this representation is an
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explicit transformation for a particular class of robot
and constraint. imacs, on the other hand, does not
explicitly reparameterize the manifold, and instead
provides a means of representing the implicitly defined
space.

Additionally, there are offline sampling-based meth-
ods which construct an approximation of the constraint
manifold offline. That is, these methods precompute
a set of constraint-adhering configurations, and then
use this set for sampling and local planning. A general
approach for offline computation for online sampling
was described in (Şucan and Chitta 2012). This kind
of approach was employed by (Burget et al. 2013) to
adhere to balance constraints on a humanoid robot.

3.4 Beyond Single Constraints

Motion planning with manifold constraints is closely
tied to manipulation planning. Manipulation planning,
as opposed to motion planning, requires planning a
sequence of actions, each of which has different path
constraints on the motion of the robot (Siméon et al.
2004). For example, consider a robot that must transfer
a cup from one table to another. The robot must
approach the cup, pick the cup up, and approach the
other table and place the cup down. Each of these
motions has different constraints to consider, and are
each a constrained planning problem with a different
submanifold.

Problems with this structure are multi-modal :
continuous motion must switch between different
discrete modes of interaction, each mode imposing
different constraints on the robot. Multi-modal
planning considers planning not just a single
submanifold, but on a union of multiple submanifolds.
Single mode planning (i.e., constrained motion
planning) is an essential component of a multi-modal
planning algorithm. A motion planner within imacs
can be used for single mode planning.

Hauser and Latombe (2010) address the multi-modal
planning problem for a finite number of modes, which
was extended for infinite modes in (Hauser and Ng-
Thow-Hing 2011). An asymptotically optimal multi-
modal planning algorithm was proposed in (Vega-
Brown and Roy 2016). Additionally, (Şucan and
Kavraki 2011) implements multi-modal planning via
acyclic task-motion multigraphs, and hpp implements
multi-modal planning via constraint graphs (Mirabel
et al. 2016). Multi-modal planning is also closely
related to task and motion planning, which takes a
more hierarchical approach to planning multi-modal
paths (Srivastava et al. 2014; Dantam et al. 2018;
Garrett et al. 2018).

Another essential component for multi-modal plan-
ning is the ability to sample transitions from one mode
to the next. This is equivalent to sampling from the
manifold defined by the concatenation of the two con-
straint functions, i.e., the intersection of their manifolds.
In Section 5, we show that projection-based sampling
covers a manifold defined by a constraint function, and
thus can be used as a component in a probabilistically-
complete manifold sampler. Thus, projection-based
sampling can be used as a probabilistically-complete
transition sampler in multi-modal planning. Note that
imacs only provides components of a multi-modal
planner—while single-mode planning and transition
sampling are important, they do not form a complete
multi-modal planner.

3.5 Software Frameworks

There are some software packages available that can
perform constrained motion planning, such as the cuik
Suite (Porta et al. 2014) and hpp (Mirabel et al.
2016). However, these are integrated frameworks for
robotics that provide specific, specialized constrained
motion planning algorithms, rather than the conceptual
abstractions in imacs which allow for mixing and
matching of constraint solving techniques and planning
algorithms. We provide an implementation of imacs in
the Open Motion Planning Library (ompl 1.4) (Şucan
et al. 2012), discussed further in Section 6.

4 Representing Implicit Manifolds

Despite their differences, most sampling-based planners
have similar requirements from the robot’s configu-
ration space (LaValle 2006). The capabilities we are
concerned with are the following:

• Sampling : Critical to sampling-based planning
and exploration is the capability to sample over
the entire space or near known configurations.

• Local Planning : Typically, sampling-based plan-
ners employ a local planner: an efficient, deter-
ministic, and not necessarily complete method
that is used to validate whether two states can
be connected.

Sampling and local planning—rather than being
defined as being planner specific operations—can
be defined as operations on the space itself, and
need not be specific to any planner. In general,
prior works in geometrically constrained planning
have augmented an existing sampling-based planner
with some capability to “handle” constraints. More
accurately, the augmentations required to craft a
constrained motion planner are augmentations of the
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capabilities as outlined above. The core insight of this
work is that, as sampling-based planners plan within
an abstract space, augmentation of the space is all that
is needed to plan with constraints.

The contribution of this paper is a conceptual
framework, imacs (Implicit MAnifold Configuration
Space), which is outlined within Section 4.1. imacs
enables a broad class of motion planners to plan with
constraints, decoupling the choice of motion planner
and method of constraint adherence. This section is
organized as follows. First we discuss imacs at an
abstract level in Section 4.1 and describe how each of the
space primitives are used by a sampling-based planner.
The specific way a planner handles these critical
components is referred to as the method of constraint
adherence, as discussed previously in Section 3.3. Then,
we show the two methods for constraint adherence
that are implemented within imacs. The first method
we show is a projection-based method in Section 4.2,
similar to cbirrt2 (Berenson et al. 2011b). Next,
we show a continuation-based method in Section 4.3,
similar to Tangent Bundle rrt (Kim et al. 2016) and
Atlasrrt (Jaillet and Porta 2013b).

4.1 Implicit Manifold Configuration Space

A sampling-based planning algorithm plans within
a configuration space, and generates a collision-free
path by using a configuration validity checker along
with properties of the configuration space, as shown
in Figure 2a. Prior works augmented the planning
algorithm with a means of finding constraint adhering
motions, as shown in Figure 2c. In contrast, imacs is a
layer of abstraction that lies between the representation
of the robot’s configuration space and the sampling-
based planner, as shown in Figure 2d. imacs can be
thought of as a means to present the implicit manifold
M defined by the constraint function F to a sampling-
based planner, thus enabling the planner to plan with
constraints.

As discussed above, there are only a few critical
components that a sampling-based planner uses from
its underlying space. We first discuss metrics and
how they are affected within imacs. Next, we discuss
sampling and what properties a sampler should have
within imacs. Finally, we present local planning and
interpolation on the constraint manifold within imacs.

4.1.1 Metrics Normally, the distance metric utilized by
a sampling-based planner is defined by the configuration
space. The metric is primarily used for nearest-neighbor
computations, by which states near a given state can
be found. For example, a point robot in R3 and
a manipulator arm with Q ⊆ Rn commonly use the
Euclidean norm. However, the notion of distance in

the ambient space does not necessarily correspond
to the intrinsic distance on the constraint manifold,
as it may twist and curve relative to the ambient
space (Tenenbaum et al. 2000). To remedy this
problem, a natural metric to use would be the intrinsic
Riemannian metric of the constraint manifold, or the
arclength of the geodesic between points. A geodesic is
the shortest curve between two points on the manifold,
a generalization of a straight line in an Euclidean space.
However, computing geodesics is infeasible at the scale
needed for nearest-neighbor computations, and thus
infeasible for planning.

Thus, prior works generally use the ambient metric
from the configuration space, although there has been
some work on approximating geodesic distance (Zha
et al. 2018). The ambient metric is still “good enough”
for most motion planning algorithms in practice, but it
is possible that some theoretical guarantees no longer
hold. Note that the metric from the configuration space
is still a metric within the constraint manifold (when
restricted toM), asM is a subset of the configuration
space. Additionally, the configuration space’s metric
is always an under-approximation of the intrinsic
distance on M, but is a reasonable approximation
locally (asM is a manifold). Within imacs, the metric
from the configuration space is used. Importantly, use
of the ambient metric allows asymptotic optimality
guarantees to still hold for an asymptotically optimal
planner within imacs (shown in Section 5.4).

4.1.2 Sampling The ability to sample new configura-
tions in the configuration space is critical to sampling-
based planners. This is normally as simple as drawing
uniformly random values from Q. However, with an
implicit manifold, the structure of the manifold is not
known a priori, and is thus hard to sample uniformly
without careful consideration or pre-processing. How
this sampling is done is contingent on the specific
constrained space, but we do not guarantee that it
will produce uniform samples. Instead, we simply
guarantee that any method of constraint adherence
within imacs will almost-surely sample any volume of
non-zero measure within the manifold. This is similar
to sampling with some bias.

Many sampling-based planners do not use samplers
that sample from the entire configuration space (e.g.,
est (Hsu et al. 1999), kpiece (Şucan and Kavraki
2008)). Instead, they sample from a neighborhood
around a known valid sample, leveraging the intuition
that these configurations are likely to be valid as
well. We refer to these as neighborhood samplers.
These samplers within imacs must be able to sample
(potentially with bias) from a ball of radius r around a
known configuration.
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Figure 2. A depiction of the framework and its relation to sampling-based planners. a) A box configuration space Q is shown
in black. A sampling-based planner (purple) plans in Q using primitives afforded by the space. b) A constraint function
F (q) = 0 defines a implicit manifold M (green). c) An augmented constrained sampling-based planner (yellow) (e.g.,
cbirrt2, etc.) plans on M, using its constraint methodology. d) imacs enables any sampling-based planner (purple) to plan
on M by incorporating Q and the constraint function F (q) = 0.

Note that many planners (e.g., rrt) do not
require samples to be valid, which in the context of
constrained motion planning means the configuration
is both collision-free and constraint adhering. Thus, the
sampler for the ambient configuration space can be used
to guide search if samples are not required to be valid.

Several sampling-based planners utilize a “projection”
for estimating configuration space coverage in relation
to a task (Sánchez and Latombe 2003; Ladd and
Kavraki 2005; Şucan and Kavraki 2008), so that
the planner can measure sample density and direct
sampling towards less densely sampled regions (note
“projection” in this case is not a projection operator as
described before). “Projection” for coverage estimates
are problem-specific heuristics to bias sampling and are
left unaffected by the imacs.

4.1.3 Local Planning Local planners are the means
for sampling-based planners to quickly and efficiently
attempt to find a path between two states. A local
planner is not necessarily a complete planner, but
typically is fast and deterministic. In geometric
planning, the local planner generally takes the form of
interpolation along a geodesic between two states. For
example, within Rn, interpolating along the geodesic
from a configuration qa to qb has the analytic form of
linear interpolation.

For implicit manifolds, traversing geodesics is more
complicated. The generated geodesic must be a valid
curve in M. Generating a geodesic in the ambient

configuration space and subsequently attempting to
“fix” the geodesic to lie on the manifold ignores the
manifold’s curvature and can generate invalid motions.
Thus, geodesic generation forms the basis for the local
motion planner within imacs, and is implemented by
the method of constraint adherence. Figure 3 illustrates
the way the methods within imacs compute discrete
geodesics. Note that, in general, these methods do not
generate a “true” geodesic (the shortest curve between
two points); these methods simply attempt to efficiently
connect two points on the manifold, approximating the
geodesic. Although this curve is not the true geodesic,
it is referred to as the geodesic in this paper. Note that,
as the manifold is locally Euclidean, as the distance
between configurations lessens the curve generated by
these methods approaches the true geodesic.

Within prior constrained sampling-based planning
works, generating a geodesic takes the form of taking
small enough steps to accurately traverse the manifold’s
curvature, creating a discrete geodesic.

Definition 5. Discrete Geodesic. A discrete geodesic
is a representation of a continuous geodesic σ
within a metric space M by a sequence {xj}nj=1

of xj ∈M. An approximation of the arc length
L(σ) ≥ L({xj}nj=1) is given by summing distances

along the sequence: L({xj}nj=1) =
∑n
j=2 ‖xj−1 − xj‖2.

Continuity is enforced on the discrete geodesic by a fixed
allowable distortion λ and step size s (dependent on

Prepared using sagej.cls



Kingston, et al. 11

a) c) b)

Figure 3. Projection-, tangent bundle-, and atlas-based geodesic interpolation. Between a start (purple) and goal (yellow)
points on the implicit manifold (green), the discretized geodesic is computed (black). a) Projection-based (cbirrt2). Small
extensions are taken (grey) and projected using a projection operator (arrow). b) Tangent bundle-based (tb-rrt). The
manifold is lazily evaluated with tangent spaces (grey), projecting when necessary. c) Atlas-based (Atlasrrt). Tangent spaces
are traversed, projecting at every step.

the regularity of the constraint function), by which the
following must hold: ‖xj−1 − xj‖2 ≤ λs,∀j ∈ 2 . . . n

Computing the exact geodesic between two points is
hard and computationally costly (Hauser 2013; Mirabel
and Lamiraux 2016). Typically, generating the discrete
geodesic takes the form of integrating an ode on the
surface of the constraint manifold. Given two points
qa, qb ∈M , we can define the ode:

q̇ = qb − q(t) q(0) = qa (1)

If there is divergence or a lack of progress, then the
method terminates unsuccessfully, akin to colliding with
an obstacle. However, we show in Section 5.2 that
the scheme of ode integration on manifolds satisfies
the criteria of a local planner, and maintains the
probabilistic completeness of algorithms running on
imacs.

Many sampling-based planners need to compute
states interpolated between two states. For example,
rrt “steers” toward a sampled state, which in the
geometric case means interpolating towards a sampled
state up to some fixed distance. However, without
the geodesic between two states, it is not known
a priori what states lie between two states and
where; the geodesic must be computed to interpolate
between states. Once a discrete geodesic is computed,
an interpolated state can be computed by doing
piecewise interpolation, as shown in Alg. 1. Alg. 1
first sums distances along the generated geodesic (from
an Integrate method implemented by a method for
constraint adherence, line 2) to approximate geodesic
distance from the start qa to the goal qb. Using these
distances, an approximation of the desired state at a
time t ∈ [0, 1] (where t = 0 gives qa, t = 1 gives qb) along
the geodesic can be found by interpolating between
intermediate states. The Fix routine within Alg. 1 (line
12) takes the interpolated point finds a close adhering

Algorithm 1 Geodesic Interpolate

Input qa ∈M the starting configuration, qb ∈ Q
the goal configuration, and t ∈ [0, 1] the interpolation
parameter.

Output A q ∈M that is at t on the geodesic path
from qa to qb. Returns qa upon failure.

1: procedure Interpolate(qa, qb, t)
// Call a method-specific integrator

2: {qk}jk=1 ← Integrate(qa, qb)
// Check if integrator reached qb

3: if ‖qj − qb‖2 > ε then
4: return qa

// Compute arclength
5: d0 = 0
6: for i = 1, . . . j do
7: di = di−1 + ‖qi − qi−1‖2

// Find intepolated state
8: q ← qa
9: for i = 0, . . . j do

10: if di/dj ≤ t and di+1/dj > t then
11: t′ = (tdj − di)/(di+1 + di)

// Use method to adhere to F
12: q ← Fix(qi + t′(qi+1 − qi))
13: if q 6= false then
14: break
15: return q

configuration via the method for constraint adherence
(e.g., the projection operator for the projection-based
method, or ψC for the continuation-based method).
For efficiency, collision checking can be done within
Integrate, terminating early if a collision is reached.

4.1.4 Methods for Constraint Adherence In summary,
the key idea of imacs is to represent the implicit
constraint manifold with primitives that are necessary
for sampling-based planning. imacs consists of a
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space representation that has augmented sampling
and geodesic computation for a given underlying
configuration space and constraint. This allows a
broad class of sampling-based planners to plan with
constraints without any special consideration.

The next two sections describe the approaches
to sampling and geodesic computation for the
projection-based and continuation-based methods. The
projection-based method is similar in concept to
cbirrt2 (Berenson et al. 2011b), but using our
constraint function. The continuation-based method
is similar to Atlasrrt (Jaillet and Porta 2013b) and
Tangent Bundle rrt (Kim et al. 2016), and emulates
both using shared infrastructure.

4.2 Projection-Based Method

In a constrained motion planning problem, a an
adhering path only contains configurations that adhere
to the constraint function, F (q) = 0. One method
to find adhering configurations is with a projection
operator. A projection operator takes a configuration
and maps it onto the set of adhering configurations,
projecting it onto the constraint manifold. Both
sampling and local planning for the projection-based
method rely heavily on the projection operator.

4.2.1 Definitions Formally, we define the projection
operator as follows:

Definition 6. Projection Operator. A projection
operator is a surjective function P : Rn → M that
takes a given point q0 ∈ Rn and projects q0 onto M,
where P (q0) = q0 if q0 ∈M.

Given the implicit description of M, the projection
operator is often formulated as a constrained
minimization problem:

min
q

1

2
‖q0 − q‖2

2

subject to F (q) = 0

The formulation of the projection operator as a
constrained minimization problem lends itself to a
formulation as a Lagrangian with Lagrange multipliers
λ ∈ Rk:

Λ(q, λ) =
1

2
‖q0 − q‖2 − F (q)Tλ

We can solve for a solution to this system using gradient
descent, with the update ∆qi+1 = −J(qi)

+F (qi), where
J(q)+ is the pseudoinverse of the Jacobian (Nocedal
and Wright 2006). The full algorithm for the projection
operator via gradient descent (P ) is shown in Alg. 2.
This formulation to is similar to numerical inverse

Algorithm 2 P , a Projection Operator

Input q, an initial configuration to project from
Output P (q) ∈M, the projected state configura-

tion. On failure, “false” is returned.

1: procedure P (q)
2: x← F (q)
3: while ‖x‖2 > ε and iterations remain do
4: q ← q − J(q)+x
5: x← F (q)

6: if ‖x‖2 ≤ ε then
7: return q
8: else
9: return false

kinematic techniques (Buss 2004), which also can be
thought of as projection operators (e.g., task space
regions (Berenson et al. 2011b))

We show in Section 5.1 that the projection operator
covers the constraint manifold. That is, for any
configuration on the manifold, there exist configurations
within the ambient space that will be projected onto
the configuration.

4.2.2 Sampling We assume that the ambient configu-
ration space Q has some sampler with non-zero density
distribution over Q, i.e., there is a chance to draw a
sample from any open set in Q. It is simple to define
the projection-based sampler: repeatedly sample a point
using the sampler from the ambient configuration space
and project the point. Note that this routine may fail
due to the projection operator failing to converge.

Similarly, for sampling nearby existing configurations,
the neighborhood sampler from the ambient space is
used to sample a new point which is projected to the
manifold. Because the constraint manifold uses the
ambient metric, all points that are within some distance
r to a point in the ambient space are also within r on
the manifold.

4.2.3 Local Planning As stated in Section 4.1.3,
generating geodesics on the manifold is essential for
local planning. For the projection-based local planning,
we use a method inspired by integrating an ode on a
manifold (Hairer et al. 2006). In Alg. 3, we integrate the
ode given in Eq. 1 using projection to correct for drift
off the manifold. Alg. 3 uses a fixed maximum step size
s with respect to the Euclidean norm, and a tolerance
ε. This method is very similar to the constrained
extension steps employed in other projection-based
sampling-based planning methods in the literature, such
as cbirrt2.

Generally, it is not enough to have an arbitrary
discrete curve. Continuity must be enforced to some
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Algorithm 3 Projection Integrator

Input qa ∈M, an initial configuration, and qb ∈ Q,
a goal configuration.

Output {qk}jk=1 such that ∀k, q ∈M. Upon
success, ‖qb − qj‖2 ≤ s.

1: procedure Integrate(qa, qb)
2: q1 ← qa, j ← 1
3: while ‖qj − qb‖2 > s do

// Interpolate in C-space
4: qj+1 ← P (qj + (s/ ‖qb − qj‖2)(qb − qj))
5: d← ‖qj+1 − qj‖2

// Check distortion & progress
6: if d > λs or d < s then
7: break
8: j ← j + 1

9: return {qk}jk=1

degree. Alg. 3 is modified slightly from a pure
integration approach to respect conditions of continuity
in regards to a maximum distortion parameter λ and to
terminate early if no forward progress is made (a saddle
point, e.g., the antipode of a point on a sphere or a
sufficient curve in the manifold). For efficiency, collision
checking can also be done within the integration step,
but is left out of Alg. 3 for clarity.

4.3 Continuation-Based Method

As discussed in Section 3.3.2, the constraint manifold
M can be approximated by a set of tangent spaces. A
few recent planners such as Atlasrrt (Jaillet and Porta
2013b) and tb-rrt (Kim et al. 2016) use tangent space
approximations for efficient sampling near the manifold.
Both of these methods are emulated within imacs.

Common between these methods is the construction
and maintenance of an atlas. Definitions of the
underlying mathematical concepts and implementation
of operations associated with the atlas are presented in
Section 4.3.1. The definitions and routines presented
here are taken and reformulated from (Rheinboldt 1996;
Henderson 2002; Jaillet and Porta 2013b; Kim et al.
2016). The primary difference is their use within imacs
as subroutines in a representation of a space, rather
than as subroutines within a specific planner.

4.3.1 Definitions Both Atlasrrt and tb-rrt are
higher-dimensional continuation methods: they con-
struct a piecewise-linear approximation of the con-
straint manifold. This approximation is referred to as
an atlas, in reference to the mathematical objective
described below.

Definition 7. Atlas. A family of homeomorphisms
whose domains cover a manifold M is called an atlas

(AM) forM. A particular homeomorphism and domain
(ω,U) ∈ AM is called a chart for the atlas, where
ω : U → V ⊆ Rn is a homeomorphism.

In the case of Atlasrrt and tb-rrt, the atlas is
formed of charts that are represented by tangent spaces,
which are Rn−k-hyperplanes embedded in the ambient
configuration space.

Definition 8. Tangent Space. The tangent space of
M at x (written TxM) is the set of all tangent vectors
at x. For a n-dimensional manifold, the tangent space
is an n-dimensional real vector space.

Details of how tangent spaces are computed are
provided below. All together, the collection of tangent
spaces at each point on the manifold form the tangent
bundle, a vector bundle of tangent spaces.

Definition 9. Vector Bundle. A vector bundle on
a manifold M is given by ξ = (π,E,M). E is the
total space, a disjoint union of a collection of vector
spaces, E =

⊔
x∈MEx, where Ex is the vector space at

x ∈M and
⊔

denotes disjoint union. π : E → M
is a continuous surjective function called the bundle
projection, mapping π(Ex) = x.

Definition 10. Tangent Bundle. The tangent
bundle of an n-dimensional manifold M (written
TM) is a vector bundle composed of the disjoint
union of the tangent spaces Rn for each x ∈M,
TM = (π,

⊔
x∈M TxM,M)

The following sections describe the various operations
that utilize tangent spaces and charts.

Creating New Charts: An atlas AM for the constraint
manifoldM contains charts (ω,U) ∈ AM which locally
parameterizeM. We would like to explicitly define the
chart that locally parameterizes the manifold for a given
point.

A chart is defined by Cq = (q,Φ(q)) for a point q on
a constraint manifold M, and consists of the point q
and an orthonormal basis Φ(q) for the tangent space
TqM, Φ(q) ∈ R(n−k)×n From (Rheinboldt 1996), the
orthonormal basis can be constructed by finding a
solution to the equation:[

J(q)
Φ(q)T

]
Φ(q) =

[
0
I

]
(2)

Where 0 ∈ Rk×(n−k), I ∈ R(n−k)×(n−k). The basis for
the tangent space can be computed by finding an
orthonormal basis for the nullspace of the Jacobian
Φ(q) = ker(J(q)). Typically, this is solved using some
matrix decomposition (e.g., qr (Press et al. 2007)). The
computation of new charts is done in Alg. 5.
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To and From Charts: Once charts have been created
on the manifold, they can be used to generate
configurations that adhere to the constraint. There are
three functions to consider for a chart Cq: ϕCq , a basis
change that embeds a point from chart space into the
configuration space (Eq. 3), ψCq

, a mapping from the
space around the chart to the manifold (Alg. 4), and
ψCq

−1, which maps from the manifold back into chart
space (Eq. 5). The cyclical relation of these functions
is illustrated in Figure 4a and the following diagram:

TqM Q

M

ϕCq

ψCqψCq

−1

These functions are explained in the following
paragraphs.

For a given chart around a configuration q ∈M,
points within a chart Cq, uq ∈ TqM, are embed-
ded into the ambient configuration space with
ϕCq

: TqM → Rn:

qu = ϕCq
(uq) = q + Φ(q)uq (3)

Although qu will be close to the manifold, the
configuration must still be projected onto M. The
exponential map ψCq

: Rn → M projects points
embedded in Rn from the chart onto M. A key
difference from the projection operator presented in
Section 4.2.1 is that ψCq

projects orthogonally relative
to the embedding of TqM in Rn, and is applicable only
to points within the chart Cq’s space. The projected
point qm is found by solving the system of equations:

F (x) = 0 Φ(q)T (qm − q) = 0

This system of equations is solved with gradient descent,
shown in Alg. 4, similar to Alg. 2. In Alg. 4, the following
equations are used for clarity, given the initial point qu
and chart Cq:

Au(qm) =

[
J(qm)
Φ(q)T

]
, bu(qm) =

[
F (qm)

Φ(q)T (qm − qu)

]
(4)

Au is invertible and full rank, as the Jacobian is
assumed to be of full rank onM, and thus is also of full
rank near M (by the inverse function theorem). Note
that Alg. 4 can fail due to lack of convergence similarly
to the projection operator, but this is less likely due to
the proximity of the charts to the manifold.

The inverse mapping, or logarithmic map,
ψCq

−1 :M → TqM is defined as a projection
onto the tangent space:

uq = ψCq

−1(qm) = Φ(q)T (qm − q) (5)

a)

b)

Figure 4. a) Illustration of the various chart operators as
described in Section 4.3.1. b) Illustration of the parameters
used in a chart’s validity region.

Algorithm 4 ψCq
, the exponential map

Input qu, an initial configuration from Cq’s tangent
space

Output qm = ψCq
(qu), the orthogonally projected

state configuration. On failure, “false” is returned.

// Au(qm), bu(qm) defined in Eq. 4
1: procedure ψq(qu)
2: qm ← qu
3: b← bu(qm)

// Orthogonally project until convergence
4: while ‖b‖2 > ε and iterations remain do
5: qm ← qm −Au(qm)−1b
6: b← bu(qm)

7: if ‖b‖2 ≤ ε then
8: return qm
9: else

10: return false

Chart Validity: Due to the constraint manifold’s non-
Euclidean structure, the tangent spaces of the charts
that form the atlas are only good local approximations.
To maintain accuracy of the approximation, each chart
has a validity region, wherein the chart is applicable to
the manifold. A chart Cq’s validity region Vq ⊂ TqM
is defined by parameters:

• ε: maximum distance of TqM to M
• ρ: radius of ball in TqM
• α: maximum curvature of TqM to M
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The following inequalities define the validity region, for
a point uq ∈ TqM, qu = ϕCq

(uq), qm = ψCq
(qu):

‖qu − qm‖2 ≤ ε
‖uq‖2
‖q − qm‖2

< cos(α) ‖uq‖2 ≤ ρ

Respectively, these correspond to error, curvature,
and maximum span. These parameters are shown in
Figure 4b. Note that it is possible to adaptively change
these parameters, but this is not discussed in this work.

If a point qm ∈M is such that uq = ψCq

−1(qm) 6∈ Vq
for any chart Cq ∈ AM, then no existing chart is
suitable and a new chart needs to be created. Given this
new chart Cx, other charts near Cq can add a separating
halfspace to their applicability polyhedron Pq. Given a
new u ∈ TqM and a neighboring chart Cx = (x,Φ(x)),
with ux = ψ−1

q (x), u is in the applicability region if it
satisfies the inequality:

2uTux ≤ ‖ux‖2
2

It is not strictly necessary to separate charts, as will
be seen with the tangent bundle planning approach.
Each of the charts Cx and Cq store the halfspace. We
consider u ∈ Pq for a chart Cq when a point u satisfies
all inequalities, and thus is within the applicability
polyhedron.

In our implementation, the atlas is stored as a
collection of charts within a nearest neighbor structure,
using the configuration space’s metric between chart
centers. The nearest neighbor structure is used in
Alg. 5 in the method WithinRadius(q,AM, r), where
q ∈ Rn, AM is the atlas (a collection of charts) and
r ∈ R+ is a radius. WithinRadius returns all charts
within the radius of the configuration. In both cases
the maximum radius of a chart, ρ, is used to obtain
nearby charts.

Primarily, all operations that modify or access the
atlas are done through GetChart (Alg. 5), which
gets the chart that a point on the constraint manifold
belongs to. Auxiliary to this method is FindChart,
which searches existing charts for a chart that is
feasible given a point. FindChart returns the chart
with the least error to the point if multiple are
feasible. If FindChart fails, a new chart is created
and added to the atlas in GetChart. For efficiency in
implementation, a configuration can store a reference
to the last chart it was found to belong to, rather than
needing a full lookup each time.

4.3.2 Sampling In imacs, new constraint-adhering
configurations are generated by sampling within
tangent spaces and projecting these points onto the
manifold. A method for sampling the entire manifold
and sampling near known configurations is given in

Algorithm 5 Find and Create Chart for qa in AM
Input qa, the configuration to find a chart for, and

AM, the current atlas of charts
Output C, the best (distance-wise) chart for qa.

On failure (no valid charts for qa), an empty object {}
is returned.

1: procedure FindChart(qa, AM)
2: best← ε, C ← {}

// Get all charts within ρ of qa
3: charts←WithinRadius(qa,AM, ρ)
4: for Cq ∈ charts do
5: uq ← ψ−1

Cq
(qa)

6: d←
∥∥φCq

(uq)− qa
∥∥

2
// Check if Cq is a closer, valid chart

7: if d < best and uq ∈ Pq then
8: best← d, C ← Cq

9: return C

Input qa, the configuration to get a chart for, and
AM, the current atlas of charts

Output C, the best (distance-wise) chart for qa. If
there are no valid charts for qa, a new chart is created
using qa as the origin.

1: procedure GetChart(qa, AM)
// Check if chart already exists

2: Ca ← FindChart(qa,AM)
3: if Ca 6= {} then
4: return Ca

// Create new chart (see Eq. 2)
5: Ca ← (qa,Φ(qa))

// Generate separating halfspaces (optional)
6: if separate charts then
7: adjacent←WithinRadius(qa,AM, 2ρ)
8: for Cq ∈ adjacent do
9: ComputeHalfspaces(Ca, Cq)

10: AM ← AM ∪ {C}
11: return C

Alg. 6. The method SampleAtlas is implemented
to sample a chart from the collection of charts.
Generally, this is uniform sampling of the collection
of charts. As a heuristic improvement, bias can be
introduced to SampleAtlas in order to do weighted
sampling (ensuring that each chart always has a positive
probability of being sampled). This is done in tb-
rrt, where charts are biased by their distance to the
goal (Kim et al. 2016). SampleBall(C, q, r) samples
a point within radius r of q within the chart C’s space.
Not shown in Alg. 6 are failure conditions due to ψC
not converging; in this case, the center of an existing
chart is returned.
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Algorithm 6 Continuation-based Sampling

Input AM, the current atlas of charts.
Output q ∈M, a random configuration.

1: procedure Sample(AM)
2: do

// Uniformly choose a chart
3: C ← SampleAtlas(AM)
4: u← SampleBall(C,0, ρβ)
5: while u 6∈ PC or ¬ψC(u)
6: return ψC(u)

Input q, the point to sample nearby, radius r ∈ R+,
and AM, the current atlas of charts.

Output q ∈M, a random configuration.

1: procedure NeighborhoodSample(q, r AM)
2: do
3: C ← GetChart(q,AM)
4: u← SampleBall(C,ψC

−1(q), rβ)
5: while ¬ψC(u)
6: return ψC(u)

Although at first biased towards explored areas, in
the limit—once the manifold has been fully explored—
sampling approaches uniform sampling (Jaillet and
Porta 2013b). These methods can sample within hard-
to-project areas, such as the interior surface of a highly
curved manifold. This is empirically demonstrated in
Section 6.2.

Neighborhood sampling is shown in Neighborhood-
Sample in Alg. 6. For a given configuration q, a point is
sampled within radius r of q’s projection onto the chart.
As the chart is a local approximation of the manifold,
a ball with radius r in chart space mapped via ψC to
M contains the ball of radius r in M. However, due
to the curvature of the manifold, parts of the ball may
be invalid, resulting in a failure condition that simply
returns the original configuration.

The validity parameter ρ is used within Sample to
generate samples within the current validity region of
the sampled chart. Within the sampling process, note
the β parameter on line 4 in both sampling routines.
β ≥ 1 is an exploration parameter that allows search
to extend from current applicable charts, so that there
is a chance of generating new configurations outside of
the current collection of chart’s validity regions. Higher
values of β have potential to generate more invalid
samples, but will also cause the manifold to be more
rapidly explored.

4.3.3 Local Planning Generating geodesics using
continuation-based methods is also inspired by

Algorithm 7 Continuation Integrator

Input qa ∈M, an initial configuration, qb ∈ Q, a
goal configuration, and AM, the current atlas of charts.

Output {qk}jk=1 such that ∀k, q ∈M. Upon
success, ‖qb − qj‖2 ≤ s.

1: procedure Integrate(qa, qb, AM)
2: q1 ← qa, j ← 1
3: Cj ← GetChart(qj ,AM)
4: uj ← ψ−1

Cj
(qj) // qj projected into Cj

5: ub ← ψ−1
Cj

(qb) // goal qb projected into Cj
6: while ‖uj − ub‖2 > s do

// Interpolate in chart space
7: uj+1 ← uj + s(ub − uj)/ ‖ub − uj‖2
8: qj+1 ← ψCj

(uj+1)
9: d← ‖qj+1 − qj‖2

// Check distortion & progress
10: if d > λs or d < s then
11: break
12: j ← j + 1

// Check if uj is in validity region
13: if

∥∥ϕCj
(uj)− qj

∥∥
2
> ε

14: or s/d < cosα
15: or ‖uj‖2 > ρ
16: or uj 6∈ Pq then

// Create or get new valid chart
17: Cj ← GetChart(qj ,AM)
18: uj ← ψ−1

Cj
(qj)

19: ub ← ψ−1
Cj

(qb)

20: return {qk}jk=1

1: procedure LazyIntegrate(qa, qb, AM)
2: q1 ← qa, j ← 1
3: Cj ← GetChart(qj ,AM)
4: uj ← ψ−1

Cj
(qj) // qj projected into Cj

5: ub ← ψ−1
Cj

(qb) // goal qb projected into Cj
6: while ‖uj − ub‖2 > s do

// Interpolate in chart space
7: uj+1 ← uj + s(ub − uj)/ ‖ub − uj‖2
8: qj+1 ← ϕCj

(uj+1)
9: j ← j + 1

// Check if uj is close to manifold
10: if

∥∥ϕCj
(uj)− qj

∥∥
2
> ε

11: or uj 6∈ Pq then
// Create or get new valid chart

12: qj ← ψCj
(uj) // project to M

13: Cj ← GetChart(qj ,AM)
14: uj ← ψ−1

Cj
(qj)

15: ub ← ψ−1
Cj

(qb)

16: return {qk}jk=1
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integrating an ode on a manifold. In the continuation-
based method, geodesic generation is accomplished by
walking along the tangent spaces of the approximation,
switching tangent spaces once certain criteria are
met. In Alg. 7, two integration methods are shown:
Integrate which checks for constraint adherence at
every step, and LazyIntegrate which takes a lazy
approach to constraint validation.
Integrate is very similar to the extension

method presented by Atlasrrt (Jaillet and Porta
2013b); Integrate projects at every step along the
approximation, and generates separating half-spaces to
create polytopes of the tangent space for more accurate
geodesic traversal, at the cost of additional computation
(shown in Figure 3c).

LazyIntegrate is very similar to the extension
method presented by tb-rrt; LazyIntegrate takes
a lazy approach to geodesic generation, projecting to
the manifold only when necessary to switch tangent
spaces (shown in Figure 3b). This has the benefit of
performing less work computing projections, but it is
harder to do correctly. Extra consideration is needed
when performing collision checking as lazy evaluation
generates a relaxed geodesic, which might hit or miss
obstacles.

4.4 Sampling-Based Planning

Above, we have presented the details of how projection-
and continuation-based spaces are emulated within
imacs. These spaces are primarily formed by their
methods of sampling and geodesic generation. Note that
these spaces are not the only methods for constraint
adherence that can be captured with imacs: for
example, tangent space-based planning would fit within
this framework as well (as described in the first part of
Section 3.3.2).

Within the context of sampling-based planning,
imacs is used as the space that a planner is exploring,
it is an overlay for an underlying ambient configuration
space with a constraint function. Each method for
constraint adherence’s sampler is used in place of the
sampler normally offered by the ambient configuration
space. Note that for some planners (e.g., rrt) the
ambient configuration space sampler can be used, as
these planners do not directly use samples in their
graph construction. Geodesic generation is used in
local planning and interpolation: whenever a motion
is validated between states or a new state is generated
by interpolation, Interpolate (Alg. 1) is used with
the method’s integrator (e.g., Alg. 3 for the projection-
based space).

We show in Section 5 some of the theoretical
guarantees afforded by imacs. In particular, if a

sampling-based planner is probabilistically complete, it
remains probabilistically complete while within imacs.
Additionally, asymptotically optimal planners such as
rrt* and prm* retain their asymptotic optimality
within imacs.

5 Theoretical Guarantees

Many sampling-based planners provide some sort of
formal guarantee about their completeness or optimality
of solution. Typically, sampling-based planners provide
probabilistic completeness guarantees (that is, the
probability that a planner will find a solution if one
exists goes to 1 as the number of iterations goes to
infinity), and many recent planners provide asymptotic
optimality guarantees (that is, the solution found will
converge to the global optimum as the number of
iterations goes to infinity). In this section, we provide
building blocks that would compose a larger proof of
probabilistic completeness or asymptotic optimality
for planners that run within imacs. These proofs
leverage the modular nature of sampling-based planners
and provide guarantees about the certain individual
components, namely the samplers and local planners.

We first present proofs that show a probabilistically
complete planner within imacs remains probabilis-
tically complete. Samplers and local planners form
the core of probabilistic completeness for any motion
planner. This is similar to how samplers and local
planners form the core of a constrained sampling-
based planning method, as well as the core of the
methods of constraint adherence within imacs. The
analysis presented follows from the measure theoretic
analysis presented in (Ladd and Kavraki 2004), which,
among other properties of the planner itself, requires
two properties from the space representation:

• The sampler used must have a non-zero
chance of sampling any configuration in the
configuration space. For neighborhood samplers,
this corresponds to having a non-zero chance of
sampling any configuration within the specified
radius.

• The local planner must be a measurable relation.
Additionally, the local planner must be such
that its transitive closure is a measurable
relation (i.e, the path reachability condition).
That is, for any two configurations qa, qb that
are path connected, there exists some sequence
of configurations qa, q1, . . . , qm, qb such that the
local planner reports validity between each
successive configuration.

We will show that the samplers and local planners from
the projection- and continuation-based methodologies
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satisfy the above properties, and thus sampling-based
planners maintain probabilistic completeness within the
framework.

Additionally, we provide proofs that asymptotically
optimal motion planners maintain their asymptotic
optimality guarantees within the framework. We show
that under the assumptions above about the sampler
and local planner, the proofs of asymptotic optimality of
rrt* and prm* given in (Karaman and Frazzoli 2011)
hold, and that connection radii γ exist to maintain
asymptotic optimality.

The key intuition of why probabilistic completeness
and asymptotic optimality are preserved within imacs
is that the structure of the implicit space is that of a
smooth manifold. Manifolds are such that they locally
appear to be like a Euclidean space, and thus in a
sense are “nice” for planning. It is possible to provide
guarantees about sampling and local planning under
constraints as, locally, there is always space around the
manifold that is well behaved.

The rest of this section is organized as follows. In
Section 5.1, we show that projection-based sampling
(as defined in Section 4.2.2) which uses a projection
operator (as defined in Section 4.2.1) satisfies the
criteria of a sampler. Next, Section 5.2 shows that the
geodesic generators of the projection- and continuation-
based spaces are indeed local planners as defined
above. Together, these facts lead to the probabilistic
completeness of a planner within imacs, discussed in
Section 5.3. Finally, we discuss how the proofs of
asymptotic optimality remain unaffected by imacs in
Section 5.4.

5.1 Manifold Coverage and Sampling

Key to the projection-based methods is the projection
operator. Critically, the projection operator must
guarantee that it will project a state onto the constraint
manifold. We show that the projection operator, as
presented, covers the manifold. That is, we show in
Prop. 1 that any open set on the manifold U ⊆M has
an associated open set in the ambient configuration
space V ⊆ Rn such that P (V ) = U . With this fact, the
projection-based sampler is shown to be a sampler, as
all measurable sets on the manifold will be sampled.

This proof is inspired by the proof of manifold
coverage used in cbirrt2 (Berenson et al. 2011b) and
a proof of continuity of the projection operator given
in (Mirabel and Lamiraux 2016). However, note that
the proof offered in Prop. 1 is more general than the
proof of manifold coverage given in (Berenson et al.
2011b). The difference lies in the class of constraints
considered: (Berenson et al. 2011b) gives a proof of
manifold coverage for a class of end-effector constraints

for manipulators (task space regions), while our proof
is for any constraint of the form F (q) = 0 for any robot
(as defined in Section 2.2), generalizing the prior result.

Recall that we assume the configuration space Rn is
a measure space with the Borel σ-algebra. We assume
that there is a probability measure over Rn with non-
zero measure for any non-empty open set. We assume
the sampler for the ambient configuration space has a
distribution with non-zero density on all of Q.

We show that the projection operator covers the
manifold by showing that there exists a region
(potentially small) around the manifold such that all
points in this region project onto the manifold. A
natural concept for the immediate region closest to
the smooth constraint manifold is that of a tubular
neighborhood.

Definition 11. Tubular Neighborhood (Spivak 1999;
Lee 2003). Let M⊂ Rn be a at least a C1-smooth
(n− k)-dimensional compact manifold. A tubular
neighborhood of M is a pair (f, ξ) where:

• ξ = (π,E,M) is a vector bundle (Def. 9) over
M. E is the disjoint union of a collection
of vector spaces, E =

⊔
x∈MEx, where Ex is

k-dimensional. π : E → M is the bundle
projection, a continuous surjective mapping where
π(Ex) = x.

• f : E → Rn is a smooth embedding such that
f(E) is an open neighborhood of M in Rn.

A partial tubular neighborhood of M is a triple
(f, ξ, EU ) where EU ⊂ E and is a neighborhood of
U ⊂M such that f(Eu) is open in Rn.

Intuitively, the tubular neighborhood of the manifold
can be visualized as “inflating” the manifold, e.g., for
a line in R3, a possible embedding of the tubular
neighborhood would be a cylinder in R3 oriented around
the line. It is known that in particular ifM is manifold
and X = Rn, thenM has a tubular neighborhood in Rn
as a consequence of the tubular neighborhood theorem.

Theorem 1. Tubular Neighborhood Theorem (Spivak
1999; Lee 2003). Every embedded submanifold of
Rn has a tubular neighborhood. Without loss of
generality this tubular neighborhood is the normal
tubular neighborhood, where the vector bundle ξ is the
normal bundle of the embedded manifold.

As the manifold is smooth, it makes sense that
it can be “inflated” without the tubular region self-
intersecting; a smooth manifold can only twist and
curve so much, and has no self-intersections. However,
note that a manifold can get arbitrarily close to
itself, and thus while the tubular neighborhood does
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exist it can be arbitrarily small. The volume of the
tubular neighborhood, and thus the effectiveness of the
projection operator, are dependent on the regularity of
the constraint function.

We would like to show that all configurations within
this region around the manifold, when projected, end
up on the manifold. The gradient descent within the
projection operator (Alg. 2) can be phrased as the flow
of an ode. Thus, we would like to show that, for some
desired point on M, that it is a stable solution, or
equilibrium point, to the projection operator’s ode. The
concept of Lyapunov Stability states this precisely.

Definition 12. Lyapunov Stability. Let an ode
q̇ = g(q(t)), q(0) = q0 be given, such that q(t) ∈ D ⊆ Rn
for all t and g : Rn → Rn is continuous on D. An
equilibrium point q̄ is a point such that f(q̄) = 0.
Additionally, an equilibrium point q̄ is:

1. Lyapunov Stable, if for every ε > 0, there exists
a δ > 0 such that ‖q(0)− q̄‖2 < δ, then for every
t ≥ 0, ‖q(t)− q̄‖2 < ε.

2. Asymptotically Stable, if q̄ is Lyapunov stable and
there exists a δ > 0 such that if ‖q(0)− q̄‖2 < δ,
limt→∞ ‖q(t)− q̄‖2 = 0.

The Lyapunov Stability of an equilibrium point can
be proven with the Lyapunov’s theorem (Luenberger
1979). With these tools, we are now ready to prove that
the projection operator covers the manifold.

Proposition 1. Projection Operator Coverage. Let
an ambient space Rn and a C2 constraint function F
be given, defining a C2 implicit constraint manifold
M. For any open set U ⊆M, there exists an open
set DU ⊆ Rn (with non-zero measure) such that for all
x ∈ U , there exists y ∈ DU such that P (y) = x.

Proof. Let any open set U ⊆M be given. By Thm. 1,
as M is a C2-smooth compact manifold in Rn there
exists (h, ξ), the normal tubular neighborhood of M,
where ξ = (π,E,M), E is the normal bundle of M,
and h is the smooth embedding of E in Rn such
that h(E) is an open neighborhood of M in Rn.
Note that as U is open in M, we can restrict (h, ξ)
to a partial tubular neighborhood (h, ξ, EU ), where
EU =

⋃
x∈U π

−1(x). Also, the Jacobian is of full rank
over a non-empty open neighborhoodW ⊆ Rn,M⊂W
by the inverse function theorem.

For all x ∈ U , we would like to show that there is
some set Dx ⊂W such that for all y ∈ Dx, P (y) = x.
Let Bx = h(π−1(x)) denote all points in the tubular
neighborhood that are closest to x (the embedding of
the normal plane at x in Rn). Put Dx = Bx ∩W , a
non-empty open set in Rn.

Following from the definition of a projection operator
(Def. 6), define an ode g over the domain Dx:

g(q) = −J(q)+F (q) q̇ = g (q(t)) (6)

Note that g is continuous, as F is C2 and thus the
Jacobian J is a continuous map, and the pseudoinverse
of the Jacobian is continuous as the Jacobian is of full
rank for all q(t) (Stewart 1969). Equilibrium points of
(6) occur when F (x) = 0, i.e., when x ∈M.

Put V , the candidate Lyapunov function as:

V (q(t)) =
1

2
‖F (q(t))‖2

2
.

V is continuous as the norm is a continuous map and g
is continuous from above. V is also differentiable, with:

∇V (q(t)) =
(
J (q(t))

T
F (q(t))

)T
= F (q(t))

T
J (q(t))

V satisfies the properties of the Lyapunov theorem on
the domain Dx, as:

1. V (q) = 0 for q ∈M, and by construction Dx only
contains x such that x ∈M,

2. V (q) > 0 as norms are positive definite, and
3. ∇V (q)g(q) < 0 as:

∇V (q)g(q) = −F (q)
T
J (q) J (q)

+
F (q)

= −‖F (q)‖2
2
.

Thus x is an asymptotically stable equilibrium point
on Dx for the ode. Thus, for any y ∈ Dx, P (y) = x.

Put DU =
⋃
x∈U Dx. It is clear to see that

DU = h(EU ) ∩W by construction, and thus DU is a
non-empty open set in Rn. Additionally, for all x ∈ U ,
there exists y ∈ DU such that P (y) = x, as Dx ⊂ DU

for all x. Thus, there exists an open set DU for any
U ⊆M such that for all y ∈ DU , P (y) ∈ U . �

With Prop. 1, it is clear to see that the ambient
configuration space sampler paired with Alg. 2 covers
the manifold, and is a surjective function. Projection-
based sampling can be used for probabilistically-
complete sampling of any manifold defined by a
constraint function. Note that the projection operator
acts like a topological retraction from a neighborhood
DU to U in the constraint manifold. As the ambient
space sampler has a non-zero chance of sampling from
any open set, there is a non-zero chance that for any
open set U ⊂M, its corresponding open set DU ⊂ Rn
will be sampled. However, this also means that the
probability of sampling from a particular set U ⊂M is
not related the measure of the set within the manifold,
but the volume of its converging region, µ(DU ). Note
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that DU does not have to be a subset of Qfree. For
nearby sampling, as the distance metric used is the
induced distance metric from Rn, sampling within a ball
in ambient space centered at a point on the manifold
will at least contain a ball of the same radius on the
manifold.

For the continuation-based space, theoretical guar-
antees about sampling are provided by (Henderson
2002; Jaillet and Porta 2013b), and are preserved
within the context of imacs. We assume that, if a
sampling-based planner is expansive and has a non-zero
probability of expanding to a state that will create a
new chart, eventually the entire manifold will be covered
by charts. Recall that continuation-based sampling
will generate samples that create new charts due to
the exploration parameter β (Section 4.3.2). As all
portions of the manifold will be covered by charts whose
validity regions apply to the manifold, continuation-
based sampling (Alg. 6) will cover the manifold.

5.2 Integrator Convergence and Local Planning

In Ladd and Kavraki (2004), a local planner is defined as
a measurable relation (on the Borel σ-algebra generated
from the subset topology on M) whose transitive
closure is the path reachability relation. That is, the
local planner is always capable of reaching points
within a neighborhood of an original point, i.e., for any
point we would like to reach qb, there is an open set
U ⊂M such that all qa ∈ U can reach qb. As discussed
in Section 4.1.3, geodesic generation underlies local
planning. The properties of the geodesic generation
are thus properties of the local planner. Recall that
the geodesic generators used in the projection- and
continuation-based spaces are based upon integrating
an ode, in this case, the flow defined in Eq. 1. In this
section, we show that formulating geodesic generation
as an ode satisfies the properties of being a measurable
relation whose transitive closure is the path reachability
relation. Thus, local planners in imacs satisfy the
necessary properties for probabilistic completeness of a
planner.

We first present a theorem about the existence of
solutions to odes on manifolds.

Theorem 2. Uniqueness and Existence Theorem for
odes on Manifolds (Rheinboldt 1991). Let q̄ be
an equilibrium point of a C1-ode g on a C2-smooth
manifold X . There exists an open neighborhood of q̄,
U ⊂ X such that for all q ∈ U , q̄ is a equilibrium point
of g with q as an initial point.

This theorem captures the intuition that, as
manifolds are locally Euclidean, there is always a local
neighborhood that behaves nicely for local planning.

Now, we can show geodesic generation is a measurable
relation, i.e., for any point in M there exists an open
neighborhood that can reach it.

Proposition 2. Measurable Local Planners. Let
qb ∈M be given. There exists an open neighborhood of
qb, Ub ⊂M, such that for all qa ∈ Ub, qb can be reached
by integrating Eq. 1 with q(0) = qa with either Alg. 3
or 7.

Proof. Recall that M is a C2-smooth manifold and
Eq. 1 is a C1 ode by assumption. Set qb as the constant
in Eq. 1. It is clear that qb is an equilibrium point of
Eq. 1. Thus, the conditions of Thm. 2 are met, and
for any qb ∈M, there exists an open neighborhood
Ub ⊂M such that all qa ∈ Ub will converge to qb.
Additionally, as a bounded step size is used in
integration (Alg. 3 and 7), the integrators will converge
to the solution of Eq. 1 (Hairer et al. 2006). �

Thus, the local planners in the projection- and
continuation-based space are measurable relations.
Recall thatM is imbued with the induced metric from
Rn. An obvious consequence of Prop. 2 is that for all
points q ∈M, there exist open balls B(q, εl) ⊆ Uq of
radius εl > 0 such that all q′ ∈ B(q, εl) can connect to
q. The range of the local planner εl is highly sensitive
to the volume of regions that converge, which is related
to the regularity of the constraint function. That is, the
more “curved” the manifold, the less likely the local
planner is to succeed, but there always exists a region
where it will succeed.

We now wish to show that, using these local planners,
any configuration can be reached. Given that a path
exists on M, it must be realizable by a finite number
of local plans.

Proposition 3. Local Planning To Path Reacha-
bility. Let qa, qb ∈Mfree be given, and let a path
σ ∈ ΣMfree

with strong δ-clearance be given such that
σ(0) = qa, σ(1) = qb. There exists a finite sequence of
points {qi}ki=1 such that for all i = 1, . . . , k there is a ti
such that σ(t) = qi, ti < ti+1 for all i. Additionally, qi+1

is reachable from qi using a local planner (i.e., Alg. 3
or 7). Thus the transitive closure of Alg. 3 and 7 is the
path reachability condition.

Proof. By assumption, qa, qb ∈Mfree are given with a
robust path σ ∈ ΣMfree

such that σ(0) = qa, σ(1) = qb.
From Prop. 2, we know that for all t ∈ [0, 1], there

exists an open neighborhood Ut of σ(t) in M such
that σ(t) can be reached via a local planner from all
q ∈ Ut. Additionally, as σ is robust, we know that there
exists a ball of radius δ that is collision-free around
all σ(t). Define ν = min{εl, δ}, ν > 0. Moreover, there
exists open balls B(σ(t), ν) ⊆ Ut.
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As σ is of finite length L, it is possible to tile σ
with a finite number k = L/ν of open balls of radius ν,
such that σ(tn) is contained within the ball centered at
σ(tn+1) for all n = 1, . . . , k and σ(t1) = qa, σ(tk) = qb.
From a configuration σ(tn), σ(tn+1) is reachable
without collision by a local planner for all t. This yields
{qi}ki=1, where qi = σ(ti), a discrete path realizable by
local planners. �

There are many planners (e.g., rrt, rrt*) that
assume that a local planner only “steers” for a certain
duration, η > 0. That is, the local planner needs to, at
most, be able to connect to a point within a distance of η
from any point, similar to the bound εl for local planners
in imacs. Thus, for guarantees to hold εl ≥ η > 0 as
that is as far as the local planner is guaranteed to
travel for any point. This fact is used in Section 5.3
and Section 5.4.

5.3 Probabilistic Completeness

In the sections above, we presented facts about sampling
and local planning in imacs for both the projection-
and continuation-based spaces. These facts concerned
the critical properties necessary of a sampler and
local planner for a sampling-based planner to have
probabilistic completeness. For concreteness, we now
give a proof of probabilistic completeness for prm
within the context of imacs. The proof of completeness
for prm follows from a proof offered in (Ladd and
Kavraki 2004).

5.3.1 PRM within IMACS Ladd and Kavraki (2004)
provide a proof of the probabilistic completeness of
prm within a measure theoretic framework, offering
the following theorem.

Theorem 3. Probabilistic Completeness of prm (Thm.
IV.2 in (Ladd and Kavraki 2004)). If it is possible to
find a path from qa, qb with a random walk using k points
using a local planner, the expected number of samples
needed for prm to succeed (N) satisfies the following
inequality:

E
[
N
]
≤ H(k)

p

Where H(k) is the kth harmonic number and p > 0
is the minimum probability of sampling one of the
necessary k points of the path (a problem specific
constant).

Following from analysis presented in (Ladd and
Kavraki 2004) and Prop 3, it is easy to see that a
random walk from qa, qb onM using sampling and local
planning within imacs is probabilisitically complete for
finding paths with strong δ-clearance. This is because

1) sampling in imacs has a distribution with non-zero
density over M and 2) it always possible to travel at
least εl with local planning in imacs (i.e., local planning
is a measurable relation). Thus, Thm. 3 applies to the
projection- and continuation-based spaces.

For the projection-based space, it is not known a
priori what the volume is of an open neighborhood
DU that projects to an open ball BM(q, ε) ⊆M. A
conservative estimate can be made by taking the
minimum volume over all open balls of radius ε on
M:

ζM,ε = min
q∈M

µ

 ⋃
q∈BM(q,ε)

Dq

 (7)

That is, for any q ∈M, there is a volume of measure
ζM,ε that projects to the open ball of radius ε around
q. We can now state a bound for the projection-based
space:

Proposition 4. prm in projection-based space. For
a path with strong δ-clearance and length L, with
projection-based sampling and a local planner with range
εl, set γ = min{δ, εl}. The expected number of samples
needed for prm to succeed (N) satisfies the following
inequality:

E
[
N
]
≤ H(L/γ)µ(Q)

ζM,γ

Proof. Let σ be a path with strong δ-clearance. As
σ has finite length L, can be tiled with k = L/γ balls
of radius γ centered at configurations q1, . . . qk. The
projection-based local planner can connect to the center
of each of these balls, as they are no farther than εl
away, and thus a random walk can realize the path.

By definition, ζM,γ ≤ mini=1,...,k µ
(⋃

q∈BM(qi,γ)Dq

)
.

Thus, set p = ζM,γ/µ(Q) and invoke Thm. 3. �

For the atlas-based space, we use theory developed
in (Jaillet and Porta 2012). Importantly, the following
bound is presented for two points qi, qj ∈M parame-
terized by a chart C, ui = ψC

−1(qi), uj = ψC
−1(qj):

‖qi − qj‖ ≤ sec(α) ‖ui − uj‖ (8)

Where α is the maximum curvature of a chart against
the manifold.

Proposition 5. prm in continuation-based space.
For a path with strong δ-clearance and length L, with
continuation-based sampling and a local planner with
range εl using an atlas A, set γ = min{δ, εl}. The
expected number of samples needed for prm to succeed
(N) satisfies the following inequality:

E
[
N
]
≤ H(L/γ)µA(A)

µA(BA(·, sec(α)γ)
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Where µA(·) is the Lebesgue measure in the charts
C ⊂ Rn−k and BA is a ball in a chart C, µA(BA(·, r)
is the measure of an open ball of radius r in the atlas,
and µA(A) =

∑
C∈AM µA(C) is the total measure of

the atlas.

Proof. As before, let σ be a path with strong δ-
clearance. As σ has finite length L, can be tiled with
k = L/γ balls of radius γ centered at configurations
q1, . . . qk. The continuation-based local planner can
connect between each of these balls, as they are no
farther than εl away, and thus a random walk can realize
the path. Without loss of generality, assume a ball on
the manifold BM(q, γ) is fully parameterized by a chart
C. From Eq. 8, the ball on the manifold is contained
within a ball in the chart BA(ψC

−1(q), sec(α)γ). Thus,
set p = µA(BA(·, sec(α)γ))/µA(A) and invoke Thm. 3.
�

5.3.2 Discussion Although here we present a proof
of probabilistic completeness for prm, the core of the
proof applies to proofs for many other planners. This is
because sampling, local planning, and metrics all behave
nicely over M, and local properties hold. It is always
possible to sample in a particular ball on M as imacs
affords sampling with non-zero probability over all of
M. The local planner always is capable of connecting to
points within a range η > 0. Finally, the induced metric
is still a metric which underestimates with respect to
geodesic distance on M, and the triangle inequality
holds.

We briefly illustrate how the building blocks of
sampling and local planning can be applied to other
proofs of completeness. Similar to the proofs presented
here, (Kleinbort et al. 2019) presents a proof of
probabilistic completeness of rrt. Without going into
to details, the proof of probabilistic completeness of
geometric rrt hinges on Lemma 1, which states that a
local plan from a nearby random sample to its nearest
neighbor lies entirely in Qfree. As local planning in
imacs can connect all points within a distance η and
uses the induced Euclidean metric, Lemma 1 in holds.
Thus, Thm. 1 in (Kleinbort et al. 2019) (the convergence
guarantee of rrt) holds as well (albeit with different
constants that related to the probability of sampling a
specific).

5.4 Asymptotic Optimality

Asymptotically optimal sampling-based planners not
only find a feasible solution, but as the number
of iterations of the planner go to infinity, find
the globally optimal solution. The algorithms rrt*

and prm* (Karaman and Frazzoli 2011) are of
particular interest, as they are the basis for many

other asymptotically optimal algorithms and good case
studies for how imacs affects the necessary properties
of an asymptotically optimal planner. Within this work,
we describe how imacs affects the proofs of asymptotic
optimality for rrt* and prm*; the features relevant
that are affected by imacs are the sampler, metric, and
local planner. We walk through the affected portions of
the proofs presented in (Karaman and Frazzoli 2011)
and show that their results hold given our assumptions
about the metric and local planner within imacs.

5.4.1 Prior Results Karaman and Frazzoli (2011) prove
the following bound as the connection radius of rrt*:

γ
rrt* >

(
2

(
1 +

1

n

)
µ(Qfree)

ζn

) 1
n

, (9)

where ζn = µ(B(·, 1)) is the volume of the unit ball in
Rn, and n is the dimension of the configuration space.
Additionally, Karaman and Frazzoli (2011) proves the
following bound for the connection radius for prm*:

γ
prm* > 2

((
1 +

1

n

)
µ(Qfree)

ζn

) 1
n

(10)

With respect to manifold constrained motion
planning, Jaillet and Porta (2012) presented Atlasrrt*,
an asymptotically optimal constrained sampling-based
algorithm. Atlasrrt* adapts the rrt* algorithm with
a continuation-based method for local planning and
sampling. The following bound is given for the critical
radius of Atlasrrt*:

γ
Atlasrrt* >

(
2

(
1 +

1

n− k

)
µ(Afree)

ζn−k
sec(α)

) 1
n−k

,

(11)
where µA is the Lebesgue measure in the atlas (i.e.,
in Rn−k), n− k is the dimension of the manifold, and
µA(Afree) =

∑
C∈AM µA(Cfree) is the total measure of

the free space of the applicability regions of the charts
within the atlas AM.
γ
Atlasrrt* is in terms of the measure on the atlas,

an approximation of the n− k dimensional manifold.
Thus, the dimension exponent of n− k is used together
with sec(α) to account for approximation error from
maximum allowed curvature of a chart, α (see Eq. 8).

5.4.2 RRT* within IMACS As mentioned in (Jaillet
and Porta 2012), the asymptotic optimality of rrt* is
dependent on the ability of the planner to sample and
connect configurations that are close to the optimal
path. Importantly, the proof of rrt* is not dependent
on the local planner being able to connect any two
configurations. In fact, within (Karaman and Frazzoli
2011), the proof of rrt*’s asymptotic optimality only
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relies on the local planner’s steering parameter η
being positive. We showed within Section 5.2, for any
configuration q ∈M, the local planner within imacs
always has an open neighborhood of configurations that
can connect to q. For the purposes of the proof of
rrt*’s asymptotic optimality, the minimum radius of all
such open neighborhoods corresponds to some steering
parameter η′ > 0. What value η′ takes is determined
by the curvature of the manifold, but this value only
affects the convergence of rrt*, not its guarantees of
asymptotic optimality.

For the projection-based space, the connection radius
is affected by the measure of set of states that project
onto the free parts of the manifold, as samples are drawn
from Rn. The set of states that projects onto Mfree is⋃
q∈Mfree

Dq, where Dq is the set of configurations that
project to a configuration q ∈M (from Prop. 1). Thus,⋃
q∈Mfree

Dq is used rather than Qfree as the bound in
Eq. 9. Additionally, note that ζn appears in the bound
as a ratio with the measure of the free space to capture
the probability that two vertices have been connected
by rrt*. Thus, ζM,1 (Eq. 7) is used rather than ζn,
as ζM,1 is the guaranteed volume that will project to
any open unit ball on the manifold. Within imacs, we
claim that the connection radius for rrt* in imacs is
the following.

γ
rrt*+imacs

>

2

(
1 +

1

n

) µ
(⋃

q∈Mfree
Dq

)
ζM,1


1
n

(12)

Moreover, Eq. 11 can be applied to rrt* within
the continuation-based space within imacs, as the
fundamentals of sampling and local planning are
equivalent to those within Atlasrrt*.

5.4.3 PRM* within IMACS Critically for prm*, imacs
affects the ability for a planner to connect subsequent
vertices along the optimal path, as local planning within
imacs is only guaranteed for a neighborhood around a
configuration. This is captured in the proof of prm*’s
asymptotic optimality (Karaman and Frazzoli 2011)
as an arbitrary constant θ1 > 0, which determines the
radius and distance of balls that tile the optimal path.
Specifically, for a path with strong δ-clearance, the
center of the balls used within throughout the proof are
at most θ1

1+θ1
δ away from each other. Thus, for a local

planner in imacs with a given range, there is a value
of θ1 such that each successive configuration can be
connected; the proof of prm*’s asymptotic optimality
is not affected by the local planners within imacs.
However, as with rrt*, convergence of the method will
be affected due to failures from local planning.

A bound similar to rrt* is claimed for prm* in the
projection-based space in imacs:

γ
prm*+imacs

> 2

(1 +
1

n

) µ
(⋃

q∈Mfree
Dq

)
ζM,1


1
n

(13)
Again, the critical features of sampling points are
affected by the projection-based sampling method as
well as the use of the ambient metric. Thus, the volume
of
⋃
q∈Mfree

Dq is relevant rather than the volume Qfree.
A bound is claimed for the continuation-based space as
well, following (Jaillet and Porta 2012):

γ
prm*+imacs

> 2

((
1 +

1

n− k

)
µ(Afree)

ζn−k
sec(α)

) 1
n−k

(14)
Observe that the bound is again in terms of measure on
the atlas (giving the distortion constant sec(α)), and
that the dimension exponent in n− k.

6 Experimental Results

imacs is implemented within the Open Motion
Planning Library (ompl) (Şucan et al. 2012),
an abstract library with implementations of many
popular sampling-based planning algorithms. imacs
fits neatly within ompl’s notion of a state space,
and is implemented as such. In particular, imacs is
implemented as a state space that takes as input the
ambient configuration space (also a state space) and
a constraint function. Each of imacs’s state spaces
use the underlying subroutines offered by the ambient
state space in tandem with their method of constraint
adherence. No modification was necessary to any of the
planning algorithms for them to work with imacs. All
of the code for the framework is available within ompl,
along with code to reproduce the most of the results
presented in this section∗.

All benchmarks were done with a single set of param-
eters for each constrained space and planning algorithm,
to preserve fairness across multiple environments. More
performance could have been gained by tuning these
for each problem, but a set of reasonable defaults is
desirable, especially from a näıve user’s perspective.
All benchmarks were performed on workstations with
an IntelR© Core

TM

i7-6700K processor and 32GB of
DDR4 RAM at 2400MHz. The experiments shown here
are meant to both demonstrate the effectiveness of the

∗Available at http://ompl.kavrakilab.org. Tutorials and

documentation specific to imacs can be found at http://ompl.

kavrakilab.org/constrainedPlanning.html.
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Figure 5. Timing results from 100 runs of each planner in the “sphere” environment (Figure 6) for the projection-, tangent
bundle-, and atlas-based spaces in imacs. Planners tested are est, kpiece, their bidirectional variants biest and
bkpiece (Hsu et al. 1999; Şucan and Kavraki 2008), rrt (LaValle and Kuffner 2001) and rrt-Connect (Kuffner and LaValle
2000), and prm (Kavraki et al. 1996). cbirrt2, tb-rrt, and Atlasrrt are emulated by rrt-Connect in their respective
constrained space, and have relatively poor performance.

Figure 6. The “sphere” environment, from three perspectives. The sphere constraint manifold (grey) with obstacles (dark

green). The solution path (yellow) runs from the south to north pole. From left to right, projection-based rrt* (Karaman and

Frazzoli 2011) motion graph (green), tangent bundle-based bit* (Gammell et al. 2015) motion graph and tangent spaces
(grey), and atlas-based spars (Dobson and Bekris 2014) motion graph and tangent polytopes.

planning system as well as illustrate concepts that help
put the work in context.

Within the presented results, we refer to three
methods of constraint adherence running in imacs:
projection-, tangent bundle-, and atlas-based spaces.
The projection-based space is as described in
Section 4.2. The tangent bundle-based space is as
described in Section 4.3 and uses the LazyIntegrator
from Alg. 7 for geodesic generation. Similarly, the
atlas-based space uses Integrator from Alg. 7
for geodesic generation, and generates . Note that
the tangent bundle-based space does not generate

separating halfspaces between charts, but the atlas-
based space does (see Section 4.3.1).

A critical aspect of constrained planning is the
computation of the Jacobian of the constraint function
as well as computing solutions to the (pseudo)inverse
of the Jacobian. Generally, analytic solutions to
the Jacobian are preferable for efficiency. However,
within our experiments, a few problems use numerical
differentiation to compute the Jacobian when an
analytical solution is not provided. Within our
implementation of imacs, the svd decomposition is
used in the implementation of the projection operator
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(Alg. 2), and the qr decomposition is used within ψCq

(Alg. 4).
We performed a collection of experiments that demon-

strate the important contribution imacs represents:
different planners and different methods of constraint
adherence are better at different problems, imacs
is efficient and can be used for realistic problems,
and planners within imacs have similar performance
to specialized constrained planners. The experiments
include simple point robots in R3, high-dimensional
manipulators implicitly defined by a constraints, and a
realistic application with nasa’s Robonaut 2.

6.1 “Sphere” Environment

Figure 6 shows the “sphere” environment, a two-
dimensional manifold embedded within R3, defined
by the constraint function F (q) = ‖q‖ − 1. For this
environment, the robot is a point robot. The robot
must traverse three longitudinal obstacles, each with
a narrow passage, to move from the south to the
north pole. We show the results of 100 runs of various
motion planners within imacs in Figure 5. As shown
in the figure, combinations of planners and constrained
spaces within the framework have dramatically different
effects on planning time. Previous approaches in the
literature are emulated by rrt-Connect within imacs
(e.g., cbirrt2, tb-rrt, Atlasrrt), which is shown to
have the relatively poor performance overall within
the “sphere” environment. For this problem, other
combinations of planners and methods of constraint
adherence (e.g., tangent bundle-based biest) would be
a better selection of planner if speed was the primary
concern.

There is little work on optimizing with respect
to some cost function in tandem with manifold
constraints. Atlasrrt* (Jaillet and Porta 2013a) is
an asymptotically optimal algorithm that adheres
to manifold constraints, but requires specialized
implementation and integration with a method of
constraint adherence. Within imacs, no additional
overhead is necessary for asymptotically optimal
planning, as shown in Figure 6, which shows
motion graphs for three asymptotically optimal and
near-optimal planners. Additionally, path smoothing,
shortening, hybridization, and interpolation algorithms
work with no knowledge of constraints, as all
subroutines are handled within imacs. As proven in
Section 5.4, asymptotically optimal planners retain
their guarantees within imacs.

6.2 “Torus” Environment

In constrained planning problems, not just the
planner matters when solving a constrained problem;

Figure 7. The “torus” environment. The torus constraint
manifold (grey) with an overlaid obstacle maze and atlas.
The resulting graph (green) of a run of atlas-based prm
along with a solution path (yellow) is shown on the torus.
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Figure 8. Timing results from 100 runs of prm in the “torus”
environment (Figure 7) using the atlas- and projection-based
constrained space versus the size of the x- and y- axes of the
ambient configuration space. Projection-based prm performs
orders of magnitude worse than its atlas-based counterpart if
the ambient space has a large volume, but is better when the
ambient space is a tight bounding box.

the ambient configuration space can dramatically
affect performance. Consider a “torus” environment
(Figure 7), which is a two-dimensional manifold
embedded within R3, with a constraint function

F (q) = (3−
√
x2 + y2)2 + z2 − 2.

For this environment, the robot is a point robot. The
planning problem is to traverse a maze that is wrapped
onto the surface of the torus. Timing results for the prm
planner using the projection- and atlas-based methods
are shown in Figure 8, where the total volume of the
configuration space is varied while the size of the torus
remains constant. The volume of the configuration
space is varied by increasing the bound b on the X−
and Y− axes of the ambient configuration space (given
by [−b, b]× [−b, b]× [−2, 2] ⊂ R3), with the bound b
ranging from a tight bounding box with b = 3.5 to a
very expansive box with b = 103.5.

As shown by the results in Figure 8, projection-based
planning performs orders of magnitude worse than its
atlas-based counterpart and worsens as the volume of
the space expands, due to the inefficiency of sampling
configurations that mostly project to the outer surface
of the torus. The atlas-based method, which samples
directly from an approximation of the manifold, is
unaffected by changes in the ambient configuration
space. Projection to the inner surface of the torus
requires sampling inside of the hole of the torus, which
becomes less likely as ambient space expands. The

torus example is illustrative of a problem that might
arise on real robotic manipulators, as configuration
spaces with revolute joints are toroidal in topology. It
is unknown a priori how obstacles in the environment
will interact with constraints, and no one method of
constraint adherence is equipped to handle every case.
Therefore, the ability to change method of constraint
adherence independently of a planner is essential to
efficiently planning within different environments.

6.3 “Implicit Chain” Environment

A general trend observed by the authors is that as a
planning problem becomes more constrained or the
implicit manifold more curved with respect to the
ambient space, the atlas- and tangent bundle-based
methods become more effective. This is because the
extra computation to maintain the approximation pays
off. However, as the dimensionality of the problem
grows, the approximation is less helpful and requires a
similar, amortized amount of work as projection does.
These are not rules written in stone, and there are
many problems which belie their guidance. Take for
example the problem of an “implicit chain,” shown in
Figure 9. Here, the kinematics are modeled as distance
constraints, one for each link, on a chain with 5 spherical
joints. The ambient configuration space is thus R3×5.
To further increase problem complexity, we impose the
following additional constraints: (a) the end-effector is
constrained to the surface of a sphere of radius three, (b)
joint 1 and 2 must have the same z-value, (c) joint 2 and
3 must have the same x-value, and (d) joint 3 and 4 must
have the same z-value. This gives an implicit manifold
dimension of six. Timing results for this problem are
shown in Figure 9. When there are no obstacles in
this scene, atlas- and tangent bundle-based methods
perform the best with kpiece, while other methods
with both rrt-Connect and kpiece are competitive.
However, as obstacles are added to the surface of the
outer sphere, rrt-Connect performs worse, with only
the projection-based space solving the problem within
time limit. The performance drop is likely due to the
narrow passage created by the obstacles, a common
problem for rrt-Connect. For kpiece, the relative
performance of the atlas- and tangent bundle-based
methods drops in comparison to the projection-based
space.

6.4 “Parallel Implicit Chain” Environment

One motivating factor of this work was extending
constrained planning to high-dimensional spaces, taking
advantage of previous approaches in high-dimensional
planning without any additional cost. In Figure 10, we
show the “implicit parallel manipulator” environment,
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a)

c)

b)

Figure 9. The “implicit chain” environment. Sample solution paths with zero (a), one (b), and two surface obstacles (c) with
antipodal narrow passages are shown. Additionally, timing results for rrt-Connect and kpiece using each constrained space
for each obstacle amount are shown on the right. 100 runs were used for each combination of planner and constrained space,
with a timeout of 120 seconds. Note that the Y-axis changes on the plots.

a parallel manipulator defined with a set of the “implicit
chains” previously. The end-effectors of the chains
are constrained to remain attached to a shared disk,
creating dependencies in their motion. The environment
shown has eight chains with seven links each, for a total
ambient space dimensionality of 168. The constraint
manifold is of dimension 99.

Recall that emulated prior works (cbirrt2, tb-rrt,
Atlasrrt) all use rrt-Connect as their base planner.
rrt-Connect within the projection-, tangent bundle-,
and atlas-based spaces was unable to successfully solve
this system given 10 minutes of planning time over 100
trials for each space. Using the kpiece planner designed
for high-dimensional spaces with the projection-based
space, we can quickly solve this problem while adhering

to constraints, for a median time of 14.5 seconds over
100 runs. As imacs decouples the choice of planner
and method for constraint adherence, imacs enables
more effective planners to be used for complex high-
dimensional planning problems such as this.

6.5 Robonaut 2

Finally, we demonstrate the framework on a real robotic
system. Figure 11 shows steps through a sequence
of constrained motion plans for nasa’s Robonaut 2
(R2) (Diftler et al. 2011); R2 is tasked with walking
through a narrow module on the International Space
Station (ISS), with a few pieces of fixed, stray debris
within. R2 is an excellent application for constrained
motion planning due to the microgravity environment
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Figure 10. An plan in the “implicit parallel manipulator” environment. The goal is to move from a flat, rotated configuration
to upright. This path was computed using kpiece in a projection-based constrained space in a median time of 14.5 seconds.

of the ISS, which allows for R2 to climb across handrails
without typical humanoid worries such as dynamic
stability. R2 maintains the quasistatic assumption
throughout all motions.

In the above scenario, R2 is modeled as a 15 dof
system with two 7 dof legs and a rotating waist
joint. Additionally, R2 has a floating joint (free-flying
motion in SE(3)) at the root of its kinematic tree so
it can translate and rotate freely in space, bringing
the total dimensionality of the system to 21 dof.
Within Figure 11, stills from a sequence of motion plans
executed are shown. To walk through the ISS module,
six motion planning problems compose a sequence of
steps that walk R2 from the left to the right of the
module. Each of these motions must avoid the fixed
floating debris and the walls of the habitation module
while respecting constraints. There are a variety of
constraints imposed on each of the six motion planning
problems:

• R2 must keep its torso upright at a fixed
orientation,

• One leg end-effector must remain fixed in position
and orientation where it has grasped a handrail,
and

• Whenever stepping towards an end-effector goal
with the same orientation as the start, the
moving foot must remain facing the same fixed
orientation, so cameras within the end-effector
can more accurately track handrail location for
grasping.

An implementation of cbirrt2 was compared
against rrt-Connect running in the projection-based
imacs space, using the MoveIt! motion planning
framework (Şucan and Chitta 2011). Throughout
the six motions, comparable timing performance was

witnessed across 20 runs of each planner, with average
planning times less than 5 seconds for both planners.

Functionally, the implementations of cbirrt2 and
rrt-Connect with the projection-based space in
imacs are nearly identical, with minor differences
in how new states are generated via interpolation.
Thus, the comparable performance of the planners is
expected, and shows that in realistic scenarios there
is no performance degradation using imacs and an
unconstrained planner.

7 Conclusion

We have introduced imacs (Implicit MAnifold Configu-
ration Space), a novel framework for sampling-based
planning under manifold constraints that decouples
constraint adherence from motion planning algorithms.
With imacs, the choice of motion planner and method
for constraint adherence are orthogonal, enabling novel
combinations of planner and method of constraint
adherence that perform more effectively than previously
proposed combinations. We have demonstrated imacs’s
capability by showing projection- and continuation-
based methods of constraint adherence inspired by three
state-of-the-art constrained sampling-based planners,
cbirrt2, tb-rrt, and Atlasrrt. Additionally, we have
tested a broad range of sampling-based planners within
imacs for a set of constrained problems and shown
that each planner can operate effectively within imacs.
Furthermore, we have provided theoretical guarantees
that imacs preserves the probabilistic completeness
and asymptotic optimality of planners running within
imacs. imacs is easily extended to new planners, and
new constraint spaces can be adapted to the framework
as its concepts are general to constrained planning (e.g.,
local tangent space methods).
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Figure 11. Stills from a sequence of motion plans executed by nasa’s Robonaut 2 (R2) within a model of the International
Space Station (sides of the module are removed for visualization purposes). R2 is modeled as a 15 dof system with two 7 dof
legs and a rotating waist joint. Additionally, an SE(3) element is added so the robot can float freely through the space. There
are six separate motion planning problems in the sequence, each consisting of R2 taking a step. Each step with a variety of
constraints imposed: (1) all steps required the torso to remain at a fixed orientation (2) all steps fixed the position and
orientation of the foot grasped to a handrail and (3) where possible, the moving foot was required to face downward at a fixed
orientation (a realistic requirement so the cameras within the feet can track handrail location).

Although there are rough guidelines on when different
constrained planning approaches tend to work better
than others, for specific problems it is difficult to predict
which combination of constraint space and planner
will work the best. This further highlights the benefit
of decoupling constraints from planning. Additionally,
the methods as presented here are dependent on
some hyperparameters, such as the manifold integrator
step size and chart validity parameters. Automatically
tuning or adapting these parameters online while
maintaining guarantees is left for future work.

Planning under manifold constraints is an essential
capability for manipulation planning, task and motion
planning, and multi-modal planing. Sampling-based
planning with imacs could be used as a subroutine
for planning under constraints for these manipulation
algorithms. The idea of imacs is also extendable
to the case of kinodynamic planning under manifold
constraints. Finally, given the proof of concept on R2,
we are in the process of integrating the framework for
general robotic platforms.
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