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Abstract— This paper describes a novel method for iden-
tifying multiple targets with multiple robots in a partially
known environment. Two main issues are addressed. The first
relates to the use of motion planning algorithms to determine
whether robots can reach “good” positions that offer the most
informative measurements. The second concerns the use of
predictive sensing to decide where sensor measurements should
be taken. The problem is formulated similar to a next-best-view
problem with differential constraints on the robots’ motion,
with additional layers of complexity due to visual occlusions as
well as navigational obstacles. We propose a new distributed
sensing strategy that exploits the structure of image manifolds
to predict the utility of the measurements at a given position.
This information is encoded in a cost map that guides a motion
planning algorithm. Coordination among robots is achieved by
incorporating additional information in each robot’s cost map.
A range of simulations indicates that our approach outperforms
current approaches and demonstrates the advantages of predic-
tive sensing and accounting for reachability constraints.

I. INTRODUCTION

Mobile robots often have sophisticated algorithms to extract
information from sensor measurements. It is nevertheless
a challenging problem to decide when and where sensor
measurements should be taken and how robots can navigate
to “good” positions that offer the most informative measure-
ments. The following scenario illustrates the problem we are
addressing in this paper. Suppose an Unmanned Aerial Vehicle
(UAV) has identified several possible target locations. The UAV
can send the locations to a team of mobile ground robots, who
already have a partial map of the environment. The ground
robots are able to sense the targets at a higher resolution
than the UAV, thereby resolving any ambiguities. The ground
robots proceed to navigate to good viewpoints, exchange
information whenever they are within communication range,
and coordinate their actions. The ground robots’ goal is to
collectively build models of the targets or classify the targets.

The scenario faced by the ground robots bears a strong
resemblance to the next best view problem (NBV) [1]. In
general this problem can be formulated as: given a series
of previous measurements of an object, what is the position
from which the most informative next measurement can be
taken? The informativeness depends on both the sensing
modality and the high-level task (model building, object
classification, etc.). However, to the best of our knowledge,
this problem has not been considered for multiple, mobile
sensors simultaneously trying to identify multiple targets.
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Fig. 1. Next best view for multiple targets and multiple car-like robots.
Both predicting measurements and reasoning about reachability are essential
for efficient target classification.

There is a significant amount of work on multi-robot target
tracking and target localization (see, e.g., [2], [3]), but there
the best viewing angle for target classification and model
building is typically not considered.

Figure 1 illustrates the importance of predictive sensing
and reachability for the NBV problem: neither robot can
see either target completely or reach all viewing angles, but
together they can collect enough information that views of
either target from any angle can be synthesized. The targets
are not statically assigned to robots, but, rather, the robots
use local communication to coordinate opportunistically. Task
allocation is performed dynamically and implicitly through
continuously updated cost maps: grid decompositions of the
workspace such that each grid cell encodes the expected
cost of obtaining a measurement from a position in that cell.
Traditionally, the cost to reach the NBV has been ignored, or
has been arbitrarily set to be proportional to the distance from
the current position. For robots with differential constraints,
such as car-like robots, this is problematic. The robots cannot
simply use a reactive, control-based approach to follow a
gradient based on the cost map. Furthermore, the NBV may
be unreachable and positions near the NBV may not be
informative at all (due to, e.g., occlusion). On the other
hand, there may exist many reachable positions that are only
marginally less informative than the best view. Computing
the next best reachable view is generally undecidable, and so



instead we will use an approximate solution from an online
replanning framework to select the next view.

The contributions of this work are as follows. We propose
a novel formulation for multi-robot, multi-target NBV for
car-like robots. The sensing strategy in this work allows
robots to predict which measurements are expected to be
informative. Often sensor measurements can be avoided,
which leads to substantial savings in power usage, bandwidth,
and computation. By exploiting reachability we are more
likely to find short informative paths rather than potentially
long paths to the “best” view point. Finally, the cost maps
used in this approach enable multiple robots to discover
informative views of multiple targets.

II. OVERVIEW OF OUR APPROACH

The primary focus is on the interaction between sensing and
planning. Each robot executes a sense/plan/act loop, where it
simultaneously senses, plans for the next cycle, and executes
the plan computed in the previous cycle. At the heart of
this sense/plan/act cycle is a geometric NBV algorithm that
exploits relationships among images to propose novel views
to sense. In stark contrast to conventional NBV algorithms
where candidate views are suggested, we characterize the
informativeness of viewpoints using a cost map. This choice
is to accommodate reachability constraints (candidate NBV
might be unreachable) as well as differential constraints in car-
like robots. We therefore need to use a planning algorithm to
produce dynamically feasible motions. We assume the robots
have a map of the environment, and are able to self-localize
on this map.

To achieve our goals of simultaneous sensing and navi-
gation, our framework has two main parts: an offline model
building effort where we build manifold models for each of
the targets that we are interested in identifying, and an online
real-time processing step on each of the robots wherein the
sensed images are analyzed and navigation plans are made.

Offline: The offline model building process builds a manifold
model for each target; manifold models offer a natural
construct to represent and process multi-view image data
efficiently. In particular, we are interested in quantifying
informativeness of new views of a target given a set of
images of the target. We achieve this by using the concept
of a transport operator that links images on the manifold
based on a prediction model. We characterize informativeness
of a viewpoint using the size of the neighborhood on the
image manifold that is predicted by the image obtained at
the viewpoint. The key goal of our offline computations is to
build a framework wherein we characterize informativeness of
views. As we will see later, the NBV problem can be mapped
as an elegant maximization of our notion of informativeness
of viewpoints.

Online: The online processing part of our framework has two
distinct processing stages: (a) an image analysis step where-in
we use advances in object detection and pose estimation to
locate target(s) of interest in the sensed image and suggest
potential NBVs using cost maps, and (b) a path planning

process that coordinates the movement of the robots to
optimize some desired objective with reachability and inertial
constraints. We assume that each robot has a camera with
a limited field of view that is aimed at a target’s expected
location, and that through standard image analysis techniques
the background is subtracted to extract an image of a target
when a target is within view. The image analysis process
does not simply pick the NBV according to some metric,
but, instead, computes a score for each grid cell given a
grid decomposition of the workspace. The grid-based scoring
function is called a cost map and is computed at each time step
by processing the aggregate set of measurements acquired by
the mobile robots. The computation of cost maps is ostensibly
expensive, especially in complex scenarios with multiple
targets and robots. However, we have developed a technique to
efficiently perform the computation by exploiting the intrinsic
structure of the set of acquired measurements.

The planning process exploits this information by biasing
the growth of a search tree containing feasible paths towards
areas that have a low cost using a sampling-based planner [4].
Such planners have been demonstrated to be effective in
finding valid paths for constrained, dynamic systems [5],
[6] and can be guided in their search for good path by
cost maps. This planning process accomplishes the goal
of finding informative viewpoints that are also reachable.
Whenever robots are within communication range, robots not
only exchange any information about the targets that they
have acquired so far, but also communicate their plans for
the next cycle. We recently proposed a motion coordination
framework for second-order car-like robots that enables them
to safely operate in the same space [7]. This framework is
used in this work. The plans from each neighboring robot
are transformed into another cost map. The robots then
use a composite cost map, formed by combining their own
cost map, as well as cost maps for the neighbors’ plans, to
formulate a plan that balances finding an informative path
with staying out of the way of the neighboring robots. This
simple scheme allows robots to distribute naturally around an
arbitrary number of targets without a complex task allocation
scheme or negotiation process.
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