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Abstract 
 
Physics-based simulation represents a powerful method for investigating the time-varying behavior of 
dynamic protein systems at high spatial and temporal resolution. Such simulations can be prohibitively 
difficult or lengthy, however, for large proteins or in probing the lower resolution, long-timescale 
behaviors of proteins generally. Importantly, not all questions about a protein system require full space 
and time resolution to produce an informative answer. For instance, by avoiding the simulation of 
uncorrelated, high-frequency atomic movements, a larger domain-level picture of protein dynamics can 
be revealed. The purpose of this review is to highlight the growing body of complementary work that 
goes beyond simulation. In particular, the review focuses on methods that address kinematics and 
dynamics, as well as on methods that address larger organizational questions and are capable of quickly 
yielding useful information about the long-timescale behavior of a protein. 
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1. INTRODUCTION 
Proteins are involved in many biological processes including, to name a few, metabolism, signal 
transmission, storage of energy, defense against intruders, and muscle buildup. The ability to 
carry out these functions simultaneously depends on the possible conformational changes of the 
folded protein and on the dynamics of these deformations. Complete understanding of protein 
function therefore requires an understanding of the dynamic behavior of a protein, in addition to 
its static structural features. Physics-based simulations (1-3) offer a direct method to study 
proteins by describing physical interactions among atoms and numerically solving the associated 
equations of motion. They constitute a central investigatory tool in molecular and structural 
biology, allowing analysis in areas that are difficult, expensive or unfeasible to probe 
experimentally. The purpose of this paper, however, is to highlight the growing body of work 
that goes beyond simulation. Such methods attempt to quickly answer questions about protein 
kino-dynamics, as well as larger organizational questions, by generating information about the 
long-timescale behavior of a protein (4, 5). 
 
Proteins are sequential assemblies of amino acids (a few dozen to several hundred), called 
residues, joined by peptide bonds and range from hundreds to tens of thousands of atoms in size. 
Under normal physiological conditions, a protein usually folds into a compact, yet flexible 
structure. This is referred to as the protein’s folded state and is defined by a three-dimensional 
(3-D) arrangement of secondary structure elements (helices and strands connected by loops). 
Though this structure is generally not fully rigid, its main features and overall shape are uniquely 
determined by the protein’s amino acid sequence. It is widely accepted that the function of a 
folded protein is highly dependent on its structure and its ability to deform (6, 7).  
 
For example, in structure-based drug design one must take protein flexibility into consideration 
in order to correctly predict the interaction between a protein and a potential drug molecule (8, 
9). Knowledge of the folded state is also useful for testing energy functions (10), gaining insights 
into free energy and key determinants of protein stability (11, 12), and modeling structural 
heterogeneity from NMR, cryo-EM, and X-ray crystallography data (13, 14). The ability to 
predict the folding motion of a protein of a given sequence also has important potential 
applications in the design of new proteins (15) and the discovery of cures for neurodegenerative 
diseases (16). However, for a given protein, only a small number of folded conformations can be 
determined experimentally.  
 
As of August 2011, the most popular experimental method, X-ray crystallography, has been used 
to determine 65,195 of the 74,732 protein structures deposited in the Protein DataBank (PDB) 
(17). This method provides relatively good resolution data and is applicable to large proteins, but 
requires the creation of a high-quality crystal of the protein of interest, an operation that may not 
be feasible for some proteins. Additionally, a crystallographic experiment only allows the 
determination of a single conformation. Software techniques (13, 14, 18, 19) and/or multiple 
experiments with independently created crystals may produce distinct folded conformations, but 
these are often produced in too small a number to adequately characterize the flexibility of the 
folded protein. The next two most widely used experimental methods, NMR spectrometry (9,014 
entries in the PDB) and cryo-EM (373 entries), allow the observation of a protein in solution and 
make it possible to determine several conformations. However, despite recent progress (20), 
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cryo-EM still often produces relatively low-resolution results, yielding ambiguous 
conformational models, and NMR can only be applied to small proteins.  
 
Computational physics-based methods offer a clear advantage for understanding protein 
flexibility, as they can characterize dynamic systems and require little prior knowledge. In this 
context, Molecular Dynamics (MD) simulation models physical interactions among atoms by a 
potential function and solves Newton’s, Lagrange’s or Langevin’s equations of motion (1). 
Unfortunately, the solutions to these systems are complicated (6, 21): not only is the potential 
function made up of many terms, but the equations of motion must also be solved at a time step 
(on the order of the femtosecond) much shorter than that of atomic fluctuations, in order to 
reduce cumulative integration errors. MD simulation is thus a computationally intensive process. 
Modern computers can generate roughly a few nanoseconds of simulation in a day for a medium-
size protein—a timescale insufficient for capturing most biologically relevant transitions and 
events. Distributed computing (22) and specialized architectures (23, 24) speed up MD 
simulation, with no loss of accuracy, but computational time remains an issue and furthermore 
the sheer size of data generated becomes a greater hurdle complicating biological insights. One 
may also achieve faster simulation by using coarser representations (e.g., by grouping atoms 
together) and approximate or heuristic potentials, but the resulting methods, which include, 
among others, “coarse-grained” force fields (25), multi-scale modeling (26), improved sampling 
(27), replica exchange (28), normal mode analysis (29-31), elastic network models (32-34) and 
Monte Carlo sampling (35, 36), are less accurate, and still produce staggering amounts of data.  
 
Physics-based simulation offers high-resolution spatial and time-dependent information about 
the conformational neighborhoods of a subset of protein states. While this information is critical 
to answer some biological questions, structural biologists and bioengineers deal with an 
increasing diversity of problems that often require computational tools to quickly generate 
compact, pertinent data that may be obtained from lower-resolution representations of the 
conformational landscape. For example, a pharmaceutical engineer may want to quickly screen a 
large database of ligands to identify those which have a reasonable chance to bind to a protein 
and select “leads” for a new drug. Alternatively, a biologist may want to explore the 
conformation space of a folded protein to find low-potential conformations, or to simply 
characterize the range of feasible deformations of a protein. These goals may be better achieved 
by different methods, in particular, by deliberately avoiding the modeling of fast-frequency 
motions, which are responsible for the high computational complexity of physics-based 
simulation methods. Then a compromise is made between accuracy and speed or storage 
requirements. If higher accuracy is eventually desired, the results of these methods can also be 
used as a launching point for physics-based simulations. The purpose of this paper is to review 
non-simulation methods aimed at quickly generating useful information about the long-timescale 
behavior of a protein. Specifically, the paper consists of three main sections that address the 
following representation and algorithmic issues: 
 

1. Section 2 reviews a simplified representation of the kinematics of a protein, called the 
linkage model, which is used by several methods discussed in the other sections of the 
paper. The linkage model naturally eliminates atomic fluctuations by enforcing distance 
and angular constraints among covalently bonded atoms. These constraints drastically 
reduce the number of degrees of freedom (the number of variables required to describe a 
system) of a protein, which makes it easier for other procedures to explore the 
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conformation space. However, as atoms can no longer move independently of one 
another, manipulating this representation raises a challenging question: how can one 
change atom positions without breaking the constraints? This question is often referred to 
as the “inverse kinematics” problem, and Section 2 also reviews methods developed to 
solve it. 
 

2. Section 3 considers conformational sampling, that is: given a set of constraints provided 
by a kinematic model, how can valid (i.e., biologically relevant) conformations be 
generated? This question is of fundamental interest because of the tight relationship 
between protein conformation and function (37-39). Section 3 focuses on the use of 
geometric constraints in reducing the computational complexity of generating valid 
protein conformations. It can be shown that such geometric constraints implicitly encode 
dominant energy terms. Their use therefore produces a two-fold benefit, in that geometric 
constraints are also present in a favorable format that yields efficient algorithms. Section 
3 considers loop sampling, as well as the protein conformational sampling problem 
generally. 
 

3. Regardless of the method used to find novel protein conformations, a set of valid 
conformations by itself provides no comparative information about the relationships 
between protein states. Section 4 describes two broad organizational frameworks 
designed to answer questions about the collective properties of protein conformation 
space: probabilistic roadmaps (40), which characterize the local connectivity of a space; 
and Markov Models (41), which describe probabilistic and long-timescale characteristics 
of the behavior of a protein. Both methods are complementary and designed to answer 
large-scale questions concerning “ensemble” properties of proteins (e.g., folding rate, 
mean first-passage time, and probability of folding, to name a few) without performing 
explicit physics-based simulation. 

 

2. KINEMATIC MODELING OF A PROTEIN 
 
2.1. Kinematic Linkage Model 
 
A straightforward representation of a protein conformation is a list of the 3-D coordinates of the 
atom centers in a reference coordinate frame. This representation yields a conformation space of 
dimensionality 3n, where n is the number of atoms in the protein. As this representation makes it 
possible to study protein motion at all timescales, it is not surprising that it is used by most MD 
simulators. 
 
However, once high frequencies have been smoothed out over picoseconds timescales (42), one 
may observe that lengths of covalent bonds, angles between adjacent covalent bonds, and 
dihedral angles around non-rotatable bonds (double, partially double, and peptide bonds) remain 
almost constant (43). This observation allows one to model a protein’s long-term kinetics by a 
kinematic linkage (44) where—in kinematics terminology (45)—atoms or small groups of atoms 
are “links” and rotatable bonds are “joints”. These joints constitute the degrees of freedom 
(DOFs) of the model and are typically parameterized by dihedral angles (also called internal 
coordinates) as depicted in Figure 1a. The resulting model is illustrated in Figure 1b: a kinematic 
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linkage that consists of a long chain—the protein main-chain—in which each residue contributes 
two DOFs (the so-called φ and ψ angles around the N—Cα and Cα—C bonds, respectively) and 
short side-chains, each with 0 to 6 DOFs (the χ angles). By keeping bond lengths and angles 
fixed, the linkage model provides a conformational representation that naturally eliminates 
uncorrelated high-frequency atomic fluctuations and emphasizes “slow” DOFs. In this model, 
each conformation c is defined by the values of the φ, ψ and χ angles, and can be seen as a 
representative of the small region spanned by uncorrelated atomic fluctuations around c in the 
higher-dimensional conformation space parameterized by the 3-D coordinates of all atoms. The 
dimensionality of the conformation space of the linkage model is upper-bounded by (2+k)×p, 
where p is the number of residues and k is the maximum number of χ angles in a side-chain. For 
most proteins, (2+k)×p is much smaller than 3n. Some works have extended MD simulation to 
the linkage model (46, 47) to reduce the number of variables and increase the integration time 
step. However, this approach introduces additional computational costs due to complicated 
intrinsic properties of dihedral angle dynamics.  
 
2.2. Inverse Kinematics Problem 
 
In some respects, however, the linkage model is more difficult to manipulate, as atomic positions 
can no longer be independently modified. This raises the following inverse kinematics (IK) 
problem: find conformations of protein fragments that are geometrically consistent with the rest 
of the main-chain conformation (48).  
 
More formally (44), consider a given conformation c of some protein P. Let F be an inner 
fragment of p consecutive residues in P, one can attach two Cartesian coordinate frames Ω1 and 
Ω2 respectively to the N and C termini of F (Figure 2a). F is said to be in a closed conformation 
when the pose Πcl (position and orientation) of Ω2 relative to Ω1 is fully determined by the 
conformation c of P. In general, arbitrary choices of the values of the φ and ψ angles in F 
produce poses of Ω2 relative to Ω1 that will differ from Πcl (Figure 2b). Conformations of F that 
are not geometrically consistent with the rest of P are said to be open. Thus, the IK problem is to 
determine the values of the φ and ψ angles in F that result in a closed conformation of F.  
 
It is well known from the fields of Kinematics and Robotics (45, 49, 50) that, while the space of 
all conformations of F’s main chain has dimensionality n = 2p (the total number of φ and ψ 
angles in F), the subspace Closed(Πcl) of closed conformations of F for a given pose Πcl has 
dimensionality n−6, except for critical values of Πcl that form a subset of zero measure in the 6-
D space R3×SO(3) of all the poses of Ω2 relative to Ω1. Here, R is the set of the real numbers and 
SO(3) is the Special Orthogonal Group of 3-D rotations. So, in general, given a pose Πcl of Ω2 
relative to Ω1, F may admit closed conformations only if n ≥ 6, i.e., if it consists of at least 3 
residues. If n = 6, the number of IK solutions is finite and varies between 0 and 16 (51-53). If F 
consists of more than 3 residues, the number of IK solutions is in general (i.e., except for critical 
values of Πcl) either 0 or infinite; in the second case, it is possible to deform the fragment 
continuously without breaking closure. 
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2.3. Inverse Kinematics Methods 
 
Analytical IK methods have been proposed for 3-residue fragments in (48, 54). In (54) the 
problem is reduced to solving a transcendental equation, while the polynomial formulation 
described in (48) makes it possible to accurately enumerate all possible solutions. The method 
applies to any fragment of 3 or more residues, in which the φ and ψ angles of only 3 (possibly 
non-consecutive) residues are allowed to vary. Another polynomial formulation is proposed in 
(55), but the polynomial equations are solved with a subdivision algorithm, which yields 
approximate solutions. Along a related line of research, the structure of the IK map over 
R3×SO(3) is studied in (56), showing that the critical poses of Ω2 relative to Ω1 decompose 
R3×SO(3) into regular regions, such that over each such region the number of IK solutions is 
constant. This decomposition leads to a constructive proof of the existence of a region where the 
theoretical maximum of 16 solutions is attained. This region may not be accessible in practice, 
however, as it may correspond to high-energy conformations with clashes among side-chains. 
 

When the protein fragment F contains p > 3 residues and all φ and ψ angles in F are allowed to 
vary, the IK problem may have an infinite number of solutions and no analytical method is 
known to compute them. The solutions then span a (2p−6)-D space Closed(Πcl), in which F can 
deform continuously without breaking closure. Several methods have been proposed to sample 
conformations in Closed(Πcl). The RLG method proposed in (57) first picks p−3 pairs of φ and ψ 
angles in F at random and then uses an IK method like the one in (48) to determine the 
remaining 6 angles. However, RLG considers only position accessibility and ignores orientation 
accessibility, meaning angular values may be selected that do not allow Ω2 to eventually reach 
Πcl. By running RLG repeatedly with different values of the p−3 pairs of φ and ψ angles, one can 
sample multiple conformations in Closed(Πcl). 
 

Another approach to sample conformations in Closed(Πcl) is to use an iterative optimization 
method. The general idea is to iteratively modify all the φ and ψ angles in F in order to reduce 
the distance between the current pose of Ω2 and its desired pose Πcl. The popular cyclic 
coordinate descent (CCD), initially proposed in (58), is applied in (59) by defining the N- and C-
anchors as the two fixed residues of the protein that bracket the deforming fragment F on its N- 
and C-termini, respectively. A fictitious residue M is added at the C-terminus of F. Given any 
initial conformation of F (picked at random or otherwise), the CCD method iteratively modifies 
the φ and ψ angles in F until M matches the fixed C-anchor. To do this, it minimizes the sum S = 
||NMN||2 + ||Cα

MCα||2 + ||CMC||2, where ||XMX|| (X = N, Cα, or C) is the Euclidean distance between 
the X atom of M and the X atom of the C-anchor. CCD considers each of the φ and ψ angles in 
the fragment in some sequence and resets its value to the one that minimizes S. This value can 
also be computed analytically (59). CCD iterates until S has been reduced below a small 
threshold, but convergence is not guaranteed.  
 
2.4. Incorporating Additional Distance Constraints 
 
It is sometimes useful to constrain the linkage model further in order to maintain certain features. 
For instance, hydrogen bonds (H-bonds) are known to play a key role in both the formation and 
stabilization of protein structures (60-62). H-bonds involving atoms from residues that are close 
along the protein main-chain stabilize secondary structure elements, while H-bonds between 
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atoms from distant residues stabilize the protein’s tertiary structure and shape loops and other 
features that often participate in functional sites. To prevent strong H-bonds from breaking 
during linkage deformation, one may constrain the linkage model by adding distance equality 
constraints to the model presented in Section 2.1.  
 
The effect of these constraints is to rigidify atom groups. The method developed in (63-66) 
derives a distance constraint graph from both the linkage model and the geometry of the H-bonds 
that must not be broken. The nodes of the graph are the atoms in the protein and each edge 
represents an equality distance constraint. For instance, a constant angle between two 
consecutive bonds A—B and B—C leads to an edge between the nodes representing the atoms A 
and C. An individual H-bond yields three distance constraints. The constraint graph is then 
processed by a 3-D variant of an algorithm, known as the pebble game (67, 68), to identify all 
the groups of atoms made rigid by the graph edges. This algorithm is based on the Laman’s 
theorem initially developed to study the rigidity of planar structures made of bars connected by 
hinges (69). The result yields a new kinematic linkage model of the protein in which each link is 
now a rigid group of atoms. Every pair of adjacent links shares exactly two atoms connected by a 
rotatable covalent bond or an H-bond. Only the dihedral angles around these shared bonds are 
variable in the new linkage, allowing for less mobility than the original non-constrained linkage. 
But such a model may contain closed kinematic cycles, up to several dozen, some of which may 
share dihedral angles. The values of the angles in the cycles can no longer be chosen 
independently of one another (as will be discussed in Section 3.3). 
 

3. GEOMETRIC CONFORMATION SAMPLING 
 
3.1. Goal 
 
The goal of geometric conformation sampling—as opposed to physics-based sampling, a review 
of which can be found in (70)—is to explore the range of deformations of a protein (usually a 
folded one) taking only kinematic and geometric constraints into account. For this, most 
geometric methods use the kinematic linkage model of Section 2. This model is usually 
augmented by inequality inter-atomic distance constraints (or volume exclusion constraints) 
preventing large overlaps (or clashes) between atoms. By modeling each atom as a hard sphere, 
with van der Waals radii reduced by a multiplication factor of .7 to .8, these distance constraints 
can be preserved by forbidding any two spheres to overlap. A brute-force algorithm to detect 
violation of this constraint (by comparing every pair of atoms) runs in time quadratic in the 
number of atoms. However, the “grid” method analyzed in (71) and used in many 
implementations only takes linear time. It consists of indexing all atom centers in a 3-D grid of 
small cubes and only checking pairs of atoms whose centers fall in the same cube or in 
neighboring cubes. A conformation that satisfies the volume exclusion constraints is said to be 
clash-free. The attractiveness of a geometric approach derives from the fact that geometric 
constraints have a favorable format that yields efficient algorithms. They do not require explicit 
potential functions, which in some cases are difficult to provide (for instance, when a protein 
may interact with yet unknown molecules). They also make it possible to sample broadly 
distributed accessible conformations. They do not, however, address the problem of recognizing 
functional conformations in the generated distribution. If a potential function or structure-based 
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function prediction software (72) is available, sampled conformations may then be filtered in a 
post-processing phase. Alternatively, results from geometric conformation sampling may serve 
as the launching point for local physics-based simulation, producing high-resolution time-
resolved information from the output of broad low-resolution exploration.  
 
Geometric conformation sampling may apply to an entire protein or, instead, be restricted to a 
fragment of a protein, typically a flexible loop. In the following, we first consider loop sampling, 
then protein sampling. 
 
3.2. Loop Conformation Sampling 
 
Loop/fragment conformation sampling has a wide range of applications, for example, to predict 
deformations that allow ligand binding (73), interpret noisy regions in electron density maps 
(74), fill gaps in homology modeling (75, 76), create fragment moves in Monte Carlo 
simulations (77), and tweak main-chain positions for energy optimization (78). Although loop 
sampling involves relatively few variable dihedral angles, it is still a challenging problem as it 
requires dealing with two potentially conflicting constraints: a valid loop conformation must both 
be clash-free and closed (see Section 2.2) in order to be consistent with the rest of the protein 
(assumed rigid). Basic strategies such as CCD (see Section 2.3) can be employed here, but recent 
literature offer alternatives tailored to proteins.  The loop conformation sampler is mainly 
characterized by the strategy it uses to achieve these two constraints.   
 
RAPPER (79) iteratively builds up a loop conformation from its N terminus toward its C 
terminus. At each step, it selects the values of the φ and ψ angles in each successive residue at 
random from a precomputed table of residue-specific values derived from a large collection of 
diverse protein structures. It also checks that the added residue does not clash with the rest of the 
protein or the portion of the loop built so far, and that the residue’s Cα atom is not further away 
from the loop's C anchor than a certain threshold that would prevent loop closure. When a 
complete conformation has been generated, there remains a potentially large gap between the 
loop's last residue and its anchor on the protein. RAPPER runs an iterative minimization 
procedure to close this gap, checking volume exclusion at each iteration. 
 
RLG (57) successively samples closed conformations using the RLG IK method reviewed in 
Section 2.3 and rejects each sampled conformation that is not clash-free. The rejection ratio tends 
to be high, since clash-free conformations usually span a small subset of the closed conformation 
space.  
 
The method in (80) and LoopTK (81) decompose a loop into three fragments, independently 
sample clash-free conformations of the two fragments rooted at the N and C anchors, and close 
the loop with the middle fragment. LoopTK uses SCWRL3 (82) side chains and includes an 
efficient method to deform any sampled conformation c and generate more conformations 
around it. This method consists of computing the tangent space of the closed conformation space 
at c, a technique often used in Robotics (83), and moving by small increments in that space. 
LoopTK has been used to determine loops with up to 25 residues and its combination with a 
functional site prediction program (72) made it possible to generate and recognize calcium-
binding loop conformations. 
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Finally, it should be noted that some procedures sample loop conformations using libraries of 
fragments obtained from previously solved structures (84-86). However, they do not check that 
sampled conformations satisfy the volume-exclusion constraints. 
 
3.3. Protein Conformation Sampling  
 
Sampling entire protein conformations is more complicated than loop sampling, as it involves 
many more variable dihedral angles. Most methods surveyed below assume that a folded 
conformation of a protein is given and explore the protein’s folded state (or a subset of it) by 
sampling new conformations obtained by deforming previously sampled conformations (initially, 
the given folded conformation). 
 
ROCK (for Rigidity Optimized Conformational Kinetics) (66) transforms covalent bonds, H-
bonds (with potential energy less than a given threshold) and hydrophobic contacts into equality 
distance constraints between atoms (see Section 2.4). Using the pebble game algorithm (68) it 
identifies rigid groups of atoms. The resulting kinematic model of the protein is made of rigid 
groups connected by variable dihedral angles around rotatable bonds. It usually contains many 
closed cycles. To sample new conformations, ROCK performs a random walk starting at the 
given conformation. At each step, it perturbs variable dihedral angles not contained in any cycle 
at random. It also perturbs at random all variable dihedral angles in each cycle, except 6, which 
are then solved using an IK procedure. As it closes cycles sequentially, the closure of each cycle 
results in breaking the previously treated cycles with which it shares variable dihedral angles. 
Once all cycles have been treated, ROCK uses a minimization procedure to reduce to zero a gap 
function measuring cycle break-up. Due to conflicting cycle closure constraints, this function can 
have local minima, hence the minimization process may get trapped into a local minimum. If all 
cycles are successfully closed, the resulting conformation is checked for atomic clashes. 
 
FRODA (for Framework Rigidity Optimized Dynamic Algorithm) (63, 65) performs the same 
rigidity analysis as in ROCK. It also performs a random walk but, it differs in the way it samples 
each new conformation. The positions of all the atoms are first independently perturbed at 
random. Then iterative optimization is used to fit the relative positions of the atoms in every 
rigid group R back to the geometric template associated with R, while avoiding clashes between 
atoms from different groups. This has the indirect effect of achieving cycle closure. Experiments 
with FRODA show that each step of the random walk is 100 to 1000 times faster than that of 
ROCK. However, FRODA’s steps may be small, as the process of fitting back atoms to 
templates often tends to partially cancel out the initial deformation. In addition, the method is not 
well suited for generating deformations in which large groups of atoms perform correlated 
moves. The sampling strategies of both ROCK and FRODA can be biased to sample a sequence 
of conformations between two given protein states and therefore determine pathways between 
these conformations (65).  
 
KGS (for Kino-Geometric Sampling) (87) performs the same rigidity analysis as ROCK and 
FRODA, but uses a different sampling strategy and a different method to deform a conformation 
into a new one. Random walks used by ROCK and FRODA (in their unbiased mode) have an 
inherently slow diffusion rate and hence are slow to explore a folded state. Instead, KGS uses a 
diffusive strategy that guides exploration toward less visited space (88). In addition, its 
deformation method aims at keeping all cycles closed to avoid having to close them back later. It 
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consists of computing the tangent space of the space of conformations where all cycles are 
closed (83) and moving in that space. This procedure requires non-trivial computations due to 
the large potential number of interdependent cycles, but allows the sampler to make relatively 
big deformation steps. In particular, KGS has been able to successfully explore the folded states 
of Cyanovirin-N, a potent HIV-inactivating protein, and the periplasmatic L-lysine/L-arginine/L-
ornithine protein (LAO) (89). Each of these two proteins has two distinct sub-states (PDB ID: 
2EZM and 1L5E for Cyanovirin-N, and 2LAO and 1LAF for LAO). Transition from one state to 
the other involves a hinge and a twist motion between two domains.  
 
The Protein Ensemble Method (PEM) (90) accepts as input a 3-D protein structure, e.g., taken 
from the PDB. It computes an ensemble of conformations that collectively characterize 
the mobility of the entire protein at equilibrium. This is done by generating and combining 
ensembles of conformations for consecutive overlapping fragments (sequences of consecutive 
amino acids). PEM finds geometrically feasible conformations of each fragment using CCD (see 
Section 2.3).  The approach blends geometric exploration of conformation space with a statistical 
mechanics formulation to generate an ensemble of physical conformations on which 
thermodynamic quantities can be measured as ensemble averages. It has been developed for 
proteins that do not exhibit correlated motion and has been validated on proteins for which 
ensemble data exists from NMR experiments.  
 
In (91) new conformations are sampled in the context of a Graph-Based model (see Section 4). 
The procedure starts with a given set of valid conformations (possibly containing only a single 
conformation) and generates new reasonable conformations by expanding from the original ones. 
In essence, a tree of conformations is generated with some notion of succession/propagation of 
one conformation from another. The way propagation, and hence exploration is done, is guided 
by low-dimension projections of the conformations generated so far. These projections are 
spatially partitioned into cells and a given projection is selected relative to a weighting scheme 
that favors larger, less dense cells in order to promote conformation exploration. The 
conformation associated with this projection then serves as the starting point for expansion of the 
exploration. The expansion first applies a series of random perturbations, essentially a short 
random walk, to the known valid conformation and then applies a selection filter (based on 
energy) to the result. If the resulting conformation is valid, it is added to the set of valid 
conformations, otherwise it is discarded. In either case the process repeats from the beginning to 
generate new low-energy conformations and to characterize the energy landscape of the protein. 
 
In the case where a protein structure is not completely known, Rosetta (92) performs a fragment-
level construction, using template fragments drawn from libraries of known motifs from 
homologous and other structures. Conformations resulting from this construction are then 
optionally post-modified with a Monte Carlo search or other randomized optimization designed 
to expand the range of the search space. All resulting conformations are then energetically 
minimized. While computationally intensive, this method has recently been used to produce 
detailed maps of the energy landscapes of a number of protein domains (93). 
 
Finally, for many of the approaches described above, such as (90, 91), ensuring that 
conformations are drawn from a representative sampling of the free-energy landscape of a 
protein system (while avoiding oversampling) is of critical importance, both for good coverage 



13 
 

and for speed. Dimension reduction—the approximate low-dimensional representation of high-
dimensional systems—can be useful in efficiently guiding several algorithms to representative or 
unique regions of a conformation space. In (94) the free-energy landscape of DecaAlanine is 
characterized in 2-D by applying principal component analysis (PCA) directly on dihedral angles 
under a Cartesian transform. In (95) the free energy landscape of an SH3 domain was 
characterized in 2- and 3-D (reduced from an original 171), with very low residual error, using 
non-linear dimension reduction (ScIMaP algorithm). With both methods, conformations with 
similar features were shown to aggregate into well-separated minima in the lower dimensional 
representations. Such representations could be used to heuristically guide a sampling scheme as 
it progresses, while periodically updating results to include newly generated conformations. 
 

4. GRAPH-BASED MODELS OF PROTEIN MOTION 
 
4.1. Introduction 
 
Conformation sampling provides information on the accessible conformation space. But it does 
not describe conformational changes over time. Here, we review methods that take a set of 
conformations as input and build a directed graph modeling the long-timescale motion behavior 
of a protein. The input conformations may have been sampled using geometric or potential-based 
methods. The nodes of the computed graph represent individual conformations of a protein, or 
groups of conformations. Its arcs represent transitions between them. The goal is to capture a 
huge number of possible long-timescale motion paths into a compact and explicit representation 
that can then be analyzed by efficient computational tools. In particular, graph-based methods 
make it possible to compute ensemble properties—such as folding rate, mean-first passage time, 
transition state ensemble, Pfold values (96), dominant ordering on secondary structure 
formation—that characterize protein behavior over a myriad motion paths without performing 
any explicit simulation. 
 
There has recently been a surge of interest in graph-based models. This trend started with the 
adaptation of probabilistic roadmaps developed for robot motion planning (40) to represent 
molecular motion. Then roadmaps evolved into point-based Markov models, and more recently 
into cell-based and hidden Markov models. We review this line of work below. This review is 
derived in part from (4). 
 
4.2. Roadmaps 
 
In a classical robot motion planning problem, a robot must move among obstacles without 
colliding with any of them. A configuration1 of the robot is said to be valid if the robot at this 
configuration does not collide with any obstacle. It is usually prohibitively expensive to compute 
the space of valid configurations of a robot (the robot’s valid space), but there exists efficient 
techniques to check if a given configuration or a given motion path is valid. Probabilistic 
RoadMap (PRM) planning exploits this observation by computing an approximate representation 
of the valid space in the form of an undirected graph, the probabilistic roadmap (40). Each node 

                                                
1 The word “configuration” for robots has the same meaning as “conformation” for molecules. A configuration of a 
robot uniquely determines the position of every point on this robot. 
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of the roadmap corresponds to a valid robot configuration sampled randomly from the robot 
configuration space, and each edge between two nodes represents a simple valid path between 
the corresponding configurations (usually, a linear interpolation between them). A PRM planner 
constructs a roadmap until it connects a start to a goal configuration. Under assumptions that are 
generally satisfied in practice, the probability that PRM planning finds a motion path between 
two configurations converges to 1 exponentially in the number of nodes of the roadmap (97). In 
other words, a probabilistic roadmap provides a good approximation of the connectivity of the 
space of valid configurations. PRM planning and its variants are currently the most widely used 
approach to plan the motions of complex articulated robots. 
 
The PRM approach was adapted to model and analyze the motion of a flexible ligand binding 
with a protein assumed rigid (98). The adaptation relies on an analogy between valid (non-valid) 
configurations for robots and low-energy (high-energy) conformations for molecules. However, 
while the configuration space of a robot is cleanly divided between valid and non-valid 
configurations, the energy landscape over the conformation space of a molecule or a group of 
molecules does not provide such a clear-cut division. Moreover, while in robotics one is 
interested in finding one reasonably good motion path, in biology one is interested in 
characterizing the behavior of a molecule over a representative set of motion paths. To address 
these differences, the method in (98) proceeds as follows. It attaches a Cartesian frame, P, to the 
protein (assumed rigid) and another one, L, to a rigid group of three atoms in the flexible ligand. 
It defines the conformation of the ligand by 6 parameters representing the position and 
orientation of L relative P, plus p dihedral angles around the ligand’s rotatable bonds. It then 
samples at random many conformations of the ligand such that the origin of L is within some 
predefined distance from the protein.  Each sampled conformation c is retained as a node of the 
roadmap with the following probability distribution:  
 

! !  is  retained =   
0 if  ! ! ≥ !max  

!max!!(!)
!max!!min

if  !min   < ! ! <

1 if  ! ! ≤ !min

!max                              (1) 

 
where E(c) is the potential energy of the ligand consisting of van der Waals and electrostatic 
terms, and Emax and Emin are input thresholds. So, the method leads to a greater density of nodes 
in the low-energy regions of the ligand’s conformation space. Next, each node is connected to its 
k nearest neighbors by a linear-interpolation path.  The path between two nodes c and c’ is 
discretized into a sequence of conformations c0 = c, c1, ..., ci, ..., cs = ! ′, such that in any two 
successive conformations ci and ci+1 no two corresponding atoms are further apart than 1Å. It is 
accepted only if all the discretized conformations along the path have energy less than a 
maximum energy threshold. If the path is accepted, the roadmap nodes c and ! ′ are connected to 
each other by two roadmap arcs of opposite directions. The arc from c to ! ′ is labeled by a 
weight w(c→! ′) measuring the energetic difficulty of traversing the path from c to ! ′. For any 3 
successive conformations ci−1 , ci and ci+1, with potential values Ei−1, Ei, and Ei+1, the following 
equation is used to estimate the probability that the ligand at conformation ci will move next to 
ci+1:  
 

! !! → !!!! =   
!!(!!!!!  !!)/!"

!!(!!!!!  !!)/!" + !!(!!!!!  !!)/!"   
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where k is the Boltzmann constant and T the absolute temperature. The weight w(c→! ′) is 
computed as:  
 

! ! → ! ′ =   − log[! !! → !!!! ]!!!
!!! . 

 

Similarly, the arc from ! ′ to c is labeled by ! ! ′ → ! = − log[! !!!! → !! ]!
!!! . So, the 

roadmap represents a distribution of plausible paths of the ligand through the space surrounding 
the receptor protein. 
 
Once constructed a roadmap is used in (98) to predict an active binding site from a given 
collection of potential binding sites, all with low potential energies. This is done by computing 
the N (where N ≈ 100) most favorable paths in the roadmap that enter each site from distant 
conformations and the N most favorable paths that leave each site. It was observed on several 
protein-ligand complexes that the active binding site is often not the one with the lowest 
potential energy, but the one for which both the entering and the leaving paths have the highest 
weights on average. This result suggests the presence of an energy barrier around the active site. 
 
This method was extended in (99) to protein folding, in order to predict the dominant order of 
secondary structure formation. The protein is modeled using the linkage model of Section 2.1 
with fixed χ angles (i.e., rigid residues) and a roadmap is computed by sampling conformations 
in this model. A key difference with the method of (98) is the sampling strategy. Here, the 
strategy creates a wavefront of conformations expanding from the given folded conformation. 
Each new conformation c is obtained by perturbing every φ and ψ angle in a previously sampled 
conformation using a Gaussian distribution. It is retained as a new node of the roadmap with the 
probability distribution defined in Equation (1), where E is now an energy function that rejects 
conformations containing collisions among side-chains and favors hydrogen and disulfide bonds 
in secondary structure elements, as well as hydrophobic interactions. The nodes of the roadmap 
are sorted into bins based on the number of native contacts, where a native contact is defined as a 
pair of residues whose Cα atoms are less than 7Å apart in the folded conformation. The sampling 
strategy fills the bins starting with the bin with all native contacts. Once a bin contains a least a 
certain number of nodes, sampling is performed around conformations in that bin to fill bins with 
fewer native contacts. Hence, the density of roadmap nodes over the conformation space is a 
decreasing function of the distance from the input folded conformation. 
 
The method in (99) then computes the N best paths to the folded conformation from 
conformations in the zero-native-contact bin. Along each path, the appearance time for a 
secondary structure element is measured as the mean appearance time for all of its contacts. The 
predicted secondary structure formation order is the order with the greatest frequency over all 
paths. The method was tested on a set of 14 proteins ranging from 56 to 110 residues in size. It 
correctly predicted the order of secondary structure formation in all cases where laboratory data 
was available. 
 
This work is extended in (100) to analyze proteins for which laboratory experiments show that 
secondary structures form in different dominant orders. In (101), a new sampling strategy is 
proposed based on rigidity analysis (see Section 2.4). This strategy scales up better to large 
proteins than the previous bin-based strategy. 
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4.3. Point-Based Markov Models 
 
To capture the stochasticity of molecular motion, the roadmap model was transformed in (102) 
into a Markov model by treating each roadmap node as a state and assigning each arc c → ! ′ a 
transition probability P(c → ! ′) derived from the energetic difference between the conformations 
c and c’ and inspired from the Metropolis criterion. A self-transition is added to each node with 
probability such that all transition probabilities at this node add up to 1. The resulting graph is 
treated as Markov model in the following sense: the probability of transitioning from c to c’ is a 
constant that does not depend on the protein’s history before reaching c. It is called a point-based 
Markov model (PMM), as each state represents a single conformation.  
 
In principle, a PMM makes it possible to perform a random walk similar to a Monte-Carlo 
simulation. However, the most interesting feature of a PMM is that it allows the computation of 
ensemble properties without performing any explicit simulation or computing any specific path, 
by using a technique known as first-step analysis. In (102) this technique was used to efficiently 
compute the Pfold value, a theoretical measure on the progress of protein folding (96). Let F 
(resp. U) denote the set of nodes that correspond to conformations that are considered folded 
(resp. unfolded). The value Pfold(c) at any node c is the probability that from c the protein will 
reach F before U. By definition Pfold(c) = 1 if c ∈ F and 0 if c ∈ U. Computing Pfold(c) at each 
other node using simulation would require performing many runs from c. Instead, with first-step 
analysis, one can write the following equation, which corresponds to performing a single 
simulation step for many simulation runs all at once: 
 

Pfold(c) = ! ! → ! ′ ×1+  !′∈! ! ! → ! ′ ×0!′∈! + ! ! → ! ′ ×!′∉!∪!  Pfold(! ′). 
 

This leads to a sparse system of linear equations, one for each node not in ! ∪ !. A linear system 
solver computes the Pfold values at all nodes simultaneously. This computation takes all paths 
encoded in the roadmap into account. The method was applied to a monomer of repressor of 
primer (PDB ID: 1ROP) and engrailed homeo-domain (1HDD). A simplified kinematic model 
and the H-P energy model were used to create the PMM. It was shown that the Pfold values 
computed with a PMM converge quickly toward the values computed by performing many MC 
simulation runs, when the number of nodes in the PMM increases. But computation with the 
PMM is several orders of magnitude faster than computation with MC simulation. The method 
was later extended to predict experimental measures of folding kinetics, such as folding rates, 
transition state ensembles, and Φ-values of residues (103). 
 
In (104) an improved sampling method is proposed to generate the nodes of a PMM. The nodes 
are obtained by sub-sampling conformations of a protein along short trajectories obtained with 
MD simulation and merging conformations that are close (RMSD-wise) to each other. This 
approach makes it possible to assign transition durations to the arcs of the model (in addition to 
transition probabilities). So, it not only provides a more energy-pertinent coverage of the 
conformation space, but also adds temporal information that potentially allows more accurate 
computation of dynamic properties. The method was tested the 12-residue tryptophan zipper beta 
hairpin, which had previously been simulated on Folding@Home (105). The PMM was built by 
sub-sampling 22,400 conformations along 1,750 independent trajectories. The mean first passage 
time from the unfolded to the folded state and the folding rate were computed with the resulting 
model using first-step analysis. Their values agreed well with experimental results from 
fluorescence and IR.  
 



17 
 

A method is proposed in (106) to estimate the uncertainty in the set of transition probabilities in 
a PMM derived from MD simulation runs and to identify the nodes whose arcs have the largest 
uncertainty. Then one may reduce uncertainty by performing more simulations from these nodes. 
 
4.4. Cell-Based and Hidden Markov Models 
 
All Markov models to represent protein motion depend on a key assumption: the future state of a 
protein depends on its current state s only and not on past history prior to reaching s. This 
assumption enables a Markov model to be compact and yet capture the main features of the 
underlying dynamics. But single conformations rarely contain enough information to guarantee 
this assumption. So, a PMM may not have the ability to represent well protein motion over time. 
One way to alleviate this problem is to construct large PMMs by sampling many nodes, but this 
makes them more difficult to analyze and understand.  
 
This drawback led to cell-based Markov models (CMMs) (5), in which each node is a collection 
of sampled conformations that roughly matches an attraction basin (cell) in the protein’s energy 
landscape. The protein interconverts rapidly among different conformations within a basin s 
before it overcomes the energy barrier and transitions to another basin s′. The assumption is that 
after many inter-conversions within s, the protein “forgets” the history of how it entered s and 
transitions into s′ with probability depending on s only. MD simulation is used to generate the 
data for building a CMM (5). Conformations sub-sampled along MD trajectories are first 
grouped into clusters so that self-transition probabilities for the states in the CMM are 
maximized, i.e., intra-state transitions are frequent (hence, fast) while inter-state transitions are 
rare (slow). Recent work builds CMMs at multiple resolutions through hierarchical clustering 
(107). 
 
Related models, called transition networks, are described in (108, 109). A preliminary form of 
CMM was proposed earlier to analyze a simplified lattice protein model (110). The data for 
model construction was obtained by solving the master equation instead of performing MD 
simulation.  
 
CMMs achieve the dual objectives of better satisfying the Markovian assumption and reducing 
the number of states. However, they still violate the Markovian assumption in a subtle way. 
Consider a protein at a conformation c near the boundary of an energy basin. The future state of 
the protein depends not only on c, but also on the protein’s velocity, hence on past history. By 
requiring each conformation to belong to a single state, CMMs violate the Markovian 
assumption, especially near cell boundaries and in cells corresponding to shallow energy basins. 
To address this problem, in (111) a state is modeled by a probabilistic distribution over the 
collection of sampled conformations. Each conformation c now belongs to all states in the 
model, but with different probabilities (some very small). Conversely, for each state s, the 
model—a hidden Markov model (HMM)—gives a probability distribution over the conformation 
space. A major advantage of such an HMM over a CMM is that it can be scored by well-
established tools computing its likelihood for a test dataset of MD trajectories. This scoring 
method makes it possible to determine automatically the optimal number of states. This approach 
was tested on two extensively studied peptides, alanine dipeptide and the villin headpiece 
subdomain (HP-35 NleNle), to estimate kinetic and dynamic folding quantities. The results were 
consistent with available experimental measurements. It was also shown that, although a widely 
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accepted thermodynamic model of alanine dipeptide contains 6 states, a simpler model with only 
3 states is almost equally good for predicting long-timescale motions.  
 
Markov models derived from MD data are currently limited by the cost of MD simulation. So far 
they have been only applied to small proteins. However, faster computers and algorithms should 
eventually alleviate this limit. It will be possible to generate more data at faster rates, but the 
resulting datasets will remain difficult to understand, because of the sheer size of the data in 
high-dimensional spaces. Increasingly, the future challenge will be to gain biological insights 
from simulation data by deriving simple and yet powerful models. In that respect, CMMs and 
HMMs are promising possibilities. 
 

5. CONCLUSION 
 
Physics-based simulation is a valuable tool for investigating protein dynamics at high resolution. 
A host of complementary methods that focus on lower-resolution aspects of a protein’s global 
conformation space have nonetheless shown significant utility in answering many questions of 
biological importance—with considerable advantages in performance. Further, the two 
approaches, which focus on differing aspects of a conformational landscape, may be used 
together to focus on key areas of interest to researchers.  
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FIGURES 

 
 
 

        
                              (a)                                                                    (b) 
Figure 1: Linkage kinematic model: (a) Dihedral angle around a covalent bond. (b) Model of a 

protein fragment 
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                                   (a)                                                                        (b) 
Figure 2: (a) Here coordinate frames Ω1 and Ω2 are placed with origins relative to the centers of 
the appropriate terminus atoms of a protein fragment F, with orientations defined relative to the 
bonds connecting the atom to its two neighboring atoms in the main-chain. (b) When Ω2 and Ω1 
are consistent with the coordinate frames of their attachment points to the protein body P, F is 
geometrically consistent with P. Arbitrary choice of φ and ψ angles produce inconsistent (open) 
conformations; notice the last atom of Fp-1 does not connect to the next sequential atom of Fp.  


