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A B S T R A C T

The cellular immune response comprises several processes, with the most notable ones being the binding
of the peptide to the Major Histocompability Complex (MHC), the peptide-MHC (pMHC) presentation to the
surface of the cell, and the recognition of the pMHC by the T-Cell Receptor. Identifying the most potent peptide
targets for MHC binding, presentation and T-cell recognition is vital for developing peptide-based vaccines and
T-cell-based immunotherapies. Data-driven tools that predict each of these steps have been developed, and the
availability of mass spectrometry (MS) datasets has facilitated the development of accurate Machine Learning
(ML) methods for class-I pMHC binding prediction. However, the accuracy of ML-based tools for pMHC kinetic
stability prediction and peptide immunogenicity prediction is uncertain, as stability and immunogenicity
datasets are not abundant. Here, we use transfer learning techniques to improve stability and immunogenicity
predictions, by taking advantage of a large number of binding affinity and MS datasets. The resulting models,
TLStab and TLImm, exhibit comparable or better performance than state-of-the-art approaches on different
stability and immunogenicity test sets respectively. Our approach demonstrates the promise of learning from
the task of peptide binding to improve predictions on downstream tasks. The source code of TLStab and TLImm
is publicly available at https://github.com/KavrakiLab/TL-MHC.
1. Introduction

T-cell-based cellular immunity plays an important role in the adap-
tive immune system, by protecting the organism against pathological
events [1]. One of the defense mechanisms involves the recognition,
by T-cell receptors, of class-I Major Histocompatibility Complex (MHC)
receptors loaded with non-self peptides [2]. In this context, an orches-
trated balance between peptide-MHC (pMHC) Binding Affinity (BA),
peptide stability, and immunogenicity is crucial for triggering an im-
mune response. Consequently, designing computational tools that can
predict which peptides bind to the MHC receptor, which pMHC com-
plexes are stable enough to be presented on the surface of the cell, and
which peptides can elicit an immune response, is crucial for designing
therapeutics [3].

The quality and quantity of experimental pMHC BA measurements
stored in public databases [4,5] has allowed computational approaches
that predict pMHC binding to emerge early on [6–9]. The inclusion of
Mass Spectrometry (MS) data has pushed the field of pMHC binding
even further, and newly emerged Machine Learning (ML) models are
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more robust and accurate than ever before [10–12]. In contrast, the
volume of pMHC kinetic stability data that exist in databases is much
lower, possibly because of the low-throughput characteristics of the
methods that are being employed for dissociation measurement [13].
The two most known tools for predicting pMHC stability are NetMHC-
stab and NetMHCstabpan [13,14]. In regards to detecting immunogenic
peptides, the list of tools is much larger [15]. Nevertheless, similar
to pMHC stability, good quality datasets of immunogenic peptides
are by orders of magnitude smaller in size than their pMHC binding
counterparts.

Focusing on the task of immunogenic peptide detection, many tools
in the literature use BA/Eluted Ligand (EL) predictions as an important
feature. The efficacy of using BA/EL for immunogenic peptide selection
has been thoroughly discussed in the literature with experimental re-
sults to support it; Bjerregaard et al. [16] found that BA predictions on
immunogenic neoepitopes (tumor epitopes with somatic mutations that
make strong immunogenic candidates [17]) are significantly stronger
than ones of non-immunogenic peptides. Similarly, Koşaloğlu-Yalçın
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et al. [18] suggested that BA predictions, along with length-rescaling,
constitute the best feature for identifying neoepitopes from a pool
of mutated peptides. The benchmarking study in [19] reported high
Area Under Curve (AUC) results when using NetMHCpan4.0 [20] or
MHCFlurry [21] for T-cell recognition in vaccinia virus-infected mice.
Additionally, BA-derived measures involving the neoepitope and its
corresponding wildtype, such as the differential agretopicity index,
have shown to have predictive capabilities [22–24]. However, in more
than one study, the use of differential agretopicity index was not shown
to lead to better neoepitope recognition [18,25]. The study by Fritsch
et al. [26] found that using netMHCpan2.4 results in accurate and
rapid neoepitope identification, but also that the difference between
the predicted BA of the mutated self and the self is not significant.
In general, pMHC binding data alone is informative, but mostly not
enough for accurate immunogenicity prediction [19,27,28].

The pMHC binding information has not only been used as a pre-
dictive feature in tools for immunogenic peptide prioritization, but has
also been employed during the training process, specifically of models
that predict immunogenicity by learning from small-in-size immuno-
genicity datasets. For instance, NetMHCstab and NetMHCstabpan have
mixed stability predictions from their models with NetMHCCons [29]
using a weighting factor 𝛼 ranging between 0 and 1 that is fine-
uned to predict T-cell epitopes [13,14]. NetTepi [30] further explores
his idea, by weighting BA predictions from NetMHCCons, stability
redictions from NetMHCStab, and T-cell propensity predictions from
he model described by Calis et al. [31] to predict T-cell epitopes.
imilarly, previous work mixes an immunogenicity score predicted by
convolutional neural network that is trained on immunogenicity data,
ith BA and antigen processing transport efficiency, on the task of
eoepitope prediction [32]. PRIME, a peptide immunogenicity predic-
or, uses EL predictions from a binding predictior as a feature during
he learning process [33]. DeepHLApan employs a deep multitasking
etwork that considers BA, MS, and immunogenicity data at the same
ime [34]. These approaches can be considered instances of knowledge
ransfer [35] that try to exploit the common elements between two
elated/correlated tasks. In this case, BA/EL predictions are being trans-
erred as prior information to the downstream task of immunogenicity
rediction.

Transfer learning, a form of knowledge transfer where a pre-trained
eep learning architecture is fine-tuned on a task that is related to the
riginal one, has seen much success [35]. On the pMHC binding pre-
iction specifically, MHCnuggets used transfer learning on pretrained
er-allele BA predictors to adjust to alleles with less peptide data
nd, also, to MS data [36]. Moreover, various methods have been
sing pre-trained protein language models [37,38] and fine-tuning
hem to pMHC data. BERTMHC uses pre-trained transformer models
n protein sequences fine-tuned to MHC class-II binding data [39].
HCRoBERTa [40] trains pan-specific MHC class-I BA predictors us-

ng a ROBERTa [41] pre-trained model. Finally, Gasser et al. [42]
dapt BERTMHC to class-I MHCs and tries to provide a biological
nterpretation to the attention weights of the transformer.

In this study, we develop two transfer learning-based predictors for
lass-I pMHC stability (TLStab) and peptide immunogenicity (TLImm).
oth TLStab and TLImm were created by pretraining a BA/EL predictor
sing BA and MS data, and this predictor was fine-tuned on pMHC
tability data for TLStab, as well as peptide immunogenicity data for
LImm. To assess the effectiveness of fine-tuning BA predictors, we
enchmarked different knowledge transfer approaches on the tasks of
tability and immunogenicity that were previously proposed in the
iterature. Transfer learning is shown here to perform better than
xisting knowledge transfer approaches. TLStab exhibits state-of-the-
rt results in two different pMHC stability test sets. Finally, TLImm
hows superior performance in a SARS-CoV-2 test set of pathogens [43].
LStab and TLImm are both open-source and available at https://
2

ithub.com/KavrakiLab/TL-MHC.
2. Materials and methods

2.1. Pretraining BA/EL predictors (TLBind)

To pretrain our BA/EL predictor, we acquired BA and MS datasets
from [11] abd [44]. The training dataset consists of data from IEDB [4]
(including both BA and MS data), with the addition of the MONOAL-
LELIC MS dataset comprising 92 samples from HLAthena [45] and 8
samples from [46], as well as deconvoluted MULTIALLELIC MS datasets
from various sources that were curated in and obtained from [11]. We
further add decoys to the training dataset, that were generated from
the same proteins that the positive peptides come from, as described
in [11]. The training dataset was then split using stratified 5-fold
cross-validation (CV), in order to select the hyperparameters that fit
best the data, and we henceforth refer to this process as the model
selection step. As soon as the model selection step was complete and
the hyperparameters were chosen, the entire training dataset was used
for training, with an extra validation set being used for early stopping.
The MS part of the validation set was constructed from an additional
MONOALLELIC dataset generated by [44]. We also included 15% of
the BA data points from the IEDB that were not used during training,
as well as a separate, smaller BA dataset that was acquired from [47]. In
order to compare our pre-trained predictor to high-performing binding
predictors found in the literature, a left-out test set was used. The left-
out test set was constructed from an additional, separate to the previous
ones, MULTIALLELIC dataset also used by [44]. Both validation and test
sets were enriched with decoys generated from the human proteome,
as described in [44]. We filtered out the pMHC pairs from the training
dataset that were also found in the validation/test sets, in order to
avoid data leakage during model evaluation. Overall, the training set
consists of 164,582 BA datapoints and 482,720 MS hits (totaling ∼2
million MS datapoints when decoys are considered), with the BA/MS
ratio equaling to about 1:3 (∼1:100 when MS decoys are considered).
We will be referring to our pretrained BA/EL predictor as TLBind in the
rest of the paper.

In terms of the class of models that were chosen, we follow con-
ventions proposed by [8,11], and employed Multi-Layer Perceptrons
(MLPs). Additional information in regards to model architecture, fea-
turization and hyperparameter selection are provided in the Supple-
mentary Methods found online.

2.2. TLStab

2.2.1. Datasets
In order to train for pMHC stability prediction, the training dataset

was acquired from the NetMHCstab study, totaling 6,298 data points
from 10 different alleles, as described in [13]. We used 10-fold stratified
CV to get an estimate on the model’s ability to generalize on the left-out
test sets. Internally, for each training set created by the 10-fold CV, we
performed a further 90%∕10% train/validation split for hyperparameter
tuning, as proposed in [48], leaving us with an ensemble of 10 MLPs.
This way, no test samples from the 10-fold CV participated in hyperpa-
rameter tuning, resulting in an unbiased evaluation. To further test the
method on datasets outside the training set distribution, a set of Ebola
virus peptides [49] and a set of Pox virus peptides [50] were acquired
from IEDB.

2.2.2. Fine-tuning the BA/EL predictor
TLStab was created by fine-tuning the pre-trained BA/EL predictor

to the pMHC stability task. Specifically, during training, the MLP
weights were loaded from our pre-trained BA predictor, instead of them
being randomly initialized. The BA output of the network was then re-
purposed for pMHC stability prediction, by exposing and fine-tuning
the network to stability data (Fig. 1). During fine-tuning, we unfroze
all the layers of the network and fine-tuned all the MLP weights to the

new task. This was done due to earlier findings in regards to peptide
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Fig. 1. TLStab & TLImm: A BA/EL predictor similar to NetMHCpan4.1 [10] is fine-tuned to stability/immunogenicity tasks. This is achieved by refining the MLP weights through
ask-specific training.
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mino-acid importances for pMHC stability; while it is known that the
nchor positions of the peptide contribute the most to stability [13],
ewer findings have shown significant contributions of other peptide
mino acid positions, for example, position 6 in HLA-A*02:01, visible in
hermostability motifs [51]. By unfreezing all weights, we sought to al-
er the feature extraction stage, by slightly shifting the interest to those
eptide positions too. For more information in regards to the datasets
nd methods for training TLStab, please refer to the Supplementary
ethods found online.

.3. TLImm

.3.1. Datasets
In order to train for peptide immunogenicity, the training dataset

as collected from IEDB, with the filtering process being as described
n [52], resulting in a dataset of 8971 points. We also incorporated 408
engue virus positives from [53] into the training dataset. A stratified
-fold CV process, similar to TLStab, was followed, both for model
election and evaluation. For model testing on out-of-distribution data,
2 viral SARS-CoV-2 peptides were obtained from [43], that were
ested on convalescent/unexposed to SARS-CoV-2 donors. For testing
LImm on neoepitopes, we employed a filtered version of the neoepi-
ope benchmark dataset from the Tumor neoepitope Selection Alliance
TESLA) consortium [24], containing 399 9-mer and 10-mer peptides.

.3.2. Fine-tuning the BA/EL predictor
Similar to TLStab, TLImm was initialized by loading the MLP

eights of our pretrained BA/EL predictor. The EL output of the
etwork was fine-tuned on immunogenicity data (Fig. 1). For sim-
lar reasons to TLStab, we also opted to unfreeze all the layers of
he network; it is known that, for pMHC binding, it is the anchor
ositions of the peptide that mediate the peptide-MHC interaction,
amely position 2 and the C-terminus positions [54,55]. However, for
eptide immunogenicity, it is the amino-acids in the middle portion
f the peptide that are mostly coming in contact with the T-cell
eceptor [31,52,56]. By unfreezing all the layers, we sought to slightly
lter the neural network weights that correspond to the middle portion
f the peptide. For information on dataset filtering and explanatory
nalysis for the task of peptide immunogenicity, please refer to the
upplementary Methods found online.

. Results

.1. Correlation of BA values/predictions to pMHC kinetic stability/
mmunogenicity

It has already been reported in the literature, albeit in small datasets,
3

hat there is a significant correlation between binding affinity and
tability/immunogenicity [16,18,19,57]. We wanted to assess the va-
idity of this hypothesis in other publicly available datasets. Validating
his hypothesis motivates the use of knowledge transfer, particularly
ransfer learning methodologies, for the tasks of peptide stability and
mmunogenicity prediction. We acquired the three largest publicly
vailable stability datasets currently found in IEDB, namely, the train-
ng dataset from the NetMHCstab study [13], a dataset of Ebola virus
eptides [49] and a dataset of Pox virus peptides [50] (see Supplemen-
tary Methods for more information on the datasets). In Fig. 2A the
relationship between experimental ED50 values provided in the Ebola
and Pox virus datasets and pMHC stability is shown. Specifically, for
different ED50 thresholds, we calculate the average stability value (y-
axis) of the peptides that exhibit a better ED50 value than a selected
ED50 threshold (x-axis). Higher ED50 thresholds correlate with higher
mean stability values, showing that affinity values can be used to infer
pMHC stability.

This is not true solely for experimental values, but also for BA/
EL prediction tools. Specifically, we acquired BA predictions from
NetMHCpan4.1, MHCFlurry2.0 and TLBind, our pre-trained BA predic-
tor that exhibits similar performance with state-of-the-art tools on the
task of binding prediction (Supplementary Table S1). BA predictions
were taken for both the Ebola virus and Pox virus datasets. Again,
there is a monotonic relationship between BA predictions and the
pMHC mean stability values (Fig. 2B). The same relationship can be
seen when NetMHCpan4.1, MHCFlurry2.0 and TLBind are used for
the NetMHCstab dataset (Supplementary Figure S1). This hints at an
important realization; specifically, that there is potential in harnessing
properties of BA prediction tools and adjusting them downstream in
order to predict peptide kinetic stability. In other words, BA prediction
tools seem to be a good starting point for this particular task. It is
worth underlining here that this is not a property stemming from BA
data only, but also MS data. This is important, as the training set of
TLBind consists primarily of MS datapoints (see Methods), therefore,
correlation between MS outputs and stability should also be present,
in order to get the most out of the pMHC binding datasets. Indeed,
the EL/presentation score outputs of the aforementioned tools, trained
on big MS datasets, also correlate with peptide stability in the same
way as BA predictions do (Supplementary Figure S2). Therefore,
there is potential for transfer learning methodologies to be applied on
state-of-the-art BA/EL predictors, which benefit from both big BA and
MS datasets, so that these tools are re-purposed for peptide stability
prediction.

It is worth stressing here that the relationship between BA and
stability is better seen when the mean stability of a pool of pep-
tides is calculated (Fig. 2, Supplementary Figure S1); by plotting a
1:1 relationship between affinity and stability, there are many data-
points which do not follow this trend. Specifically, emphasizing on
the NetMHCstab training dataset, there are strong binders with low
stability (as previously seen in [57]), but also seemingly weak binders
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Fig. 2. (A) Relationship between experimental ED50 values and stability values on the Ebola virus dataset and the Pox virus dataset. The 𝑦-axis depicts the mean stability values
of peptides that have a better ED50 than the threshold (x-axis). (B) Relationship between BA predictions from two state-of-the-art tools (plus our pre-trained BA/EL predictor
TLBind) and stability values. The 𝑦-axis depicts the mean stability values of peptides that have a better predicted BA than the threshold (x-axis). (C) NetMHCpan4.1 (𝑝 < 0.001),
MHCFlurry2.0 (𝑝 < 0.01) and TLBind (𝑝 < 0.001) affinity predictions on immunogenic peptides are significantly different when compared to non-immunogenic ones.
with much better stability values than the strong ones (Supplementary
Figure S3). The latter cases have been observed more scarcely, but
still seen in the literature. For instance, peptide mutations in anchor
4

positions that result to better BA values have shown to make the
peptide more unstable than its wildtype counterpart [58,59]. Regarding
BA predictors, these cases could just be false predictions, however, this
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trend is true even when looking at measured ED50 values in the Ebola
and Pox virus datasets (Supplementary Figures S4). This indicates
that BA/EL prediction tools alone are not sufficient for peptide stability
prediction, and adjustment to peptide stability datasets is necessary.

Similar conclusions can be derived by observing the relationship
between BA predictions and immunogenic/non-immunogenic labels.
Distributions of BA predictions by NetMHCpan4.1, MHCFlurry2.0 and
TLBind for the two different classes of immunogenic/non-immunogenic
peptides for the SARS-Cov-2 viral dataset [43] can be seen in Fig. 2C.
We removed peptides from the analysis that were not predicted to
be strong binders, and thus, possibly non-immunogenic (predicted BA
> 500 nM), in order not to bias towards possible non-binders ex-
isting in the dataset. Using the Kolmogorov–Smirnov non-parametric
test, we confirmed that the distributions are significantly different for
NetMHCpan4.1 (𝑝 < 0.001), MHCFlurry2.0 (𝑝 < 0.01) and TLBind (𝑝 <
.001), reinforcing the hypothesis that BA prediction models/values
an be used to discriminate between immunogenic/non-immunogenic
eptides, and therefore, can be adjusted using knowledge transfer
pproaches to the downstream task of peptide immunogenicity pre-
iction. Similar results are obtained when comparing the distributions
f BA predictions in the IEDB dataset that was used to train TLImm
Supplementary Figure S5).

.2. Performance of TLStab

As a first experiment, we wanted to assess whether transfer learning
s the most predictive knowledge transfer approach. We benchmarked
LStab (see Methods and Supplementary Methods for details on the
raining process to create TLStab) against different knowledge transfer
pproaches that have been previously proposed in the literature [13,
3,52], in order to select the most predictive one for the task in an un-
iased way (see Supplementary Methods for a detailed description of
he different architectures that were used for benchmarking). For each
nowledge transfer approach, we performed a 10-fold stratified cross
alidation process (discussed inMethods), and subsequently performed
odel evaluation on the 10 left-out test datasets. For model evaluation,
e employed Pearson’s correlation coefficient and Kendall’s tau-b, as
roposed in [21]. In the unbiased 10-fold scenario evaluation, the
ommonly accepted way of reporting results is the mean performance
f the 10 folds, accompanied by the standard deviation [48]. However,
orrelation coefficients are notorious when averaging, as their sampling
istribution is skewed, leading to underestimation. Moreover, applying
he known Fisher’s 𝑧-transform before averaging leads in overestima-
ion [60]. Thus, we merged the predictions and the labels of the 10
eft-out test sets into one large test set, as described in [61]. The
erformance of the different knowledge transfer techniques (with the
nclusion of NetMHCpan4.1, MHCFlurry2.0 and TLBind BA/EL predic-
ions as further baselines) can be seen in Fig. 3A . TLStab led to better
erformance than all other methods, an indication that, initializing a
redictor’s weights with BA information and fine-tuning those weights
o stability data leads to better generalization. It is important to note
hat, although the EL output of the binding prediction tools exhibits
air correlation with the stability levels, the BA output exhibits even
igher correlation. This also affects the fine-tuning process, where it
an be seen that finetuning on the BA output instead of the EL output
esults in a better correlation. Lastly, we observed that unfreezing all
he neural network weights results in a better performance. As the
iddle portion of the peptide has proven to affect peptide stability [51],
e hypothesized that the feature extraction step of the first layers also
eeds to be fine-tuned. This hypothesis was confirmed experimentally.
astly, all the above results hold true even when we examine the data
n a per-allele basis (Supplementary Figure S6).

We also benchmarked the performance of TLStab against other
tate-of-the-art approaches on the Pox virus [50] and Ebola virus
5

eptides [49]. We filtered out the HLA-B*08:01 allele datapoints from
he two datasets, so that the two datasets only contain alleles sup-
orted by NetMHCstab – an allele-specific method – for comparison
urposes. This resulted in 978 data points for the Ebola virus dataset
nd 522 data points for the Pox virus dataset. For each pMHC instance,
e predicted stability with TLStab by averaging the 10 predictions

rom each MLP in the 10-model ensemble. We also included in the
omparison the BA predictions of NetMHCpan4.1, MHCFlurry2.0 and
LBind. In the Ebola virus dataset, TLStab performs better than all
ther methods both in terms of Pearson’s correlation coefficient and
endall’s tau (Fig. 3B). The results are similar in the Pox virus dataset,
here, although Pearson’s correlation is similar to NetMHCstabpan,
LStab achieves evidently better ranking performance against all other
ethods (Fig. 3C).

A common characteristic of NetMHCstab, NetMHCstabpan and TL-
tab is that they were trained on datasets where all non-negative in-
tances are strong binders, as peptide binding is a requirement for mea-
uring stability when performing a scintillation proximity assay [13].
pecifically, NetMHCstabpan reports that all positive instances have
ither BA < 500 nM or %2 rank [14]. To balance the datasets in terms
f unstable peptides, both NetMHCstab and NetMHCstabpan sample
andom negatives (BA > 20000 nM) that are labeled with 0 half-life
abels. Nevertheless, the non-zero half-life datapoints are all strong
inders. As such, we also wanted to evaluate the models on a dataset
hat only contained strong binders. We filtered the Ebola and Pox
atasets, so that BA predictions given by MHCFlurry2.0 were lower
han < 500 nM to simulate the training data conditions. The filtered
bola and Pox datasets contain 321 and 185 datapoints respectively,
ll predicted to be strong binders by MHCFlurry2.0. For model testing,
earson’s correlation coefficient and Kendall’s tau-b was again used.
esults are shown in Supplementary Figure S7. It is notable that

most methods benefit from the strong binder filtering, most likely
due to the fact that their training dataset comprises strong binders
+ non-binders, excluding weak binders. TLStab outperforms all other
approaches for both metrics in the Ebola virus dataset. Interestingly,
all stability predictors on the Pox Virus dataset do worse than binding
affinity predictors. We believe this to be an artifact, as the number of
data points left in the Pox virus dataset after the filtering is quite low
in comparison to the full dataset.

We also compared our method against NetMHCstabpan in the Ebola
virus and the Pox virus datasets containing the allele HLA-B*08:01,
which is not supported by NetMHCstab. In most of the cases, TL-
Stab performs comparably, or outperforms NetMHCstabpan in terms
of ranking (Supplementary Table S2), although the number of HLA-
B*08:01 datapoints in both Ebola and Pox datasets is small in relation
to the full datasets (45 HLA-B*08:01 points for the Ebola virus and
19 HLA-B*08:01 data points for the Pox virus dataset respectively).
As such, a more extensive dataset is needed to fully compare with
NetMHCstabpan on out-of-training-distribution alleles. Furthermore,
we benchmarked TLStab against other knowledge transfer approaches
(see Supplementary Methods) for a more extensive comparison. In
most of the datasets, the best results are achieved either by TLStab
or the simpler ‘‘BA as a feature’’ model (Supplementary Table S2).
Lastly, we also observe that fine-tuning on the EL output does not
produce the same level of correlation as fine-tuning on the BA output
(Supplementary Table S2).

3.3. Analysis of stability motifs

Similar to [13,51], we wanted to assess the difference between
BA motifs and stability motifs, in order to interpret what is being
learned by each model. We focused on 9-mers and the 10 alleles of
the NetMHCstab training dataset. We extracted 500,000 9-mers by
fragmenting protein sequences from the human proteome. We paired
those peptides to each of the 10 alleles, and we used NetMHCpan4.1BA,
NetMHCstab, NetMHCstabpan and TLStab to score the peptides for each

allele. We used the scores of each tool to rank the peptides, and, by
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Fig. 3. (A) Pearson’s correlation and Kendall’s tau performance of TLStab against other knowledge transfer approaches on the unbiased 10-fold nested CV experiment. On the left
part of the blue dashed line, the performance of BA/EL predictors is depicted (blue bars). On the right side, we show the performance of various knowledge transfer approaches
and TLStab (dark yellow bars). (B) Pearson’s correlation and Kendall’s tau performance of TLStab against other approaches on the Ebola virus Dataset. On the left part of the blue
dashed line, the performance of BA predictors is depicted (blue bars). On the right side, we show the performance of state-of-the-art pMHC stability tools (teal bars) compared to
TLStab (dark yellow bar). (C) Pearson’s correlation and Kendall’s tau performance on the Pox virus Dataset. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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Fig. 4. (A) HLA-A*02:01 motifs for the four depicted methods. While the binding affinity predictor has visible presence of negative charge in position 4, the stability prediction
methods are less enriched, although the contribution of negative charge to peptide stability has been previously studied [63]. (B) HLA-A*01:01 motifs for the four depicted methods.
The NetMHCstabpan motif has substantially lower presence of D3 and E3, although there is experimental evidence of formed bonds that contribute to peptide stability.
taking the top 0.1% (equal to 500 peptides per allele), we generated
the peptide motifs for each tool. To generate and visualize the motifs,
we used motifStack [62].

The complete list of motifs can be seen in Supplementary Figure
S8. We observe the same enrichments in position 1 and position 3 in
the majority of alleles for the stability methods as also reported in [13].
Additionally, all stability motifs agree to a great extent. However, there
are evident differences between some stability and BA motifs, also
observed in [51]. Such case was the allele HLA-A*02:01. For NetMHC-
pan4.1BA, a binding affinity predictor, the existence of negative charge
in position 4 is important for good binding. However, the same is not
true for stability predictors, where the enrichment in position 4 in re-
gards to negative charge is much lower. This is contrary to recent works
emphasizing the importance that formed salt bridges between position
4 and HLA-A*02:01 positions R65-K66 have on peptide stability [63].
The salt bridge formation is also evident on one example structure
found in the PDB (PDB code: 5ENW ), where peptide GLKEGIPAL is
bound to HLA-A*02:01 (Fig. 4A). We hypothesize that the reason for
this low enrichment in position 4 across all stability tools might be
the relatively small HLA-A*02:01 stability datasets that were used for
training. These datasets might not contain statistically sufficient data
exhibiting this relationship. However, previous work also suggests that
the existence of negative charge might not necessarily correlate with
enhanced pMHC complex stability. For example, in [64], the natural
occurring mutation G4E on the known influenza peptide GILGFVFTL is
not shown to affect pMHC complex stability. Additionally, according
to [65], different MAGE-A variants, most of them exhibiting a D4, are
less stable than the influenza or the tax peptide that both exhibit G
instead. These results indicate that the existence of negative charge
in position 4 might not be a prerequisite for peptide stability. How-
ever, more extensive studies need to be performed to determine the
contribution of D4 and E4 to peptide stability for peptides bound to
HLA-A*02:01.

There is also a visible motif difference between different stability
methods in the case of the HLA-A*01:01. Specifically, there is a compa-
rable existence of negative charge in position 3 in the NetMHCstab and
7

TLStab motifs in comparison to NetMHCpan4.1BA (Fig. 4B). However,
NetMHCstabpan is less conserved in position 3, while the glutamic acid
is visibly less present. There are two structures deposited in Protein
Data Bank (PDB codes: 4NQX, 4NQV ) with presence of E3 peptides
bound to HLA-A*01:01. As reported in [66], in both structures, E3
is partially buried in the D pocket of the HLA-A*01:01 and forms a
salt bridge with the R156, which hypothetically contributes to stability
(Fig. 4B). The seemingly increased tolerance of NetMHCstabpan in
position 3, as seen in the HLA-A*01:01 stability motif, could be also
related to the reportedly worse performance for HLA-A*01:01 in the
Ebola and Pox virus datasets (Supplementary Figure S9). Specifically,
we found cases where NetMHCstabpan clearly overestimates stability of
peptides not exhibiting an D3 or an E3.

3.4. Performance of TLImm

Given the good results of TLStab on the stability prediction task,
the same fine-tuning idea was applied on the task of peptide immuno-
genicity prediction. The immunogenicity assays dataset was obtained
from IEDB, following the filtering process previously proposed in the
literature [52]. The additional Dengue virus pathogens [53] that were
used in [52] as a validation dataset were instead added to the main
dataset, since model selection was done through a 80%∕20% split of the
training set in each of the five folds.

Same as TLStab, we wanted to first assess if transfer learning
is the most appropriate knowledge transfer approach for the task
of peptide immunogenicity prediction. We performed 5-fold strati-
fied CV for model selection and evaluation. Results can be seen in
Supplementary Table S3. BA/EL predictors can distinguish between
immunogenic/non-immunogenic peptides better than random. Their
AUC values are all larger than 0.5 (the baseline AUC), and all Area
Under Precision-Recall Curve (AUPRC) values are also above the base-
line (fraction of positive instances in the dataset = 0.476). TLImm
performs clearly better in comparison to other knowledge transfer ap-
proaches in terms of both AUC and AUPRC (Supplementary Table S3).
Moreover, when comparing to freezing/replacing layers, finetuning all
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he network weights results in a better fit. This is consistent with the
dea that the weights connected to the middle portion of the peptide
eed to be slightly adjusted, as it is this portion of the peptide that is
nteracting with the T-cell receptor [31,52,56]. Additionally, contrary
o the peptide stability prediction task, fine-tuning on the EL output of
LBind results in a slightly better AUC and AUPRC values than when
ine-tuning on the BA output. This is in agreement with previous reports
ndicating that the EL/presentation score output of binding prediction
ools is superior to the BA output [28]. Lastly, as it has been previously
bserved that class-I pMHC stability is a better predictor than BA [57],
e also performed fine-tuning on the peptide immunogenicity task
sing the weights of TLStab instead. Nested CV results were comparable
ith TLImmBA, and still inferior to TLImmEL.

To compare TLImm against other peptide immunogenicity predic-
ors in the literature, we used a dataset comprising a set of viral
ARS-CoV-2 peptides. Specifically, the dataset contains 92 SARS-CoV-2
eptides that were tested either on convalescent or unexposed to SARS-
oV-2 donors [43]. From a computational perspective, this means that
immunogenic labels are associated with each pMHC instance: one
8

t

oming from convalescent and one from unexposed donors. There are
5 positive instances related to convalescent donors, and 8 positive
nstances related to unexposed donors. As the negative class outnum-
ers the positive class, AUPRC is the preferred measure of performance
ver AUC [67]. The AUPRC performance compared to a list of other
eptide immunogenicity prediction tools [30,31,52,68,69], both for
onvalescent and unexposed donor labels, can be seen on Fig. 5A and
B, respectively. TLImm performs similarly to DeepImmuno in both
onvalescent and unexposed donors, which is expected, due to the
se of the same training set. However, with the sole exception of
he IEDB Model [31], the performance of TLImm seems to be lower
han the performance of many other immunogenicity prediction tools.
oreover, TLBindEL, our pretrained baseline EL predictor, performs

omparatively better than TLImm in terms of AUPRC, which was
nexpected given that TLBind had not seen any immunogenicity data
o begin with.

Given these results, we sought to understand how fine-tuning in
he immunogenicity dataset actually worsens the performance of our
redictor. We subsequently identified two areas of possible experimen-
ation, both dealing with modifying the training set of TLImm:
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1. Data Labeling : We experimented with labeling datapoints in our
training dataset with either binary (indicating immunogenic/non
immunogenic status) or continuous, between 0–1 (indicating
immunogenic strength) labels [52].

2. Per-allele Balancing : We subsampled datapoints of the training set
with the purpose of equalizing the label balance for all alleles.

For more information/analysis on the effects of balancing and la-
eling the immunogenicity dataset, please refer to the Supplementary
ethods found online.

Four combinations of TLImm arise from the above processes:

1. TLImm, trained on an imbalanced dataset with binary labels.
2. TLImm + Bal., trained on a balanced dataset with binary labels.
3. TLImm + Cont., trained on an imbalanced dataset with continu-

ous immunogenic strength labels.
4. TLImm + Bal. + Cont., trained on a balanced dataset with con-

tinuous immunogenic strength labels.

The four variations of TLImm were subsequently tested on the
ARS-Cov-2 dataset. The first observation is that, by training on a
ataset that is balanced, the proposed method outperforms all other
pproaches, including TLBindEL. That is true in both convalescent
nd unexposed donor labels. This shows that fine-tuning a pre-trained
inding affinity predictor on a smaller dataset of viral peptides can
esult in a peptide immunogenicity model that performs better in out-
f-distribution datasets of viral peptides, as long as the training dataset
s free of any per-allele bias. Interestingly, incorporating continuous
mmunogenic strength labels does not result in better prediction. This
s unexpected, as, in theory, more fine-grained information about the
mmunogenic strength of the peptide should result in the model being
ore accurate in its predictions.

Apart from the binary classification task, we also wanted to as-
ess whether TLImm predictions correlate with recognition frequencies
number of positive responses in donors divided by total number of
ested donors). In this way, we wanted to investigate the model’s ability
o rank more potent peptides in terms of recognition frequency than less
otent/non-immunogenic ones. Pearson’s correlation coefficient and
endall’s tau results for both convalescent and unexposed patients are
hown in Fig. 5C and 5D, respectively. Focusing on the convalescent
onors, while the model from Gao et al. [69] exhibits better Pear-
on’s Correlation Coefficient, TLImm performs better with respect to
anking the more potent peptides in terms of recognition frequencies.
imilar results can be observed in regards to the unexposed donors; in
egards to Pearson’s correlation coefficient, TLImm performs similarly
o NetMHCpan4.1EL, however TLImm still ranks higher the most potent
eptides in terms of recognition frequencies.

The full benchmark analysis, incorporating BA/EL predictors and
eptide stability predictors can be found in (Supplementary Table
4). The balanced version of TLImm outperforms all BA/EL predictors
nd stability predictors in both convalescent and unexposed donors,
hen considering either binary labels or continuous recognition fre-
uency labels. Additionally, we wanted to compare TLImm against
ther knowledge transfer approaches. The results of this benchmark
an be found in (Supplementary Table S5). TLImm outperforms all
ther knowledge transfer approaches for all combinations of datasets
convalescent/unexposed) and metrics (AUPRC/Kendall’s tau), at least
hen considering the balanced version of the training dataset, which
ives the optimal results overall. Furthermore, similar to the nested CV
xperiment, the EL output of TLBind, when fine-tuned, achieves better
esults than when the BA output of TLBind is fine-tuned. Finally, as the
ested CV already indicated (Supplementary Table S3), finetuning the
eights of TLStab and the stability output does not lead to better results

han those of TLImmEL.
In addition to viral peptide immunogenicity prediction, we assessed
9

he performance of TLImm on a set of neoepitopes. For this experiment, g
e used the TESLA [24] neoepitope dataset, applying the same filter-
ng methods as described in [28], therefore keeping 27 immunogenic
eoepitopes and 372 non-immunogenic instances. AUC and AUPRC
cores for all methods were calculated following the protocols described
n [28] for a fair comparison. We also used Top-20 and Top-50 scores as
reviously described [24,32,52]. These thresholds reflect the number
f peptides that are included in a personalized treatment [24]. The
erformance of TLImm can be seen in (Supplementary Table S6).
xcept the model from Gao et al. [69], TLImm outperforms all other
mmunogenicity prediction tools. However, even the balanced version
f TLImm is ouperformed by BA/EL predictors, most notable TLBindEL,
hich exhibits the best performance across all tools. This is in agree-
ent with previous findings [27,28], stating that pathogenic peptides

eatures, such as dissmilarity-to-self, are innately different than features
rom neoepitopes. As a result, it is challenging for models trained on
athogenic datasets to generalize on neoepitope datasets [27]. Future
ork will include repeating the training and testing process of TLImm

o datasets explicitly composed of neoepitopes, in order to further
mprove performance on the task of neoepitope identification.

. Discussion

To elicit an adaptive immune response, epitopes undergo a series of
ntracellular processes happening in a sequential manner [57]. There
re three main processes that have previously received great interest
n the literature: (a) The binding of peptides to the MHC-I receptor,
b) the stability of the pMHC complex, and (c) the recognition of
he pMHC by the T-cell receptor. The advent of MS has shed light
n the pMHC binding and presentation process, and pMHC BA/EL
rediction models [10,11,45] have greatly improved their accuracy on
enchmark pMHC datasets. However, the amount of pMHC stability
nd immunogenicity data is much lower than BA/EL, and the land-
cape of both pMHC stability and immunogenicity prediction is largely
nderexplored.

To our knowledge, the most used pMHC stability predictors are
etMHCstab and NetMHCstabpan [13,14]. One of the reasons that the

ield of pMHC stability prediction has been insofar underdeveloped
s the low-throughput of dissociation measurement experiments [13].
owever, while not perfect, there is a measurable correlation be-

ween affinity and stability measurements that, although previously
bserved [57], it has not been considered as a way to account for the
ack of stability data (Fig. 2A). This relationship should be exploited, as
MHC stability predictions have shown to be of invaluable use; pMHC
tability has proven to be an important factor for T-cell recognition,
oth in previous work [13,14,30,57], as well as in the recent TESLA
lobal consortium benchmark study on neoepitope identification [24].
e benchmarked different knowledge transfer approaches inspired

rom the literature, and found that transfer learning can help in improv-
ng pMHC stability prediction in the absence of abundant stability data
Fig. 3A). Furthermore, the proposed method, TLStab, improves upon
he performance of previously established pMHC stability prediction
ools, showcasing the effectiveness of fine-tuning BA predictors on
tability data (Fig. 3B–C).

Likewise, the size of immunogenicity datasets still does not compare
ith the size of pMHC binding data. However, contrary to the pMHC

tability tools, immunogenicity prediction tools are many more in
umber, especially when focusing on neoepitope identification [15].
hese tools employ pMHC binding prediction and ML tools (where
A/EL are important features) to guide their epitope selection. This
entral theme of using BA/EL data/predictions for epitope selection
tems from the bibliography that highlights an inherent relationship
etween pMHC BA/EL predictions and T-cell recognition [16,18,26,
4,52,68]. We benchmarked different knowledge transfer approaches
o validate which of these approaches is suited for immunogenicity
rediction. Once more, transfer learning exhibits a greater potential in

eneralization (Supplementary Table S3). Additionally, the proposed



ImmunoInformatics 13 (2024) 100030R. Fasoulis et al.
TLImm method outperforms all other methods in identifying SARS-
Cov-2 viral peptides (Fig. 5 and Supplementary Table S4). These
results showcase the potential of transfer learning for viral peptide
immunogenicity prediction.

We additionally highlight that, while the ML model and architecture
selection are vital to the final performance obtained, data curation and
filtering are also vital for building a robust model [70]. In particular,
one needs to (a) ensure that labels are representative of the data
points, and (b) there is sufficient label balance across different existing
subgroups of the dataset in order to avoid potential bias [71]. In the
pMHC immunogenicity prediction setting, this translates to (a) the
immunogenicity label being representative of the pMHC pair, and (b)
balance between immunogenic/non-immunogenic labels per allele. The
study presented in [28] showed that there is per-allele label imbalance
in the epitope datasets that are being employed, and, by benchmark-
ing different peptide immunogenicity predictors, highlighted that this
affects the performance of these models. We took this analysis a step
further, and showed that, when the ML architecture takes into account
the peptide sequence and the MHC sequence [32,52] , the model
mostly identifies the type of allele in question, and not key properties
of the peptide sequence (see Supplementary Methods for the full
analysis). We subsequently showed that per-allele balancing of the
training set can lead to better generalization performance (Fig. 5 and
Supplementary Table S4).

Admittedly, our study has some limitations. Although TLStab out-
performs state-of-the-art approaches, it does not achieve high enough
correlation to experimental stability values. Using the biostatistical
criteria by [72,73], in both out-of-distribution test sets (Pox virus
and Ebola virus peptides), TLStab exhibits fair correlation at best
(Fig. 3). This is however not unique to TLStab, but common to all
benchmarks. Similarly, for TLImm, in the out-of-distribution SARS-
Cov-2 viral peptides, AUPRC is well above the baseline, but still low
(Fig. 5). We hypothesize that this is still due to limited data; while
transfer learning can provide a substantial boost in performance in
the presence of small datasets, to further boost overall performance,
more training data is needed. Additionally, when TLImm was tested
on the TESLA neoepitope dataset [24], its performance was still better
when compared to other epitope identification tools, but still lower
than some BA/EL predictors. As such, usage of TLImm on neoepitope
identification, while competitive, is still limited and not recommended.
We hypothesize that the reason for this is the innate feature-related
differences between viral peptides and neoepitopes as reported in [27].
These differences have been shown to lead to underperforming models
in the literature [28]. As such, future work will emphasize on collecting
a neoepitope-specific training dataset, and repeat the train/test process
that is presented in this work, thus leading to a neoepitope-specific
model that exhibits better generalization performance on the task of
neoepitope identification.
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