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Solving Rearrangement Puzzles
using Path Defragmentation in Factored State Spaces

Servet B. Bayraktar1, Andreas Orthey1,3, Zachary Kingston2, Marc Toussaint1, Lydia E. Kavraki2

Abstract—Rearrangement puzzles are variations of rearrange-
ment problems in which the elements of a problem are potentially
logically linked together. To efficiently solve such puzzles, we
develop a motion planning approach based on a new state space
that is logically factored, integrating the capabilities of the robot
through factors of simultaneously manipulatable joints of an
object. Based on this factored state space, we propose less-
actions RRT (LA-RRT), a planner which optimizes for a low
number of actions to solve a puzzle. At the core of our approach
lies a new path defragmentation method, which rearranges and
optimizes consecutive edges to minimize action cost. We solve
six rearrangement scenarios with a Fetch robot, involving planar
table puzzles and an escape room scenario. LA-RRT significantly
outperforms the next best asymptotically-optimal planner by 4.01
to 6.58 times improvement in final action cost.

Index Terms—Task and Motion Planning, Constrained Motion
Planning, Manipulation Planning

I. INTRODUCTION

REARRANGEMENT puzzles are difficult instances of
rearrangement problems [17], [38], where objects are po-

tentially logically linked to each other. Logically linked objects
require the robot to first move one object, before a second
can be moved. We define problems with this characteristic as
rearrangement puzzles. Those problems are at the core of many
robotics tasks like household chores or product assembly. For
instance, a robot working in a production facility may need
to rearrange objects on a production line, or a robot trapped
inside a room has to find its way out (Fig. 1).

Rearrangement puzzles are often solved using one of three
approaches. In a top-down approach, symbolic reasoning
is used to guide exploration of the space [38], [10]. Such
methods include most Task and Motion Planning (TAMP)
solvers. TAMP solvers often start by computing action skele-
tons [6], which are then used to initialize lower-level motion
planning [9] or optimization methods [37]. In a bottom-up
approach, a search is conducted directly in the joint robot
and object state space by carefully analyzing and sampling
the constraints involved [23], [39]. A third class of methods
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Figure 1: Example of a Fetch robot solving a puzzle with 3 doors,
to move a green cube from a start to a goal configuration (Top),
and a locked room scenario, where the Fetch robot has to escape by
rearranging furniture and locks (Bottom).

uses integrated solvers, to selectively switch between lower
and higher level abstractions. This can be achieved in different
ways, for example using backtracking on failure [11], or
by switching between joint-space sampling and sampling in
region where constraint switches occur [29], [36]. Methods
for rearrangement puzzles, however, often do not scale well,
because they might require excessive backtracking [4] or lack
good heuristics to guide a solver to a solution [36].

To tackle this issue, we propose a complementary method
to compute an efficient lower bound on the solution, i.e. an
admissible heuristic [16], [25]. This admissible heuristic is
obtained by computing feasible paths for the objects alone,
while ignoring the robot. We show that this admissible heuristic
can be efficiently computed, and is able to act as a guide to
solve the complete problem involving multiple manipulation
actions of the robot.

However, computing such an admissible heuristic based on
objects alone requires solving two problems. The first is the
capabilities problem. If we ignore the robot and its capabilities,
solution paths might not be executable by the robot, especially
if multiple objects move at the same time—a one-armed robot
might be incapable of manipulating two doors at the same
time. The second is the minimal actions problem. Computing
solutions for the objects alone might produce excessive pick-
place sequences, which would be tedious and take too much
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time for the robot to execute.
We propose two contributions to address these two issues.

First, we propose a factored state space to solve the capabilities
problem. This factored state space implicitly models the
capabilities of the robot by grouping joints into factors, wherein
joints in a factor are simultaneously manipulatable by a given
robot. We develop novel interpolation and action cost functions
to make this state space usable by general-purpose motion
planners [19], [12]. Second, we propose a new method to
significantly reduce the number of actions, which we call path
defragmentation. Path defragmentation can reduce the number
of actions by reasoning about the ordering of path segments
through different factor spaces. This method is integrated into
a new planner, the less-actions RRT (LA-RRT). LA-RRT is
able to handle the non-additive property of our minimal-actions
cost, and can split interpolated path segments into sequences
of factored path segments, which are then optimized using
path defragmentation. We apply LA-RRT to difficult instances
of rearrangement puzzles where we assume that the mode
of each object is constant and show that it can find paths
with significantly less action cost compared to state-of-the-art
planners. Eventually, we use those paths to compute complete
manipulation sequences for a simulated Fetch robot. Fig. 2
shows an overview about our method.

II. RELATED WORK

We group approaches to rearrangement problems into three
groups, namely top-down planning, bottom-up planning, and
integrated planning approaches.

Top-down approaches are often based on computing ac-
tion skeletons, sequences of symbolic actions which are then
used as constraints for joint-space planning or optimization
approaches [37], [11]. This approach is highly successful if the
degrees of freedom in the environment are logically decoupled,
like pick-place actions on distinct objects [17], [7], [8]. It
is often sufficient in these scenarios to compute joint-space
trajectories without feedback, even if multiple robots and large
planning horizons are involved [38], [10]. However, if an
action skeleton cannot be solved expensive backtracking is
required [4] to validate another action skeleton.

Our work is complementary, in that we also execute symbolic
actions on our robot, but we choose those actions implicitly
using the (admissible) heuristic from our LA-RRT planner,
which gives us a complete valid sequential solution path for
all objects involved. This tighter integration of planning and
robot capabilities give us a better chance to avoid expensive
backtracking.

Another approach to rearrangement planning are bottom-up
approaches. These approaches explicitly search through the
combined space of the robot and objects [35]. This can be
advantageous as sampling-based planners can be applied [15],
which can achieve asymptotic optimality guarantees [39],
[28], [27]. These methods often use a constraint-graph [22],
[23], which enumerates the valid constraint combinations in a
scene. Constraint-based methods require effective projection
methods [2], [15] to sample and interpolate along constrained
subspaces. While these approaches can provide strong guaran-

tees [39], scaling to higher dimensions (i.e., number of objects)
adds significant challenges [14].

Our approach differs in that we do not plan directly in the
full robot-object configuration space, which can be costly to
compute. Instead, we plan first in the object-only configuration
space by integrating the capabilities of the robot into the motion
planner using the new factored state space (see Sec. III).

Finally, rearrangement problems can be solved with inte-
grated methods. Those methods combine both planning on a
high-level, like a symbolic layer, with planning on a lower level,
like joint-space planning. A tight integration is crucial to avoid
backtracking on infeasible high-level solutions. Hierarchical
planners [1], [11] can often find good solutions with few
backtracking operations. However, when objects are logi-
cally coupled, like in Navigation among moveable obstacles
(NAMO) problems [30], it is often difficult to find the correct
high-level solution. To tackle this issue, geometric information
can often be integrated into the symbolic description [7], or
sampling is extended to include joint configurations consistent
with symbolic actions [29], [36]. While those approaches
provide concise frameworks for optimal planning, they might
suffer from slow convergence due to the high branching factor
of possible actions.

To tackle the high branching factor, it becomes often nec-
essary to find good heuristics. Recent approaches include
reasoning about collision regions between objects [40], or
by computing initial solutions, where every object is moved
at most once (the monotone case) [41]. Our approach is
complementary by also computing a heuristic. However, our
heuristic is admissible, and is tailored to problems where
objects are logically linked to each other.

The computation of this admissible heuristic is done using
the new LA-RRT planner, which can efficiently reason over
factored state spaces. This planner is inspired by planners like
the Manhattan-like RRT (ML-RRT) [3]. In ML-RRT, planning
is decomposed into an active and a passive subspace. Our
planner LA-RRT, however, generalizes this idea to arbitrary
subspaces (factors), makes it applicable to manipulation, and
combines it with optimality, such that we approach the minimal
number of switches between factor spaces.

III. FACTORED STATE SPACE

Our goal is to solve manipulation planning problems that
require solutions through the combined state space of XR×X ,
where XR is the robot’s state space and X is the state space
of the manipulatable objects. We decompose this problem by
projecting this state space XR ×X → X removing the robot
state space. To account for the robot capabilities, we manually
define instead a factored decomposition of X as X = F1 ×
F2 × . . .× FN as shown in Fig. 3, where a factor represents
a subspace of X containing joints, which are simultaneously
manipulatable by the robot. For convenience, we also define
the operation k in Fi as returning the indices of the joints in
Fi, and the operation |Fi| as the number of joints.
Example: For a one-arm manipulator arm, a door with a single
revolute joint (depicted as F2 in red in Fig. 3), would have
|Fdoor| = 1, while a movable planar disc would have |Fdisc|
= 2 (shown as F1 in green in Fig. 3).



BAYRAKTAR et al.: SOLVING REARRANGEMENT PUZZLES 3

Problem environment Motion planning ManipulationFactored State-space

LA-RRT
FactorInterpolate
(Interpolation)

PathDefrag
(Optimization)

Figure 2: Overview about the system. Given a problem environment (Left), we model the objects through a factored state space (Middle
left) where each object represents a factor in a different color. We then apply our algorithm LA-RRT to the factored state space, whereby we
first exploit the factored interpolation, and then use a path defragmentation method to optimize the number of switches between factors in
the resulting path (Middle right). This solution is then used to initialize a manipulator algorithm, which computes a complete manipulation
sequence to solve the rearrangement puzzle (Right).

Figure 3: Example of the structure of the factors in the state-space.
Each color represents a factor, and each joint of an object corresponds
to a cell in the factor.

The purpose of the factors is to ensure that at most k objects
move at the same time given k available manipulator arms. This
constraint is an implicit way to define action skeletons [10],
i.e., as a sequence of alternating factor-paths, which can then
be executed individually by executing pick-place actions with
the robot.

To plan in factored state spaces requires the implementa-
tion of three functionalities which are crucial for planning:
interpolation, goal constraint, and cost.
Interpolation: A linear interpolation between two states
would interpolate in all dimensions thereby moving objects
simultaneously. To only move one factor at a time, we develop
a Manhattan-like interpolation method applicable with arbitrary
factor state spaces, which is depicted in Alg. 1. This method
interpolates a path between two states xfrom and xto by using
an interpolation parameter t ∈ [0, 1], and an ordering of factor
spaces1. As output, we return a state xout at distance t between
xfrom and xto. This methods works by first computing the
individual distances between xfrom and xto when projected onto
each factor (Line 1). We then find the factor space m where
the interpolation variable t lies (Line 2). As an example, let
us assume we have two factors with distances 1 and 3, and
total distance 4. In the first step, we normalize them to 1

4 and
3
4 . If t < 1

4 , we select the first factor. If t ≥ 1
4 , we select the

1In our evaluations, we use a random ordering, since we found no significant
influence on performance for different orderings.

second factor.
All factor spaces before m are fully interpolated and set to

the corresponding values of xto (Line 4–6). Then, we call the
intrinsic interpolation function of the selected factor Fm and
change its corresponding indices in xout (Line 8). Finally, we
set the factors after m to the xfrom values (Line 9–10), and
return xout (Line 11).

Algorithm 1: FACTORINTERPOLATE

Input: xfrom, xto, t, F1, . . . , FM

Output: xout
1 d1:M ←− GETDISTANCES(xfrom, xto, F1:M )
2 m←− FINDINDEX(d1:M , t)
3 dinterpolated ←− 0
4 for i = 1 to m− 1 do
5 foreach j in Fi do xout[j]←− xto[j]
6 dinterpolated += di

7 s←− (t− dinterpolated/dm)
8 xout ←− INTERPOLATE(Fm, xfrom, xto, s)
9 for i = m+ 1 to N do

10 foreach j in Fi do xout[j]←− xfrom[j]

11 return xout

Goal: Next, we define a goal constraint by taking all joints into
account which have a designated goal position. We call this set
the goal-indices GIG . To take joint positions into account, we
use a goal state xg which is only defined for indices in GIG .
All other indices are freely-chooseable and can be randomly
sampled. For such a partial state xg we represent an ϵ-goal
region XG as

XG = {x ∈ X | d(xi, x
g
i ) ≤ ϵ, i ∈ GIG}. (1)

Cost: Finally, we have to define a cost function, which reflects
our desire to minimize the number of pick-place actions the
robot has to execute. This can be done by counting the number
of factor changes when interpolating between two states, i.e.,
cactions : X×X → N≥0. However, this cost is difficult to define
as we show in Fig. 4, because of two issues. First, we cannot
discriminate between paths of different lengths (p1 and p3 in
Fig. 4). We resolve this by adding a multi-layered cost function
which works as cactions, but behaves like a distance cost cdist
when the number of actions are equivalent. The second issue is
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Figure 4: Explanatory example to demonstrate the difference between
different cost functions. Top: Workspace of a single cube on a rail,
which has to be moved from its start configuration (left) to a desired
goal configuration (right). X-axis is the horizontal position of the
green cube and the y-axis is the vertical position of the blocking
cube. A blocking cube in the middle (red) needs to be moved out
of the way to solve the problem. Bottom: The state space of this
problem with the start configuration (green), goal region (lightgreen)
and the collision-region (gray). We showcase three paths. p1 is the
optimal path with cost terms cactions = 2, cadditive = 3, cdist = 3, p2 with
cactions = 3, cadditive = 3, cdist = 3, and p3 with cactions = 2, cadditive =
4, cdist = 4. This highlights two issues: (a) To discriminate between p1
and p3, we require a multi-layered cost function taking also distance
into account, and (b) planner like BIT* and RRT*, which support only
additive costs, cannot discriminate between p1 and p2. Our planner
LA-RRT explicitly works on non-additive costs, and can thereby
correctly identify p1 as low cost action.

related to the additive nature of this cost function. Planners like
BIT* and RRT* assume that cost terms can be summed along
path segments [12]. However, such an additive cost function
cadditive cannot discriminate between path segments which have
equivalent actions along subsequent edges (p1 versus p2 in
Fig. 4). Planners running with cadditive will be able to find the
right equivalence class of solution paths (p1 or p2), but only
by using the non-additive version of cactions can we pick the
correct solution path (p1). This issue forces us to develop a
dedicated planning algorithm which can correctly exploit the
non-additive nature of cactions.

Having defined the factored state space, we can define the
problem of solving a rearrangement puzzle as a factored state
space X together with a start configuration xs, a goal region
XG, and a cost function cactions. Our goal is to find a path from
xs to XG minimizing cactions.

IV. LESS-ACTIONS RRT

Less-actions RRT (LA-RRT) is a bi-directional planner
modelled after RRT-Connect [18] and RRT* [12] to efficiently
search over factored state spaces with non-additive action costs.
LA-RRT differs by using a different extend method and a novel
path optimization method, which we call path defragmentation.

An overview of LA-RRT is given in Alg. 2. As in RRT-
Connect [18], we initialize a start tree Ta and keep a set of
goal trees Tb from at most M sampled states in our goal region
(Line 2). We define the variable BESTCOST as the best action
cost and Pbest as the best solution path found (Line 3–4). Like in
RRT-Connect [18], we alternate tree expansion by sampling a
random motion xrand (Line 6) and extend the corresponding tree
(Line 7). Once the trees can be connected (Line 8), we apply
the path defragmentation algorithm to the solution path (see
Sec. IV-B). If the new path has a better cost than the current
best cost, we save Ptmp as the new best path (Line 11–13),
and continue searching until we reach the planner termination
condition PTC.

Algorithm 2: LA-RRT
Input: PTC, xstart, Xgoal

1 Ta.init(xstart), Tb.init(Xgoal)
2 BESTCOST ←−∞
3 Pbest ←− [ ]
4 while ¬PTC do
5 xrand = SAMPLECONFIGURATION()
6 treeInfo←− FACTOREXTEND(Ta, xrand)
7 if treeInfo ̸= TRAPPED then
8 if treeInfo = REACHED then
9 Ptmp ←− PATH(Ta, Tb)

10 PATHDEFRAGMENTATION(Ptmp) // IV-B
11 if COST(Ptmp) < BESTCOST then
12 BESTCOST = COST(Ptmp)
13 Pbest = Ptmp

14 SWAP(Ta,Tb)

15 return Pbest

A. Factor extend and splitting edges

Contrary to RRT-Connect, LA-RRT needs to take the factors
into account when extending states. This is accomplished
by the FACTOREXTEND method (Alg. 3). FACTOREXTEND
extends a random sample xrand by doing a factor interpolation
to find a new state xnew (Line 2), and checks if it is valid (Line
3), as in the original RRT-Connect [18].

If the edge is valid, we call the SPLITEDGE method, which
splits an edge into a sequence of sub-edges, whereby each
sub-edge only changes one factor at a time (Line 4-6). This
is visualized in Fig. 5. By splitting the edge, we thus ensure
that each sub-edge has minimal action cost. If the result is
collision-free, we add the sub-edges to our tree (Line 5), or
return with a failure (Line 6). If we successfully added the sub-
edges to the tree, we finally return the status of the extension
(Line 7-9).

B. Path defragmentation

The obtained paths using the factored extend method are
often highly fragmented, meaning they exhibit frequent factor
switches. To tackle this issue, we develop the PATHDEFRAG-
MENTATION method. This method takes as input a path and
reduces its number of factor switches.

This path defragmentation method is summarized in Alg.
4. We assume that input paths only contain edges changing at
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Figure 5: Example of the SPLITEDGE process ensuring minimal
action cost. The edge between states s0 and s1 (left box) has an
action cost of 2 changing the green and blue factors. Each color
represents a factored state space with values corresponding to object
joint values. Applying SPLITEDGE creates two edges, which changes
first the green factor space, then the blue factor space. This results
in two states, s10 and s1.

Algorithm 3: FACTOREXTEND

Input: T , xrand
/* Factored extension of xrand */

1 xnear ←− T.nearest(xrand)
2 xnew ←− FACTORINTERPOLATE(xnear, xrand)
3 if ¬ISMOTIONVALID(xnear, xnew) then return TRAPPED
/* Splitting edge into factors */

4 Xiso ←− SPLITEDGE(xnear, xnew)
5 if ARESTATESVALID(xnear, Xiso) then T.add(Xiso)
6 else return TRAPPED
/* Return status of extension */

7 if DISTANCE(xnear, xrand) > maxDistance then
8 return ADV ANCED

9 else return REACHED

most a single factor at a time. For simplification, we say that
each edge has an associated factor, meaning the edge leads to
changes in a particular factor space.

We start with an input path P containing multiple factor
switches. We obtain all edges in P (Line 3) and set the first
edge to estart (Line 4). We then iterate over all edges until
we reach the last edge (Line 5). During the iteration, we first
check if the next edge has an equivalent factor, in which case
we continue (Line 6-8).

If the factors of estart and the next edge mismatch, we identify
the next block of edges with factors identical to estart (Line
9-11). First, a forward search (Line 9) finds the edge eend,
which is the first edge after the next consecutive block of the
edges having the same factor as estart (see Fig. Fig. 6). We
then extract this block of edges (Line 10), together with the
edges which differ in between (Line 11), storing them in the
variables Esame, and Ediff, respectively. The resulting sets of
edges are shown in Fig. 6.

Given Esame and Ediff, we try to reorder them as shown in
Fig. 6. To reorder the edges, first we rewire the current edge
estart to the set Esame and then to the set Ediff (Line 12). The
function REORDEREDGES also does collision checking during
the reordering process and returns a reordered set of edges
(a path segment) if all edges from Esame and Ediff have been
successfully connected. If a collision occured or edges failed
to get connected, we return an empty path. If the reordering
is successful (Line 13), the function REPLACEPATHEDGES
is called (Line 14) to replace the corresponding edges in the
original path with the reordered edges. Finally, we update estart
by setting it to the first edge of Ediff (Line 15) as shown in the

Figure 6: Example of one successful rewiring iteration in PATHDE-
FRAGMENTATION method. Each block represents an edge between
two states in which only a single factor is changed, whereby equivalent
factor spaces have the same color. The upper path has a cost of 3
between states 1 to 5. After one iteration, the additive cost decreases
to 2 in the lower path.

lower part of Fig. 6. This process is repeated until we cannot
improve the cost (Line 16).

After convergence, we use two methods as post-optimization
steps. First, we utilize the TRYSKIPFACTOR method in which
we try to skip factors that are not mandatory to reach the goal
state (Line 16). Those are removed from the path. Second,
we use the SIMPLIFYACTIONINTERVALS (Line 17), where we
attempt shortcuts between the same edges having the same
factor switches (Fig. 6).

Algorithm 4: PATHDEFRAGMENTATION

Input: P
1 do
2 costold ←− COST(P )
3 E ←− GETEDGES(P )
4 estart ←− E(0)
5 while NEXT(estart) ̸= NULL do
6 if EQUIVALENTFACTORS(estart, NEXT(estart)) then
7 estart ←− NEXT(estart)
8 CONTINUE

9 eend ←− FINDENDEDGE(estart)
10 Esame ←− SAMEFACTOREDGES(estart, eend)
11 Ediff ←− DIFFFACTOREDGES(estart, eend)
12 P ′ ←− REORDEREDGES(Esame, Ediff)
13 if P ′ then
14 REPLACEPATHEDGES(P, P ′, estart, eend)

15 estart ←− UPDATESTARTEDGE(estart, P
′)

16 while COST(P ) < costold

17 TRYSKIPFACTOR(P )
18 SIMPLIFYACTIONINTERVALS(P )

V. MANIPULATION WITH LA-RRT

After LA-RRT converges, we use the attained factored paths
to manipulate the objects with a Fetch robot as shown in
Fig. 1. This requires that we plan pick and place motions of
the robot for each segment of the solution path, to actually
actuate the objects. The manipulation of the results consists of
four main steps. We first extract the actions from the solution
path and we match it with the objects in the environment.
Then we compute valid random grasp positions which are
simultaneously feasible at the start and goal state of the object.
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Figure 7: Experiments

Finally, we create a task-space region [2] which encodes the
constraints to transport the object. We then plan for this motion
with KPIECE [33]. If successful, we advance to the next action,
or we try again by grasping a different point on the object.
Note that this is just one possible way to exploit paths from
LA-RRT for manipulation planning. Integrating those paths
into more powerful manipulation frameworks [38], [7] could
yield improved results.

VI. EVALUATION

In this section, we compare our algorithm and benchmark
the success rate, cost, and solution time on the six following
environments. For each environment, we define manually the
factors for our factor state space.

• Maze 3 Doors (Fig. 7a): The green cube has to move to
a goal position (transparent green). Three doors with a
hinge block its way, each rotatable from −90◦ to 90◦.
The best action cost to solve this puzzle is 4.

• Maze Slider with Obstacle (Fig. 7b): The green cube is
blocked by a sliding door that is movable only on the
x-axis and a freely movable cuboid on the x-y-axis inside
the walls. This puzzle demonstrates that an object may
need to be moved multiple times to reach the goal. The
best action cost is 3.

• Maze 4 Sliders (Fig. 7c): The cube has to move to the
goal position through multiple sliding doors, and each
door is completely movable along its rail. In the best
case, each door would be moved only once so that the
cube can directly be moved to the goal position, summing
up to a total action cost of 5.

• Maze Vertical (Fig. 7d): Similar to the 3 Doors example,
each door is rotatable between [−90◦,90◦] except the door
on the top right which is rotatable between [−90◦,0◦].
The best cost, in this case, is 3.

• Escape Room 1-2 (Figs. 7e and 7f): In this scenario, a
robot has to escape a room with fixed obstacles (desk,
couch), and movable objects (cubes). The room has a lock
and a door which can be rotated by [0◦, 90◦] degrees.
To account for the robot geometry, we add the robot as
an additional movable object into the scene. For Escape
Room 1 the best action cost is 4, consisting of moving
only the cube in front of the door, unlocking the door,
opening the door, and leaving the room. For Escape Room
2, it is 5 since both cubes need to be moved at least once.

A. Implementation

For the simulations, we use DART [20] available through
the Robowflex [13] library. All evaluations are performed for
100 runs with a time limit of 100 seconds (except the escape
room with a limit of 300 seconds) using the benchmarking
tools of OMPL [34], [24]. The goal of each scenario is to find
the minimal number of actions, such that the robot needs the
minimal number of pick-place actions to finish its task. We
benchmark LA-RRT against BIT* [5], AIT* [32], ABIT* [31],
RRT* [12], and LBTRRT* [26] with default parameters using
the factored state-space and the corresponding interpolate
function. Because all those planners require an additive cost
(Sec. III), we use the additive action cost for them. Only
LA-RRT uses the non-additive action cost. For every planner, a
goal space is defined for all goal indices, which leaves non-goal
indices unspecified. The maximum number of states sampled
in this goal space, K, is set to K = 10. For visualization,
we color all links actuated by goal-index joints in green and
all other links in red. The desired goal configurations for the
goal-index joints are shown in transparent green.

Since the result of those runs need to be sent to the robot, it is
crucial to find the minimal number of actions. For this purpose,
we only rely on optimal planners. Indeed, while other planners
might find a feasible solution faster, this solution would not be
valuable, since the action cost might lead to excessive pick-
place actions which we would need to execute with the robot.

B. Experimental Results

Fig. 8 presents the benchmarking results of solving the
problem in the object-only space. This is obtained from each
problem environment, as shown in Fig. 7. The x-axis shows the
runtime in seconds, and the y-axis shows the average success
rate and solution cost.

In terms of success rate, LA-RRT achieves 100% success
in each environment except for Escape Room 1 (94%) and
Escape Room 2 (98%). The RRT-based algorithms LBTRRT*
and RRT* struggle to find a solution in the given time. BIT*
and ABIT* achieve the best success rate in the fastest time,
while AIT* performs a bit slower. In Maze 3 Doors and
Maze Vertical, LA-RRT performs as fast as BIT* and ABIT*,
but performs slower in the other Maze environments and the
Escape Room scenarios. However, the quick success of BIT*
and ABIT* comes at the price of a higher solution cost.

In every scenario, LA-RRT is able to exploit the non-
additive action cost, and thereby reaches a significant lower
solution cost than the next best planner. This situation is
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Figure 8: Experimental Results: LA-RRT, BIT*, ABIT*, LBTRRT, RRT*, and AIT*.

Environment Next Best Alg. LA-RRT Improvement
Maze 3 Doors 19.74 (BIT*) 3.00 6.58
Maze Slider & Ob-
stacle

19.2 (ABIT*) 3.62 5.30

Maze 4 Sliders 33.39 (ABIT*) 7.79 4.29
Maze Vertical 17.56 (BIT*) 3.02 5.81
Escape Room 1 35.40 (AIT*) 7.11 4.98
Escape Room 2 32.5 (ABIT*) 8.12 4.01

Table I: Average solution cost of LA-RRT and the next best algorithm
for each environment.

summarized in Tbl. I, which shows the improvement in action
cost compared to the next best planner. It can be seen that we
can improve the action cost by 4.01 to 6.58 times, which is
a significant improvement if we want to use those paths for
manipulation tasks. As we discuss in Sec. III, other optimal
planners cannot discriminate between paths with subsequent
equivalent actions (Fig. 4), and therefore are not able to pick
the correct equivalence class of paths, but not necessarily the
true optimal solution.

VII. DISCUSSION AND CONCLUSION

We proposed to solve rearrangement puzzles using a new
factored state space, which reflects the capabilities of the robot,
without explicitly accounting for it. To properly exploit this
state space, we developed the less-actions RRT (LA-RRT),
which uses a path defragmentation method to optimize for
a minimal number of actions, such that we minimize the
number of pick-place actions our robot has to execute. In our
evaluations, we showed that LA-RRT can consistently find
lower number of actions compared to other state-of-the-art
planners.

While LA-RRT provides an admissible heuristic for the
overall problem (i.e., a necessary condition to solve it), it can
fail to produce a manipulatable solution. Fig. 9 shows two
scenarios, where the Fetch robot has to reach a green goal
configuration, while opening doors and removing a red cube.
In Fig. 9a, the scenario is solvable by LA-RRT, but the resulting
solution is not executable by the Fetch robot. Such situations
could be overcome by backtracking on the manipulation
level. In Fig. 9b, the red cube blocks the door and makes
the scenario infeasible. This is a well-known limitation of
sampling-based planners, and could be addressed by improving
infeasibility checking [21]. Despite those limitations, having a
good, informed admissible heuristic is important to efficiently
solve difficult rearrangement puzzles.

In summary, we successfully showed that LA-RRT can be
used to solve rearrangement puzzles so that final paths with
low action costs can be found, making them executable by a
robot in a realistic time. We believe this to be an important
step towards an integrated framework for efficient planning of
high-dimensional rearrangement puzzles.
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