
Prospects for Combining Task and Motion Planning
for Bi-Manual Solution of the Rubik’s Cube

Boling Yang, Patrick Lancaster, and Joshua R. Smith

Abstract—We first describe a robot that solves the Rubik’s cube
using separate task and motion planning with sensor-enabled
closed-loop execution. The task solver uses iterative deepening A-
star to plan the sequence of cube moves. Then a special-purpose
grasp planner and controller places the manipulator hands on
the cube to execute the task plan. The task requires two hands
and two-handed re-grasping maneuvers.

We then discuss the potential benefits of combining the
task and motion planning, and discuss potential approaches to
making this combination. Finally, we consider the prospects for
combining task planning, motion planning, and sensor-based
closed loop control.

I. INTRODUCTION

The Rubik’s cube is a puzzle that requires a long sequence
of manipulation operations to solve. There is a discrete set of
required manipulation operations, but it is a fairly rich set of
operations. Changing the cube state requires two hands (one
to constrain part of the cube, and one to rotate the remainder
of the cube). Also, solving the cube requires re-grasping, and
(while it may not be necessary) it is very natural to use bi-
manual re-grasping.

Our initial motivation for the robotic solution of the Rubik’s
cube was to explore the use of pre-touch sensing during the
course of long manipulation sequences to correct actuation
errors as they arise. Indeed we found that without pre-touch
sensing [3] , the PR2 typically makes a catastrophic error
after an average of 8 moves; with pre-touch sensing, an
indefinite sequence of moves is possible. We developed a
system that demonstrates the end-to-end functionality using a
task-based planner to choose a sequence of cube moves, and
a single-purpose planner to choose bi-manual hand actions
to execute the cube plan. In our initial implementation, these
planning layers are completely separate: there is no way
for hand constraints to affect the planned cube transition
sequence. A demonstration of the system can be viewed here:
https://www.youtube.com/watch?v=kzzbPFHNmPM

Now that the end-to-end system works, we aim to increase
its speed by jointly planning the task and motion sequences.
For example, we hypothesize that by re-ordering certain task
sequences (cube transitions), it should be possible to, for
example, eliminate some slow re-grasping operations, or more
generally choose hand actions that are faster.

II. INITIAL APPROACH: SEPARATE TASK AND MOTION
PLANNING

The initial system enables a PR2 robot to solve the Rubik’s
cube from any initial configuration. A head-mounted camera is
used to detect the initial color state of the cube. Note that the

Fig. 1: By combining task planning with pre-touch sensor
aided motion planning, the robot is able to solve the Rubik’s
cube

only modification to the robot is the addition of the pre-touch
sensors; no modifications were made to physically constrain
the cube to a certain position within the robot’s gripper. The
goal of the puzzle is to rotate the faces of the cube so that the
nine squares of each face are all of the same color. Our current
working approach used separate modules for task and motion
planning, but its limitations have inspired us to integrate them
together, as discussed in the next section. The robot picks
up the cube and inspects the faces using the Kinect camera
to estimate the initial cube condition (i.e the color of each
square). This visual inspection operation requires several re-
grasps and changes in cube orientation.

Task Planning Given the initial state of the Rubik’s cube,
the robot generates a solution using Kociemba’s Two Phase
algorithm [1][4]. To solve the Rubik’s cube, the algorithm
first uses an iterative deepening A∗ algorithm to search for
maneuvers that transform the scrambled cube to a state that
is an element of a particular group G with special properties
that correspond to a partial solution with corners and edges in
the right locations but possibly with incorrect orientation. In
phase 2, the 8 corners and all edges will be set to the correct
orientations. The algorithm searches to find a solution that
requires a minimal number of cube face rotations. It is known
that any cube can be solved with at most 20 moves.[4]



Fig. 2: Three grasp points used by the current system. These correspond to the grasp points labeled 3, 5, and 7 in Fig. 3.

Motion Planning The solution generated by the task plan-
ner is a sequence of face rotations that will bring the cube to
the solved state. In our initial system, we use a simple state-
machine motion planner to cause the grippers to execute the
task plan.

The motion planner maps each cube face rotation to an
appropriate two-arm trajectory. Pre-touch sensing has been
integrated into these motions so that the robot can adjust prior
to making contact with the cube. The combination of these
motions can successfully execute any face rotation sequence
provided by the task planner.

The space of the general grasp planning problem is sur-
prisingly large. There are up to 120 feasible grasp points for
one hand on a cube: each hand can be placed in one of 6
headings, and in one of two wrist roll states, which yields
6x2 = 12 hand approach orientations. For each of these, there
are 10 valid grasp points, as shown in Fig. 3. This yields a
total of 12x10 = 120 single handed grasps. When the second
hand is considered, there are no more than 5x2x10 = 100
grasp points. (The second hand must have a different approach
orientation than the first hand, so there are 5x2 rather than
6x2 hand approach orientations.) Thus the total number of
two handed grasps is no more than 120x100 = 12,000. (In
actuality, kinematic constraints and additional hand collisions
reduce the set of feasible two-handed grasps further.)

Most generally, one can imagine wanting to transition from
any one of the initial two-handed grasp states to any other
two-handed grasp state. Making such a transition may require
a motion plan such as: open gripper 1, re-position it, close
gripper 1 at a new location, open gripper 2, reposition it, close
gripper 2.

In our initial working system, we introduce a number of
constraints to simplify the motion planning. We use one
gripper to fix the Rubik’s cube while the other rotates one of
the faces. In some cases, the cube must be transferred from one
gripper to another in order to rotate a certain face. Re-grasping
can also be necessary in order to shift the grip position
with respect to the cube. Two ’home’ poses were defined

to allow the robot to return to a kinematically unconstrained
position before attempting each rotation. All the arm motions
and manipulation on the cube comply with the following
constraints:

1) After performing a cube face rotation, the grippers return
to the home pose.

2) During a cube rotation, one of the grippers holds two
rows of the cube stationary and the other rotates one face
of the cube. The cube holding gripper always constrains
two layers of the cube and the manipulating gripper
rotates only one layer. Each finger of the holding gripper
has three feasible grasp points as shown in Fig. 2. There
is only one allowed grasp point for the rotating gripper:
the mid-point of the face, which allows the face to rotate
with a very simple wrist rotation.

3) The cube’s orientation is kept consistent with respect to
the holding gripper.

4) The front, back, and right faces can only be rotated when
the left gripper is holding the cube. The up, down, and
left faces can only be rotated when the right gripper is
holding the cube.

These constraints effectively simplify the motion planning
problem enough that it can be handled by a finite state
machine. The current system only considers a subset of the
grasp points shown in Fig. 3. As a result, it disregards many
possible motion plans that may require less execution time.
For example, by allowing a larger set of grasp points, the
first constraint previously listed may no longer be necessary.
Furthermore, although the task planner is nearly optimal in
the context of minimizing the number of required rotations,
not all rotations are equivalently costly in terms of execution
time, since some may require more motions than others. All
of these limitations make the current system highly inefficient.
Executing 20 cube rotations requires approximately 34 mo-
tions over a time period of 7 to 8 minutes. A planner that
considers both robot motion and cube solving simultaneously
will generate motion plans that are optimal in manipulation
speed with more flexible grasping and re-grasping strategies.



Fig. 3: The proposed system will use ten unique grasp points.
Assuming the gripper is approaching from the bottom of the
cube, each white box represents a possible grasp point.

III. PROPOSED JOINT TASK-MOTION PLANNING

While our initial work focused on planning in the state space
of the cube alone, our future work will reformulate the Rubik’s
cube problem as a search through a larger state space that is the
product of cube states and the relevant robot states. By defining
such a space, the robot will be able to more effectively assess
the true cost of proposed solution sequences. We believe that
such a formulation will result in faster solutions.

The more general state space we are contemplating should
capture the interaction between the robot’s manipulators and
the object of interest. The original Rubik’s cube state will be
augmented with variables describing the state of each gripper.
For each gripper, these variables include

1) The position of the gripper with respect to the cube.
When the robot positions either of its grippers prior to
making contact with the cube, there is a discrete set of
grasp points that it can choose. Along each parallel pair
of edges of the cube, there are ten unique grasp points,
as shown in Fig. 3.

2) The orientation of the gripper. The gripper’s orientation
consists of a heading (north, east, south, west, up,
down) and a roll that rotates the gripper in 90 degree
increments. This yields a total of 12 unique orientation
configurations, although some may be invalid depending
on which gripper is of interest. The gripper orientation
determines which face and which pair of sides along that
face the gripper will make contact with. While these
discrete gripper poses are sufficient for achieving all
possible Rubik’s cube manipulations and will keep the
state space relatively small, this particular discretization
(or any other) is not absolutely required.

3) Whether the gripper is open or closed.
We are evaluating the feasibility of performing joint task-

motion planning by searching this augmented robot-cube state
space. The set of valid transitions can be viewed as the edges
in a bi-partite graph, where initial states are represented by

nodes on the left and final states are represented by nodes
on the right.If we start with an initially empty set of valid
transitions, and add only transitions that are known to be valid,
then we will never make illegal moves (such as ones that would
put the grippers in collision with one another).

Given the relatively simple ’physics’ of the Rubik’s cube
and the robot hands, it might be possible to generate the
table of valid transitions by ’compiling’ a small set of rules
(that models the physics of the system) into this explicit state
transition table. Assuming that we can build such a table,
an open question is whether it will be feasible to search the
resulting state graph. If the state space is too large, we will
need to consider more sophisticated planning strategies.

More generally, a full motion planner that takes in to
account collisions between the robot’s grippers could be used
to correctly generate the matrix of valid state transitions. Note
however that even if valid transitions are missed, the system is
still likely to solve the problem, as our initial system shows.
Missing potentially valid state transitions simply means that
the robot will miss certain short cuts that it could have taken.

Principles from our proposed work could be extended to
other tasks as well. As mentioned previously, we can grow an
initially empty set of state transitions by validating candidates
with an offline motion planner. This results in full integration
of motion and task planning: motion planning constrains
the types of task plans that can be generated through state
transition validation, and task planning specifies which types
of motion plans are needed when the task is actually attempted.
We are particularly interested in how this idea can be applied
to sequential tasks that require precision, such as constructing
objects. Knepper [2] generate and execute plans to build
IKEA furniture using multiple mobile robots. Their high level
planner only considers the physical constraints of the objects
when formulating a plan. We believe that by augmenting the
object states with the relevant robot state, more effective plans
can be produced. Furthermore, as demonstrated in our current
work, precise and error-prone motions, such as screwing in a
table leg in [2], can be aided by positional feedback provided
by pre-touch sensing.

REFERENCES

[1] pr2 rubiks solver, 2011. URL https://github.com/
uu-isrc-robotics/pr2 rubiks solver.

[2] Ross A Knepper, Todd Layton, John Romanishin, and
Daniela Rus. Ikeabot: An autonomous multi-robot co-
ordinated furniture assembly system. In Robotics and
Automation (ICRA), 2013 IEEE International Conference
on, pages 855–862. IEEE, 2013.

[3] Brian Mayton, Louis LeGrand, and Joshua R Smith.
An electric field pretouch system for grasping and co-
manipulation. In Robotics and Automation (ICRA), 2010
IEEE International Conference on, pages 831–838. IEEE,
2010.

[4] Tomas Rokicki, Herbert Kociemba, Morley Davidson, and
John Dethridge. The diameter of the Rubik’s cube group
is twenty. SIAM Review, 56(4):645–670, 2014.

https://github.com/uu-isrc-robotics/pr2_rubiks_solver
https://github.com/uu-isrc-robotics/pr2_rubiks_solver
https://github.com/uu-isrc-robotics/pr2_rubiks_solver
http://epubs.siam.org/doi/abs/10.1137/140973499
http://epubs.siam.org/doi/abs/10.1137/140973499

	Introduction
	Initial Approach: Separate Task and Motion Planning
	Proposed Joint Task-Motion Planning

