
Task and Motion Policy Synthesis for Mobile
Manipulation

Yue Wang, Neil T. Dantam, Swarat Chaudhuri, and Lydia E. Kavraki

I. INTRODUCTION

Robots should safely and correctly operate alongside un-
controllable agents such as humans. In domains involving
uncontrollable agents, such as the scenario shown in Fig. 1,
robots must react to changes online to ensure safety and
accomplish desired tasks. Thus, rather than pre-programming
finite instructions or pre-computing a single, linear plan,
robots need a policy that determines the correct response over
the infinite-horizon interaction with a changing environment,
while also guaranteeing safety and achieving task goals. Task
and Motion Synthesis (TMS) constructs such policy that sat-
isfies both high-level task requirements and low-level motion
constraints.

In this abstract, we extend the TMS approach presented
in [19] (henceforth referred as ROBOSYNTHREACT), to solve
tasks with safety and recurrence goals (see Section II for
definitions of safety and recurrence). At a high level, RO-
BOSYNTHREACT formulates TMS as a concurrent two-player
game [6, 1] between the robot and the environment, and
synthesizes a winning policy for the robot by iteratively
generating a candidate and verifying its correctness [16].
This iterative policy synthesis procedure converges either to a
winning policy or a proof that no such policy exists. We extend
ROBOSYNTHREACT with two additional policy verification
modules for safety and recurrence tasks. Like what we did
in ROBOSYNTHREACT, we adapt the proof rules of [2] to
develop these two policy verification modules, which provide
compact, symbolic constraints that characterize the correctness
of policies.

Recently, there has been a growing interest in the integration
of Task and Motion Planning (TMP) [9, 20, 3, 13, 10, 17, 4,
12]. These previous TMP approaches assume the environment
is static, while we consider in this abstract a changing en-
vironment with uncontrollable agents where we require not
just a plan describing a single execution path, but instead
a policy describing the online response to uncontrollable
events. Other recent work has focused on reactive synthesis
for robots and hybrid systems [8, 21, 5, 18]. These approaches
consider the differential dynamics of hybrid systems but do not
incorporate efficient path planning. In contrast, we focus on
the mobile manipulation domain where high dimensionality
makes efficient, collision-free path planning crucial, and we
therefore apply fast, sampling-based motion planning methods
[14]. Furthermore, these previous works often perform a com-
binatorial search over large state spaces. In contrast, we avoid
expensive combinatorial search using SMT-based symbolic

Charge
Region

FoodPrep
Region

Chef

Dishwasher

Robot

Countertop

Storage

Fig. 1: The robot must navigate through the kitchen and pick
a cleaned dish from the dishwasher, while avoiding collisions
with the chef. Since the chef’s movement is uncontrollable,
the robot needs a policy to accomplish the task no matter how
the chef moves.

methods, improving the scalability of policy synthesis.
We validate our approach in a mobile manipulation domain

with human-robot interaction. Our results show that for the
tested benchmarks, our method scales better than an alternate
synthesizer [15].

II. PROBLEM FORMULATION

We consider TMS for a controllable robot operating in an
environment with uncontrollable agents such as humans. The
robot and the environment have both continuous, kinematic
state and purely discrete state. The robot can select actions
to modify its own state, but it cannot control the state of the
adversarial environment. Finally, we specify the desired task
as a set of valid state sequences. Our goal is to synthesize a
policy that guides the robot during execution to accomplish
the task.

We formulate TMS as a discrete, concurrent game between
the robot and the environment:

Definition 1 (Concurrent Game).
A concurrent game is a tuple G = (Σ, θ,Γe,Γr, δ, ϕ):
• Σ is a state space of the game.
• θ ⊆ Σ is the set of initial game states.
• Γe, Γr are valid-move functions. For each state s, Γe(s)

and Γr(s) represents the set of valid moves for the
environment and the robot at state s, respectively.

• δ is the transition function of the game. For every state
s ∈ Σ, move ae ∈ Γe(s) and move ar ∈ Γr(s),
δ(s, ae, ar) ∈ Σ is the corresponding successor state.



A play σ is an infinite sequence of states: s0, s1, . . ., such
that s0 ∈ θ is an initial state and for i ≥ 0, si+1 is a
successor state of si as defined by δ.

• ϕ is a set of winning plays for the robot.

In [19], we have presented an algorithm for solving concur-
rent games with liveness winning conditions: the robot needs
to eventually reach a certain state. In this work, we consider
solving two other kinds of concurrent games: safety games,
and recurrence games. The wining play set ϕ for each kind
of games is defined formally as follows:

Definition 2 (Safety Games).
In a safety concurrent game G = (Σ, θ,Me,Mr,Γe,Γr, δ, ϕ),
there is a set safe of safe states. A play σ is a winning play
σ ∈ ϕ if every state s in the play σ is a safe sate s ∈ safe .

Definition 3 (Recurrence Specification).
In a recurrence concurrent game G =
(Σ, θ,Me,Mr,Γe,Γr, δ, ϕ), there is a set recur of states. A
play σ is a winning play σ ∈ ϕ if the play σ visits every state
s of the set recur infinitely often.

III. POLICY SYNTHESIS

We extend the policy synthesis algorithm in ROBOSYN-
THREACT (see Fig. 2) to solve safety and recurrence games.
First, the candidate generator in Fig. 2 generates a policy
candidate based on a given grammar. Then, the policy verifier
in Fig. 2 verifies the correctness of this candidate using an
SMT solver to check symbolic constraints that characterize
winning policies. Finally, we generalize verification failures
via domain-specific heuristics to help subsequent policy can-
didate generation, reducing the number of necessary iterations
and improving efficiency. This iterative policy synthesis pro-
cedure converges either to a winning policy or a proof that no
such policy exists. For more details about the algorithms used
in ROBOSYNTHREACT (see Fig. 2), please refer to [19].

In this work, we consider synthesizing policies for two kinds
of concurrent games: safety games and recurrence games, as
defined in section II. We extend ROBOSYNTHREACT with
two additional policy verification modules for safety and
recurrence games.

A. Policy Verification: Safety Games

A safety concurrent game G = (Σ, θ,Me,Mr,Γe,Γr, δ, ϕ)
is associated with a set safe of safe states. In a winning play,
every state should be a safe state s ∈ safe .

Consider a set inv that contains every state in a winning
play. The winning policies should guarantee that, for every
state s ∈ inv and every environment move ae ∈ Γe(s), the
robot move ar ∈ Γr(s) selected by the policy ar = p(s)
should lead to a successor state s′ = δ(s, ae, ar) that is also
a member of the set inv .

The following formulas summarize the above constraints on
winning policies:

∀s, ae. (s ∈ inv) ∧ (ae ∈ Γe(s)) →
(δ(s, ae, p(s) ∈ inv) (1)

CANDIDATE
GENERATOR

POLICY
VERIFIER

GENERALIZATION

No Winning
Policy

Policy
Candidate Winning

Policy

CounterexampleGeneralized
Counterexample

Game

Fig. 2: The core steps of the policy synthesis algorithm used
in ROBOSYNTHREACT

Our policy synthesizer iteratively constructs the auxiliary
set inv following the steps described below:

1) Initially, we set inv = safe since every state in a
winning play should be a safe state s ∈ safe .

2) During the policy synthesis process, when we found a
invalid state s that always leads to an unsafe successor
state no matter what robot move the policy selects, we
shrink the set inv by removing this invalid state s. To
speed up the synthesis process, we also remove similar
invalid states from the set inv using the generalization
described in [19].

If the policy synthesizer terminates, i.e., finds a policy p
such that the constraints in Formula 1 hold, with an non-empty
set inv , then p is a winning policy that can always maintain
a safe successor state for every state s ∈ inv . However, if the
policy synthesizer terminates with an empty set inv , we can
conclude that there is no winning policy for the robot because
every state s ∈ Σ will result in an unsafe successor state, no
matter what robot move the policy selects.

1) Policy Verification: Recurrence Games: A recurrence
concurrent game G = (Σ, θ,Me,Mr,Γe,Γr, δ, ϕ) is associ-
ated with a set recur of states. A winning play should visit
every state s ∈ recur infinitely often.

We treat this recurrence game as a combination of liveness
games, where every state s ∈ recur corresponds to a liveness
game with a goal state set goal = {s} that contains only one
goal state s. If the recurrence game has a winning play σ, there
exist a subsequence σ′ of states in the winning play σ that
visits every state s ∈ recur in a certain order. Thus, for every
state s ∈ recur , our policy synthesizer solve the corresponding
liveness game following the algorithm for liveness games [19]
and then combined the policies of these liveness games in
an appropriate order to obtain the winning policy for the
recurrence game.

If the policy synthesizer fails to solve one of these liveness
games, or for every order of the states in the set recur , it is
impossible to combine the polices of these liveness games (i.e.,
for some state s ∈ recur , it is impossible to reach the next state
s′ ∈ recur ), then we can conclude that there is no winning
policy for the robot in this recurrence game. Otherwise, our
policy synthesizer will construct a winning policy for the robot
in this recurrence game by combining the winning policies of
these liveness games in an appropriate order.



10 20 30 40

10−2

100

102

Food PrepRegion Size

Sy
nt

he
si

s
Ti

m
e

(s
)

Policy Synthesizer
GR(1) Synthesizer

(a) Safety Game Benchmark Results

10 20 30 40

100

102

Food PrepRegion Size

Sy
nt

he
si

s
Ti

m
e

(s
)

Policy Synthesizer
GR(1) Synthesizer

(b) Recurrence Game Benchmark Results

Fig. 3: Performance of our policy synthesizer and LTLMoP back-end GR(1) synthesizer as the size of the FoodPrep Region
in the scene increases. Our policy synthesizer scales better in these tested benchmarks.

IV. EXPERIMENTS

We evaluate our policy synthesis approach in a kitchen
environment (Fig. 1) with a simulated PR2 robot and un-
controllable agents (e.g., chefs) moving within the FoodPrep
Region. We compare our policy synthesizer with the back-
end of LTL MissiOn Planner (LTLMoP), a state-of-the-art
synthesis tool for robotic applications [11]. The back-end of
LTLMoP is based on the GR(1) synthesis algorithm presented
in [15]. We note also that LTLMoP contains many front-
end features, such as natural language processing, that are
orthogonal or even complementary to the policy synthesis
work we present in this paper.

All experiments were carried out on an 8 core 3.4 GHz
machine with 8 GB memory. We use Z3 [7] as our backend
SMT solver and utilize the linear arithmetic and uninterpreted
functions theory solvers of Z3. For all benchmarks, the size of
the workspace is fixed, and there are 2 chefs in the kitchen.

A. Benchmark: Safety Games

In the safety game benchmark, there are two task require-
ments for the robot:
• Always avoid collisions with the people.
• When the current region is dirty, clean the current region.
The performance results for the safety property benchmark

are shown in Figure 3a. Note that the result graph is plotted on
a semi-log scale. For small size problems (FoodPrep Region
size ≤ 16), the GR(1) Synthesizer performs better than our
policy synthesizer. However, for problems where FoodPrep
Region size is greater than 16, our method performs better.
Moreover, for problems with size above 32, the GR(1) Synthe-
sizer took more than 10 minutes while our policy synthesizer
solves all problems within 10 seconds.

B. Benchmark: Recurrence Games

In the recurrence game benchmark, there are two task
requirements for the robot:
• Always avoid collisions with the people.
• Visit the marked regions infinitely often.

The performance results for the recurrence property bench-
mark are shown in Figure 3b. This result graph is also plotted
on a semi-log scale. The scalability results of this bench-
mark are similar to the results of the safety benchmark. For
small size problems, the GR(1) synthesizer performs slightly
better than our policy synthesizer while for problems where
FoodPrep Region size is greater than 16, our method starts to
perform better.

V. CONCLUSION

We have presented a symbolic approach to address Task
and Motion Synthesis (TMS) problems where the robot must
accomplish tasks in environments involving uncontrollable
agents such as humans, with safety and recurrence goals. Our
results show that, compared to an existing robotic synthesis
tool – the GR(1) back-end of LTLMoP – our approach scales
better for the benchmark problems.

In this work, we assume that the robot has perfect sensing
with no observation uncertainty. However, physical robots
often have significant noise and error in sensing. An important
ongoing question is how to extend the current policy synthesis
implementation to handle uncertainty in the environment,
including sensor noise or other probabilistic beliefs. Investi-
gating this direction would improve our policy synthesizer’s
ability to handle problems with physical uncertainties.

REFERENCES

[1] Rajeev Alur, Thomas A. Henzinger, and Orna Kupfer-
man. Alternating-time temporal logic. J. ACM, 49(5):
672–713, September 2002. ISSN 0004-5411. doi: 10.
1145/585265.585270. URL http://doi.acm.org/10.1145/
585265.585270.

[2] Tewodros Beyene, Swarat Chaudhuri, Corneliu Popeea,
and Andrey Rybalchenko. A constraint-based approach
to solving games on infinite graphs. In POPL, pages
221–233, 2014.

[3] A. Bhatia, M.R. Maly, L.E. Kavraki, and M.Y. Vardi.
Motion planning with complex goals. Robotics & Au-
tomation Magazine, IEEE, 18(3):55–64, Sept 2011. ISSN
1070-9932. doi: 10.1109/MRA.2011.942115.

http://doi.acm.org/10.1145/585265.585270
http://doi.acm.org/10.1145/585265.585270


[4] Marcello Cirillo, Federico Pecora, Henrik Andreasson,
Tansel Uras, and Sven Koenig. Integrated motion plan-
ning and coordination for industrial vehicles. In ICAPS,
2014.

[5] N. Dantam and M. Stilman. The motion grammar: Anal-
ysis of a linguistic method for robot control. Robotics,
IEEE Transactions on, 29(3):704–718, June 2013. ISSN
1552-3098. doi: 10.1109/TRO.2013.2239553.

[6] L. de Alfaro and T.A. Henzinger. Concurrent omega-
regular games. In Logic in Computer Science, 2000.
Proceedings. 15th Annual IEEE Symposium on, pages
141–154, 2000.

[7] Leonardo De Moura and Nikolaj Bjørner. Z3: An
efficient smt solver. In TACAS, pages 337–340, 2008.

[8] Jonathan A. Decastro and Hadas Kress-Gazit. Synthesis
of nonlinear continuous controllers for verifiably cor-
rect high-level, reactive behaviors. Int. J. Rob. Res.,
34(3):378–394, March 2015. ISSN 0278-3649. doi:
10.1177/0278364914557736. URL http://dx.doi.org/10.
1177/0278364914557736.

[9] C. Dornhege, M. Gissler, M. Teschner, and B. Nebel.
Integrating symbolic and geometric planning for mobile
manipulation. In Safety, Security & Rescue Robotics
(SSRR), 2009 IEEE International Workshop on, pages
1–6, 2009.

[10] E. Erdem, K. Haspalamutgil, C. Palaz, V. Patoglu, and
T. Uras. Combining high-level causal reasoning with
low-level geometric reasoning and motion planning for
robotic manipulation. In ICRA, pages 4575–4581, 2011.

[11] C. Finucane, Gangyuan Jing, and H. Kress-Gazit. Ltl-
mop: Experimenting with language, temporal logic and
robot control. In IROS, pages 1988–1993, 2010.

[12] Keliang He, Morteza Lahijanian, Lydia E Kavraki, and
Moshe Y Vardi. Towards manipulation planning with
temporal logic specifications. In ICRA, pages 346–352.
IEEE, 2015.

[13] Leslie Pack Kaelbling and Tomás Lozano-Pérez. Hier-
archical task and motion planning in the now. In ICRA,
pages 1470–1477, 2011.

[14] L. E. Kavraki, P. Svestka, J. C. Latombe, and M. H.
Overmars. Probabilistic roadmaps for path planning in
high-dimensional configuration spaces. IEEE Transac-
tions on Robotics and Automation, 12(4):566–580, Aug
1996. ISSN 1042-296X. doi: 10.1109/70.508439.

[15] Nir Piterman, Amir Pnueli, and Yaniv Saar. Synthesis of
reactive (1) designs. In Verification, Model Checking, and
Abstract Interpretation, pages 364–380. Springer, 2006.

[16] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik,
Sanjit Seshia, and Vijay Saraswat. Combinatorial sketch-
ing for finite programs. In ASPLOS, pages 404–415,
2006.

[17] Sanjeev Srivastava, Eugene Fang, Lorenzo Riano, Rohan
Chitnis, Stephen Russell, and Pieter Abbeel. Combined
task and motion planning through an extensible planner-
independent interface layer. In ICRA, pages 639–646,
2014.

[18] Alphan Ulusoy, Michael Marrazzo, and Calin Belta.
Receding horizon control in dynamic environments from
temporal logic specifications. In Robotics: Science and
Systems, 2013.

[19] Yue Wang, Neil Dantam, Swarat Chaudhuri, and Lydia
Kavraki. Task and motion policy synthesis as liveness
games. In ICAPS, 2016.

[20] Jason Wolfe, Bhaskara Marthi, and Stuart J. Russell.
Combined task and motion planning for mobile manip-
ulation. In ICAPS, 2010.

[21] Tichakorn Wongpiromsarn, Ufuk Topcu, and Richard M.
Murray. Receding horizon control for temporal logic
specifications. In HSCC, pages 101–110, 2010.

http://dx.doi.org/10.1177/0278364914557736
http://dx.doi.org/10.1177/0278364914557736

	Introduction
	Problem Formulation
	Policy Synthesis
	Policy Verification: Safety Games
	Policy Verification: Recurrence Games


	Experiments
	Benchmark: Safety Games
	Benchmark: Recurrence Games

	Conclusion

