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Abstract—Planning systems developed for Combined Task and
Motion Planning (CTAMP) problems are most of the time
evaluated using their own benchmarks. As a direct consequence,
no comparison of these systems is currently possible, and as a side
effect, there is a risk for planners to overspecialize. We compare
several CTAMP benchmarks from three different perspectives
(logical, geometric, dependency). In this rough projection of the
space of problems, we point out a bias towards certain regions,
while another region is rarely explored in recently proposed
benchmarks.

I. INTRODUCTION

CTAMP has become an active field of research in the AI
and Robotics communities, as reflected by the emergence
of dedicated tracks and workshops in the main conferences
within these fields. In 2009, early attempts to combine logical
and geometric search spaces originated both from AI, e.g.,
Semantic Attachments [2], and robotics communities, e.g.,
aSyMov [1]. Since then, a multitude of approaches have
flourished, together with their own experimental evaluation
methods, but no common benchmark has been established yet.

Over the years, task planning has established a set of bench-
marks. These benchmarks represent a small subset of all possi-
ble planning problems, whose diversity ensures planners not to
overspecialize on specific domains. A fair comparison of algo-
rithms is supported by theoretical results, i.e., planners com-
pete on the same classes of problems (planning/scheduling,
satisficing/optimal, deterministic/probabilistic). There is no
reason why the same cannot be done for CTAMP problems. A
recurrent argument is that comparing CTAMP planners is dif-
ficult because of differences between robotic platforms. How-
ever, the platform is not as crucial as for robotic benchmarks,
if full observability and determinism of actions are assumed
(which is often the case). Then, a fair comparison is possible
by imposing a minimal set of requirements that preserve the
essence of the problem (see for instance benchmarks (4) and
(5) in Fig. 3). We hope through this abstract and our poster
to initiate discussions about CTAMP benchmarking during the
workshop.

Establishing benchmarks is important for developing gen-
eral purpose planning techniques for robots, and for better
understanding CTAMP problems. These benchmarks should
be a representative sample of the space of problems. The
benchmarks presented along this paper are not representative
of the space of possible problems, but they illustrate three
features of CTAMP problems on which we focus in this
paper: logical difficulty, geometric difficulty and dependency.
Our hypothesis is that recent work is biased towards geo-

Fig. 1. Three-axis model. In red, the three types of problems discussed in
the corresponding sections.

metrically difficult problems and problems with weak logic-
geometric dependencies. On the other hand, logically difficult
problems with strong logic-geometric dependencies are under-
represented.

II. THREE-AXIS MODEL

The benchmarks are compared using a 3-axis chart (see
fig. 1), where each axis represents the “difficulty” of problems
seen from three different perspectives:

• logical;
• geometric;
• dependency.

Precisely defining the difficulty of a problem is not easy. A
better definition than what follows is left open for discussions.

For the logic and geometry axes, we estimate the difficulty
of the problem in terms of subgoal interaction. Subgoal
interaction is well known in task planning. It prevents from
solving subproblems sequentially, which usually requires more
backtracking. Subgoal interaction applies to path planning as
well [13]. We consider the problem which remains to be solved
assuming that a solution at the discrete level is known, i.e.,
assuming that we know which modes [5] are to be used,
and in which order. Assuming that, there still remains to
choose correct instances for grasps and placements that do not
interfere with each other, which we define as the geometric
difficulty.

The dependency axis represents the dependencies between
logical and geometric levels. Dependencies originate from the
fact that the connectivity of the configuration space (CS) is



Fig. 2. Three variations of the clutter problem. The goal is to bring one
or several objects surrounded by movable obstacles to a target location(s). In
(3), the goal is to grasp the red object.

Fig. 3. Havur et al. experiment on rearrangement planning of multiple objects
(4) uses a mobile base with a 4-DoF manipulator. Our setup (5) uses the 7-DoF
manipulator of the humanoid robot Justin (courtesy DLR) in fixed position.
The goal is to exchange the positions of the tray and the red object / cup.
Both setups are equivalent if (i) the humanoid robot uses only one arm, (ii)
the arm can place objects at any pose on the table (iii) the dimensions of the
objects relative to the dimension of the table is the same. In (6), the task is
to put the green block at the green point and the blue block at the blue point.

changed by logical actions, and that some logical actions are
not feasible from certain subspaces of the CS. Hence, depen-
dencies make the order of logical actions strongly constrained
by the geometric level.

Next, we will consider three main families of benchmarks:
benchmarks with emphasis on geometry (section III), bench-
marks with weak dependencies (section IV), and benchmarks
with logic reasoning and strong dependencies (section V).

III. BENCHMARKS WITH EMPHASIS ON GEOMETRY

Though labeled with “CTAMP”, these problems are essen-
tially high dimensional manipulation planning problems [10],
also related to Multimodal Path Planning [5], Navigation
Among Movable Obstacles (NAMO) [12] or Rearrangement
Planning [8].

Clutter-like benchmarks have been used to evaluate several
planners [3, 4, 11], and come under different variants (1, 2,
3 in Fig. 2). At the geometric level, all of them are difficult
due to goal interaction caused by the lack of free space. (1) is
somewhat simpler because there is free space on the table on
the left, (2) presents more subgoals with possible interactions,
and (3) less subgoals but greater chance of interaction because
of the limited space on the table. At the logical level, these
problems are large, but easy, because the only logical con-
straint is that only one object can be manipulated at a time.
Subgoals can be achieved sequentially, and the ordering of
actions has limited impact on the resolution.

Rearrangement benchmarks are also essentially difficult at
the geometric level, owing to strong goal interaction. Even
knowing the sequence of logical actions requires to carefully
select objects poses that do not interact. They have been used
in recent work [6, 9, 4] (4, 5, 6 in Fig. 3). Benchmark (6)

Fig. 4. In Srivasta et. al.’s Dinner domain (7), the task is to bring the objects to
target locations on the empty table. Lagriffoul and Andres’ cleaning scenario
(8), the task is to have the dirty blocks cleaned (by the humanoid robot) and
back at their initial location. The towers of Hanoi challenge scenario (9), by
Havur et. al.

Fig. 5. The washing problem by Lozano-Perez et. al. (10), the goal is to
wash block A and place it in the storage. In (11), a variation of the tower
of Hanoi problem by Cambon et. al. In (12), the blocks-world-3D problem
by Lagriffoul and Andres, the goal is to build an ordered pile at any location
using top-grasps, the obstacle above the table prevents from stacking more
than 2 blocks on the table (handover is not allowed).

is similar to (4,5) in terms of geometric goal interaction, but
brings an additional dimension to the problem in terms of
grasp choice.

Both Clutter-like and Rearrangement benchmarks have de-
pendencies because occlusions (1,2,3), available space w.r.t
object size (4,5) and grasping poses (6) change the connec-
tivity of the CS. However, the dependencies are stronger in
Rearrangement problems, because the ordering of actions is
more subject to the geometric constraints than in Clutter-like
problems.

IV. BENCHMARKS WITH WEAK DEPENDENCIES

Some examples of this type of benchmark are represented
in Fig. 4. At the logical level, (7) is simple for the same
reasons that clutter-like problems are. In comparison, (8) is
more difficult because the subgoal of being clean interacts with
the subgoal of being at the target location. (9) is known to be
logically difficult, achieving the goal requires to repeatedly
achieve and destroy subgoals through the intermediate steps.
At the geometric level, these problems are not too difficult.

The three problems have very weak dependencies between
logical and geometric levels. The connectivity of the CS
is not affected by logical actions, therefore all actions are
geometrically feasible regardless of the ordering of actions at
the logical level. In principle, one could solve the task planning
problem first, and subsequently call a motion planner for each
action.



V. BENCHMARKS WITH LOGIC REASONING AND STRONG
DEPENDENCIES

In the three problems represented in Fig. 5, there is subgoal
interaction at the logical level, which requires substantial
amount of logical reasoning as the size of the problem
increases. (10) and (11) are equivalent to (8) and (9) in this
respect. At the geometric level (10) and (12) present weak
subgoal interaction (the choice of intermediate poses may
matter), which is not the case in (11).

All these problems have strong dependencies. In (10), the
dependencies stem from the initial configuration only, i.e.,
once the blocks B, C, D have been removed, the connectivity
of the CS does not change much. In (11,12) the dependencies
remain because they are caused by a fixed obstacle. In (11),
each time a disc is placed at the central peg, the large disc
cannot be moved from one side of the room to the other. In
(12), the initial piles need to be unstacked on the table, and
all the states with piles containing more than two blocks are
unfeasible.

Because of the strong dependencies, these problems are not
amenable to precomputation of the connectivity of the CS, or
caching of the geometric paths. On large instances, the logical
state space becomes huge, therefore tightly interleaving logical
and geometric reasoning is not a feasible approach.

VI. DISCUSSION

We wanted through this comparison of different benchmarks
to raise the matter of benchmarking for CTAMP. In order to
be useful, benchmarks should cover a wide range of problem
classes, which is currently not the case. There is a bias towards
manipulation planning problems with little logical reasoning
(and only one robot). Problems emphasizing logical reasoning
have been used as benchmarks, but often these problems had
weak dependencies, which is less challenging since task and
motion planning can be done separately.

Problems with logical reasoning and strong dependencies
have been used as benchmarks, but mostly in older work [1, 7],
and with small problem instances. In our recent work [9],
we have investigated how to decouple logic and geometric
reasoning for addressing problems with logical reasoning and
strong dependencies, problems which are seldom tackled in
recent work.

Having said that, what are the next steps? Further theoretical
work is needed to characterize CTAMP problems. Is it possible
to establish a common language for describing CTAMP prob-
lems? Can we prove lower bounds on interesting sub-classes
of problems? Can we draw on methods from other fields, e.g.,
hybrid reasoning? Can we think of a set of benchmarks to
begin with? Which metrics should be used?
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