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Abstract—Manipulation tasks are sequential in nature. De-
pending on the specific task constraints, more than one solution
usually exist. Even for simple objects, several candidate grasps
can be considered, each of which can potentially be used to plan
the required arm motions. Grasp selection approaches that take
into account the constraints at each task step are critical, since
they allow to both identify grasps that are more likely to produce
feasible arm motions and analogously, to discard grasps that
might not be executable due to future task constraints. In this
abstract, we present a manipulation metric for grasp selection
based on a combined arm-and-grasp measure evaluated at each
task step. We analyze 3 simple tasks (pick-up, pick-and-place
and pouring tasks) and show the advantages of using our metric:
(1) Shorter end-effector displacements and (2) Higher planning
success rates. We present quantitative results in simulation and
validate our approach’s practicality with experimental results in
our physical robot platform.

I. INTRODUCTION

Given a manipulation task and a target object, many possible
candidate grasps can be used to accomplish the task. Finding
a suitable grasp among the infinite set of candidates is a chal-
lenging problem that has been addressed frequently in robotics,
resulting in an abundance of approaches [2]. Interestingly, the
vast majority of these methods have two aspects in common:
(1) The metrics used for grasp selection focus on the hand-
centric aspect of a manipulation task, such as grasp robustness
measured with either analytical [3] or heuristic measures [1].
(2) Manipulation is implicitly seen as a single-step task, in
which the main goal is to reach an object without further
regard to what will be done with it once it is grasped.

In general, even the simplest of manipulation tasks, such as
pick-and-place, have 2 or more steps. And while grasp robust-
ness is perhaps the most important aspect of the manipulation
task, it is not the only factor to consider. For a grasp to be
executable in a task, feasible arm motions are needed. We
argue that a metric that considers both the grasp robustness
and arm kinematics (dependent on the task constraints) is a
more useful way to select grasps that will in turn produce
arm motions that can be planned without the need of testing
several grasps, are fast to calculate, and produce short end-
effector displacements. In this abstract we present a simple
manipulation metric that combines arm and grasp measures
and we show its direct applicability to select grasps in 3
standard, simple manipulation tasks.

II. ARM + GRASP METRIC

A. Arm Metric (ma)

When humans perform simple reaching actions, they select
a grasp such that their arm is comfortable at the end of
the reaching movement. This inherently simple phenomenon,
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Fig. 1: Grasp selection application based on our arm-grasp
metric for pick-up tasks

known as the end comfort effect, has been observed in adult
humans as well as in primates [6].

Our proposed arm-centric metric intends to capture the
comfort factor for a given grasp. Formally, for a given grasp g
applied on an object located at wTo we define our arm metric
as the number of collision-free inverse kinematic solutions that
allow the hand to execute g.

ma(g) = |Q| such that ∀qi ∈ Q

{
qi is collision-free
FK(qi).(g.

hTo) =
wTo

For our specific setup, the redundant robot arm presents
a standard S-R-S configuration for which a pseudo-analytic
solution is available [7] given as an input an end-effector’s goal
pose and a parameter φ ∈ [−π, π] which determines the elbow
pose. In the equation above, the initial set of inverse kinematic
solutions are calculated by discretizing φ and evaluating which
of them are collision-free (qi ∈ Q).

B. Grasp Metric (mg)

The arm-centric metric presented above only considers the
arm comfort. Consider the scenario in Figure 2, where 3
candidate grasps are depicted for a cylindrical object (a grasp
here being parameterized by two elements: (1) The relative
rigid transform of the end-effector frame with respect to the



object frame, and (2) The finger’s initial joint configurations).
Let us assume that these grasps have similar ma values, hence
they are all deemed equally desirable. From human experience,
we can all agree that the second grasp is the most likely to
be stable since the hand is closer to the center of mass of
the object being held. We incorporate this heuristic on the
proposed grasp metric.

Our second metric attempts to favor grasps that hold the
object near its center of gravity. We propose to quantify this
heuristic as the distance between the object’s center of mass
and the hand’s approach direction vector. We select this metric
because it is easy to calculate, as it is just the distance between
a line and a point. This metric is similar to the existing metric
B1[5], which measures the distance between the center of the
contact polygon and the center of mass of the object. We
prefer our metric over B1 mainly because our system does
not provide finger contact information.

Fig. 2: Examples of similar grasps with a different distance
from the hand approach direction (red arrows) and the object
center of mass

C. Arm-Grasp Metric (mag)

Now that we have both metrics, we must combine them.
A direct way to do this could be using a weighted sum
of both. However, both metrics have different units (ma is
adimensional and mg has length units), hence adding them
does not have a real meaning. Instead, we propose to calculate
mag using 2 consecutive steps, each of them using one of the
metrics for partial ordering: In the first step, ma is used to
obtain a partial ordering of the grasps, whereas in the second
step, mg is used to reorder within each partial subgroup. This
can be explained in simple terms as:

1) Calculate the mean µa and the standard deviation σa of
the arm metric (ma) over all the candidate grasps (G).

2) Divide the grasps in 4 groups, similarly as [5]:

a) Very good ma quality: ma(gi) > µa + σa
b) Good ma quality: µ < ma(gi) < µa + σa
c) Fair ma quality: µa − σa < ma(gi) < µa

d) Bad ma quality: ma(gi) < µa − σa
3) Within each of the 4 groups, reorder the grasps accord-

ing to their grasp metric mg .
4) The final ordered set of grasps will contain 4 ma-based

ordered sets (very good, good, fair and bad), inside each
of which grasps are ordered according to mg .

III. APPLICATION TO SIMPLE MANIPULATION TASKS

We apply our proposed metric for grasp selection in the 3
simple manipulation tasks which are briefly described in the
following subsections.

A. Pick-up tasks

The most basic of the 3 manipulation tasks considered. In
this work this is modeled as a single-step task in which the
proposed metric mag is measured considering the grasps being
executed at the object start pose. Table I shows simulation
results comparing the success rates and hand displacement
corresponding to arm motions planned by selecting grasps
according to mag (best and worst). We observe that by using
our metric, our system is able to select grasps that demand
substantially less planning time than in the worst case. Addi-
tionally, the success rate of the arm planning is considerably
higher for the grasps deemed best. Some snapshots showing
the physical robot using the metric to perform simple pick-up
tasks is shown in Figure 3.

TABLE I: Simulation results of 100 randomized scenarios per
each object

Object Success Plan time(s)
Best Worst Best Worst

1. Pringles 84% 52% 0.88 4.62
2. Cheezit 91% 31% 1.31 1.33
3. Coffee 100% 20% 0.88 1.70
4. White cup 84% 54% 0.88 5.46
5. Ball 100% 12% 0.77 10.37
6. Plushie 100% 3% 0.83 0.84
7. Raisins 99% 47% 0.83 6.64
8. White cleaner 99% 35% 0.93 1.84
9. Yellow cone 100% 46% 0.83 2.65

Fig. 3: Pick-up experiments using mag for grasp selection

B. Pick-and-place tasks

In this case, the task evaluated has two steps (reach and
transport), hence it is not clear in which step it should be
evaluated. In order to determine how to best use the metric in
this case, we evaluate it under 3 modalities: (1) At the start



pose of the object, (2) At the goal pose, and (3) Using an
average of the arm metric both at the start and pose. From
experience, we have observed that by considering mode (1),
the reach arm path tends to be shorter. Analogously, by using
mode (2), the transport path is shorter. The average measuring
attempts to consider both the start and goal to achieve an
intermediate comfort during both reach and transport phases.
We performed randomized simulation experiments and the
results are shown in Table II. We observe that the mode (3) -
average - produces the highest success results. Figure 4 shows
sample executions of pick-and-place tasks putting objects
inside a box using our average metric for grasp selection.

TABLE II: Simulation results of randomized on-table pick-
and-place scenarios ( 250) per each object

Object Success
Goal Start Avg

Master Chef 171/188 150/188 182/188
79/188 146/188 164/188

Green plushie 108/110 89/110 109/110
63/110 97/110 106/110

Pringles 234/250 232/250 243/250
149/250 165/250 180/250

Soft Scrub 235/250 244/250 247/250
175/250 170/250 200/250

Sun maid 195/250 220/250 230/250
104/250 194/250 225/250

Yellow cone 229/250 151/250 215/250
87/250 182/250 199/250
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Fig. 4: Pick-and-place experiments using a grasp selected by
evaluating the average of mag measured at the start and goal
object poses.

C. Pouring tasks

For the final task considered - pouring task - we model
it with 3 canonical steps: Reach, transport and tilt. Since
tilt is mainly a rotation in place, we evaluate the mag in a
similar manner to the pick-and-place case, only considering

the reach and transport phases. Surprisingly, for this case we
found (Table III) that the best results in terms of success rate
and end-effector displacement were produced by evaluating
the metric only at the start pose, without further regard to the
goal pose. We hypothetize that this is due to the fact that for
pouring tasks, the goal pose for the arm is mostly invariant,
depending only on the pose of the container. Given this, the
goal configuration does not play a factor in the grasp selection.
Some snapshots showing the robot performing the task using
mag to select the grasp executed are shown in Figure 5.

TABLE III: Simulation results of randomized scenarios. Con-
tainer object: Red cup

Object Success Hand Disp.(m)
Goal Start Avg Goal Start Avg

Pringles 221/250 250/250 240/250 2.20 2.14 2.18
187/250 184/250 221/250 2.37 2.44 2.37

White cup 230/250 250/250 237/250 2.18 2.10 2.13
204/250 205/250 218/250 2.24 2.30 2.29

Soft Scrub 234/250 250/250 243/250 2.22 2.10 2.16
200/250 200/250 228/250 2.43 2.42 2.42

Fig. 5: Pouring experiments using mag for grasp selection
evaluated at the object start pose

IV. CONCLUSIONS

In this abstract we presented a grasp selection approach
consisting on measuring our proposed manipulation metric
(mag) at each differentiated step in the manipulation task and
select the grasp that presents the highest value for a measure
based on this metric. For one-step tasks, such as pick-up, mag

was directly used as the selection measurement, whereas for
two-step tasks, such as pick-and-place (pouring), we observed
that the mag measure calculated at the initial step (as an
average of the start and goal step) were more efficient, based
on our simulated experiments.

As future work, more challenging scenarios can be faced
when the task at hand has n steps (with n > 2), as there exist
many more possible ways in which the metric mag measured



at each step i ∈ [1, n] can potentially be used. There are a few
studies in psychology that strongly suggest that each step in
an action sequence influences the choice of grasp in humans
[4], although the exact influence of each step (or how this
influence takes place) has not been yet defined.

REFERENCES

[1] R. Balasubramanian, L. Xu, P. Brook, J. Smith, and
Y. Matsuoka. Physical human interactive guidance: Iden-
tifying grasping principles from human-planned grasps.
IEEE Transactions on Robotics, 28(4):899–910, 2012.

[2] J. Bohg, A. Morales, T. Asfour, and D. Kragic. Data-
driven grasp synthesisa survey. IEEE Transactions on
Robotics, 30(2):289–309, 2014.

[3] C. Ferrari and J. Canny. Planning optimal grasps. In IEEE
International Conference on Robotics and Automation
(ICRA), pages 2290–2295. IEEE, 1992.

[4] Patrick Haggard. Planning of action sequences. Acta
Psychologica, 99(2):201 – 215, 1998. ISSN 0001-
6918. doi: http://dx.doi.org/10.1016/S0001-6918(98)
00011-0. URL http://www.sciencedirect.com/science/
article/pii/S0001691898000110.

[5] B. León, C. Rubert, J. Sancho-Bru, and A. Morales.
Characterization of grasp quality measures for evaluating
robotic hands prehension. In International Conference
on Robotics and Automation (ICRA), pages 3688–3693.
IEEE, 2014.

[6] D. A. Rosenbaum, C. M. van Heugten, and G. E. Caldwell.
From cognition to biomechanics and back: The end-
state comfort effect and the middle-is-faster effect. Acta
psychologica, 94(1):59–85, 1996.

[7] Masayuki Shimizu, Hiromu Kakuya, Woo-Keun Yoon,
Kosei Kitagaki, and Kazuhiro Kosuge. Analytical inverse
kinematic computation for 7-DOF redundant manipulators
with joint limits and its application to redundancy resolu-
tion. Transactions on Robotics, 24(5):1131–1142, 2008.

http://www.sciencedirect.com/science/article/pii/S0001691898000110
http://www.sciencedirect.com/science/article/pii/S0001691898000110

	Introduction
	Arm + Grasp Metric
	Arm Metric (ma)
	Grasp Metric (mg)
	Arm-Grasp Metric (mag)

	Application to Simple Manipulation Tasks
	Pick-up tasks
	Pick-and-place tasks
	Pouring tasks

	Conclusions

