
Improvements in Synergistic Framework for
Manipulation Tasks

Keliang He Lydia Kavraki

I. INTRODUCTION

Manipulation tasks are abundant in today’s robotic appli-
cations, especially in the areas of manufacturing, warehouse
management, and domestic robots. For these types of prob-
lems, the robot manipulator must interact with the objects
in the environment to achieve the task. Automated motion
planning for these tasks is highly desirable, as it would allow
for a much wider range of tasks achievable by a single robot.

There are two key problems that must be addressed for
manipulation planning. The first is the problem of task plan-
ning, where the planning algorithm must consider the discrete
actions available in the domain, and find a sequence of actions
(action plan) to achieve the task. The actions may include
reaching for objects, carrying objects, pushing objects, etc..
There has been much work in the area of planning in the
artificial intelligence community [1, 12, 13, 19, 20, 28] to
solve this problem. The other problem that must be addressed
is motion planning, where continuous motions must be found
to implement the actions in the action plan. For manipula-
tion problems, the robots often have more than 6 degrees
of freedom. Sampling-based motion planning [14, 21, 23–
25, 31] has proven to be the method of choice for these high
dimensional problems, for its ability to quickly explore such
high dimensional spaces.

Many frameworks have been proposed for combining task
and motion planning in the context of manipulation planning
[2, 4, 6–8, 10, 15–18, 22, 26, 27, 29, 30, 32]. Many of these,
however, lack completeness guarantees or have strong assump-
tions for any guarantee [4, 6–8, 15–18, 26, 27, 30, 30, 32].
This is in many cases a result of sampling-based motion plan-
ners being probabilistic complete rather than complete. One
approach we previously proposed, the Synergistic Framework
for manipulation tasks [11], solves the manipulation planning
problem while still guaranteeing probabilistic completeness.
However, it suffered from poor scalability, and experiments
were limited to less than five movable objects. In this abstract,
we present our efforts in improving the scalability of the Syn-
ergistic Framework by using heuristic to guide task planning,
allowing it to solve problems with up to 15 objects.

II. BACKGROUND

A. Synergistic Framework

The Synergistic Framework approaches manipulation plan-
ning in the following manner: The task is specified using
a co-safe linear temporal logic (co-safe LTL) formula. The
atomic propositions of the formula are elements of O × L,

representing that an object o ∈ O is at some location whose
labels contains l ∈ L. Using an external tool Spot [5], the
formula is converted into a deterministic finite automaton
(DFA) whose transition criteria are propositional logic formula
over the atomic propositions. Alternatively, the task could be
specified directly using a DFA.

The manipulation domain is captured using an implicit
graph called the abstraction. Each node in the abstraction
maintains information about the current (discrete) locations
of the objects and the end-effector, as well as the current
action the robot is performing. Edges in the abstraction graph
represent motions or transitions in robot execution that could
be taken to change the world from one state to the next.

Task planning is performed by running Dijkstra’s algorithm
over the product of the DFA and the abstraction. A node in
the product graph is a pair (z, v), where z is the DFA state,
and v is the abstraction node. This product is constructed
as needed starting from the initial state of the DFA and the
abstraction state that represent the initial configuration of the
world. Task planning terminates and returns a sequence of
abstraction nodes, called the task plan, when a node whose
DFA state is the accepting state is expanded.

The sequence of abstraction nodes is then split into mo-
tion segments, and they are planned for using a sampling-
based algorithm RRT-Connect [23] from the Open Motion
Planning Library (OMPL [3]). If a motion plan is found for
each required motion, then the concatenation of these plans
is returned as the solution. Otherwise, the weights of the
abstraction graph is updated according to the successfulness of
motion planning. For actions with continuous motion found,
their weights are reduced to 0. For actions that failed, their
weights are increased proportional to the amount of time spent
in motion planning. This enables the task planner to generate
new task plans which are more likely to be implemented by the
motion planner. This framework was shown to be probabilistic
complete [11].

B. Performance Issues

The Synergistic Framework as proposed in [11] for ma-
nipulation planning, however, suffered from poor scalability.
The results showed that the framework scaled to problems
with four objects in eight locations, with a task that converted
to a DFA with 27 states. The main bottleneck lies within
searching the product graph in task planning. The number
of nodes explored grows exponentially with the depth of the
search, making planning for long tasks difficult. Additionally,
considering a larger number of objects and locations increase



Fig. 1. DFA for two tasks and the heuristic value generated by the transition-
based heuristic (in red).

Fig. 2. DFA for two tasks and the heuristic value generated by the literal-
based heuristic (in red).

the branching factor of the search process, also slowing down
the search.

III. HEURISTIC SEARCH IN SYNERGISTIC FRAMEWORK

To improve the scalability of the Synergistic Framework,
we introduce two heuristics to guide the search of the product
graph. Even though the number of nodes in the product graph
is large, the size of the DFA is relatively small, generally
no more than a few hundred nodes. Therefore we generate
heuristics that focus on the DFA component z of a product
graph state (z, v). If it is easy to reach an accepting state
from z, then it should have a smaller cost-to-go heuristic than
a state from which it is difficult to reach an accepting state.

The first heuristic is transition based. We count the mini-
mum number of transitions in the DFA needed to reach an
accepting state from the current state z. Figure 1 shows the
heuristic values generated using such a heuristic. For the DFA
on the left, the transition-based heuristic seems reasonable.
It suggests that it is easier to reach the accepting state 2
from state 1 compared to state 0. On the other hand, for
the DFA on the right, which expresses the task of achieving
two propositions in any order, the transition-based heuristic
is not very informative. It ranks all of the states the same,
as a transition from the initial state to the accepting state is
possible if all the propositions become true at the same time.

In practice, this is rarely the case. The manipulator often
could only move one object at a time, so the truth value
of propositions also change one at a time. Therefore, we
introduce a second heuristic based on the minimum number of
literals we need to check in order to reach an accepting state.
Figure 2 shows the values from such a heuristic. We can see
that using this new heuristic, we can separate the initial state
out from the rest in the DFA on the right.

Due to the fact that in the Synergistic Framework, actions
that have been found would have their costs reduced to
0, both the transition-based and literal-based heuristics are
inadmissible. This causes the task plan to potentially be non-
optimal. The non-optimality could cause the planner to not
take full advantage of using actions whose continuous motions
are already found. We did not observe this to happen in
practice, as continuous motion already found are results of
being parts of previously-optimal task plans, preceding the
point of failure for these plans. Thus in future iterations
when the heuristics are inadmissible, these actions are still
considered before other choices.

IV. RESULTS

We test our heuristics using the A* [9] planner and compare
the runtime of a single task planning run against the original
planner, which is running Dijkstra’s algorithm. Note that
Dijkstra’s algorithm is equivalent to running A* with the
heuristic ∀x,H(x) = 0. The experiments were performed on
several benchmark problems. The first is a task where the goal
is to move a single object to a new location. The location is
occupied, so removal of another object is needed. The second
is the Baxter example from [11]. And finally, we test on a set
of benchmarks where n − 1 objects are in n locations, and
their places need to be swapped. The average runtime over 10
runs are shown in Figure 3.

We see that in all cases, using heuristics help with speeding
up the task planner. The literal-based heuristic performs well
across the board, achieving order of magnitude speed-up over
the previous framework. This allows us to solve difficult
problems such as the swapping task that involves 128 DFA
states.

V. CONCLUSION

We have presented our efforts in improving the scalability
of the Synergistic Framework for manipulation problems by
using heuristics generated from the planning task to guide the
search in task planning. We have found that the minimum
number of propositions required for the task to be a very
good heuristic for manipulation tasks. Using these heuristics,
we were able to achieve order of magnitude speed-up over
the previous planner. We are also actively exploring ways to
improve motion planning performance, as well as enhancing
the synergy between task and motion planning to achieve
better performance.

REFERENCES

[1] Avrim L. Blum and Merrick L. Furst. Fast Planning
Through Planning Graph Analysis. Artificial Intelligence,
pages 90:281–300, 1997.

[2] Stephane Cambon, Rachid Alami, and Fabien Gravot. A
hybrid approach to intricate motion, manipulation and
task planning. The International Journal of Robotics
Research, 28(1):104–126, 2009.

[3] Ioan A. Şucan, Mark Moll, and Lydia E. Kavraki. The
Open Motion Planning Library. IEEE Robotics & Au-
tomation Magazine, 19(4):72–82, December 2012.



Fig. 3. Average runtime for a single iteration of task planning. Results shown in log scale. The size of the DFA is shown in parenthesis next to benchmark.
A five min timeout was used in the experiments.

[4] Christian Dornhege, Patrick Eyerich, Thomas Keller,
Sebastian Trüg, Michael Brenner, and Bernhard Nebel.
Semantic attachments for domain-independent planning
systems. Springer Tracts in Advanced Robotics, 76
(STAR):99–115, 2012.

[5] Alexandre Duret-Lutz and Denis Poitrenaud. Spot: An
extensible model checking library using transition-based
generalized buchi automata. In Int. Symp. on Modeling,
Analysis, and Simulation of Computer and Telecommu-
nications Systems, pages 76–83. IEEE, 2004.

[6] Esra Erdem, Kadir Haspalamutgil, Can Palaz, Volkan
Patoglu, and Tansel Uras. Combining high-level causal
reasoning with low-level geometric reasoning and motion
planning for robotic manipulation. Proceedings - IEEE
International Conference on Robotics and Automation,
pages 4575–4581, 2011.

[7] Caelan Reed Garrett, Leslie Pack Kaelbling, and Tomas
Lozano-Pérez. FFRob : An efficient heuristic for task
and motion planning. WAFR, pages 179–195, 2014.

[8] Fabien Gravot, Stephane Cambon, and Rachid Alami.
asymov a planner that deals with intricate symbolic and
geometric problems. In Robotics Research. The Eleventh
International Symposium, pages 100–110. Springer,
2005.

[9] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A
formal basis for the heuristic determination of minimum
cost paths. Systems Science and Cybernetics, IEEE
Transactions on, 4(2):100–107, 1968.

[10] Kris Hauser and JeanClaude Latombe. Integrating task
and prm motion planning: Dealing with many infeasible
motion planning queries. International Conference on
Automated Planning and Scheduling, (1):34–41, 2009.

[11] Keliang He, Morteza Lahijanian, Lydia E. Kavraki, and
Moshe Y. Vardi. Towards manipulation planning with
temporal logic specifications. In IEEE Conference on
Robotics and Automation, pages 346–352, May 2015.

[12] Malte Helmert. The fast downward planning system.
Journal of Artificial Intelligence Research, 26:191–246,
2006.

[13] Jörg Hoffmann. FF: The fast-forward planning system.
AI magazine, 22:57–62, 2001.

[14] D. Hsu, J.-C. Latombe, and R. Motwani. Path planning in
expansive configuration spaces. Intl. J. of Computational
Geometry and Applications, 9(4-5):495–512, 1999.

[15] William N N Hung, Xiaoyu Song, Jindong Tan, Xiaojuan
Li, Jie Zhang, Rui Wang, and Peng Gao. Motion Planning
with Satisfiability Modulo Theories. Proceedings - IEEE
International Conference on Robotics and Automation,
pages 113–118, 2014.

[16] Leslie Pack Kaelbling and Tomas Lozano-Pérez. Hier-
archical task and motion planning in the now. Proceed-
ings - IEEE International Conference on Robotics and
Automation, pages 1470–1477, 2011.

[17] Leslie Pack Kaelbling and Tomas Lozano-Pérez. Inte-
grated task and motion planning in belief space. The
International Journal of Robotics Research, 32(9-10):
1194–1227, 2013.

[18] Lars Karlsson, Julien Bidot, Fabien Lagriffoul, Alessan-
dro Saffiotti, Ulrich Hillenbrand, and Florian Schmidt.
Combining Task and Path Planning for a Humanoid
Two-arm Robotic System. Proceedings of TAMPRA:
Combining Task and Motion Planning for Real-World
Applications (ICAPS workshop), pages 13–20, 2012.

[19] Henry Kautz, David McAllester, and Bart Selman. En-



coding plans in propositional logic. KR, 96:374–384,
1996.

[20] Henry A Kautz, Bart Selman, et al. Planning as satisfi-
ability. In ECAI, volume 92, pages 359–363, 1992.

[21] L. E. Kavraki, P. Švestka, J.-C. Latombe, and M.H. Over-
mars. Probabilistic roadmaps for path planning in high-
dimensional configuration spaces. IEEE Transactions on
Robotics and Automation, 12(4):566–580, Aug 1996.

[22] George Konidaris, Leslie Pack Kaelbling, and Tomas
Lozano-Pérez. Constructing Symbolic Representations
for High-Level Planning. AAAI, pages 1932–1940.

[23] James J Kuffner and Steven M LaValle. Rrt-connect:
An efficient approach to single-query path planning. In
Int. Conf. on Robotics and Automation, volume 2, pages
995–1001. IEEE, 2000.

[24] Steven M. Lavalle. Rapidly-exploring random trees: A
new tool for path planning. Technical Report 98-11,
Department of Computer Science, Iowa State University,
Ames, IA, 1998.

[25] Steven M. LaValle and James J. Kuffner. Randomized
kinodynamic planning. International Journal of Robotics
and Research, 20(5):378–400, 2001.

[26] Tomás Lozano-Pérez and Leslie Pack Kaelbling. A
constraint-based method for solving sequential manip-
ulation planning problems. In Int. Conf. on Intelligent
Robots and Systems, pages 3684–3691, 2014.

[27] Srinivas Nedunuri, Sailesh Prabhu, Mark Moll, Swarat
Chaudhuri, and Lydia E Kavraki. SMT-Based Synthesis
of Integrated Task and Motion Plans from Plan Outlines.
International Conference on Robotics & Automation
(ICRA), pages 655–662, 2014.

[28] Jussi Rintanen, Keijo Heljanko, and Ilkka Niemelä. Plan-
ning as satisfiability: parallel plans and algorithms for
plan search. Artificial Intelligence, 170(12):1031–1080,
2006.

[29] Siddharth Srivastava, Lorenzo Riano, Stuart Russell, and
Pieter Abbeel. Using Classical Planners for Tasks with
Continuous Operators in Robotics. ICAPS Workshop on
Planning and Robotics, 2013.

[30] Siddharth Srivastava, Eugene Fang, Lorenzo Riano, Ro-
han Chitnis, Stuart Russell, and Pieter Abbeel. Com-
bined Task and Motion Planning Through an Extensible
Planner-Independent Interface Layer. Proceedings -
IEEE International Conference on Robotics and Automa-
tion, (M):0–7, 2014.

[31] Ioan Alexandru Şucan and Lydia E. Kavraki. A
sampling-based tree planner for systems with complex
dynamics. IEEE Transactions on Robotics, 28(1):116–
131, 2012.

[32] Jason Wolfe, B. Marthi, and Stuart Russell. Com-
bined task and motion planning for mobile manipulation.
ICAPS, pages 254–258, 2010.


	Introduction
	Background
	Synergistic Framework
	Performance Issues

	Heuristic Search in Synergistic Framework
	Results
	Conclusion

