
Humanoid Task and Motion Planning
using Backward-Forward Search

Caelan R. Garrett
MIT CSAIL

Cambridge, MA 02139 USA
caelan@csail.mit.edu

Michael X. Grey,
C. Karen Liu, and Aaron D. Ames

Georgia Institute of Technology
Atlanta, Georgia 30332 USA

mxgrey@gatech.edu,
karenliu@cc.gatech.edu, ames@gatech.edu

Andrea L. Thomaz
University of Texas at Austin

Austin, TX 78701 USA
athomaz@ece.utexas.edu

I. INTRODUCTION

The potential versatility of humanoid robots makes them
promising candidates for a broad variety of applications,
ranging from domestic assistance and commercial hospitality
to industrial labor and disaster relief. While modern humanoids
are still often teleoperated, we ultimately wish for them
to be able to autonomously perform these everyday tasks
with minimal instruction in order for them to be maximally
economical. To do this, humanoids must be able to indepen-
dently solve task and motion planning problems wherein they
determine not only the sequence of high-level actions that
will achieve their task but also the joint motions that are
necessary to perform it in the real world. However, solving
task and motion planning problems is particularly challenging
for humanoids due to their complexity. Additionally, the biped
nature of humanoids requires footstep planning which can be
computationally expensive.

We propose a system for solving humanoid manipulation
problems that balances the trade-off between efficiency and
completeness. Our system uses the hybrid backward-forward
(HBF) planning algorithm as a task-planner along with hu-
manoid manipulation primitives for pick, place, move, and
press actions. These primitives are particularly designed to
be efficient enough to sample many times during the task-
planning search while still powerful enough to produce a
wide range of robot behaviors. We compromise by searching
through continuous subspaces of the configuration, subspaces
which are guaranteed to be reachable from the robot’s con-
straint manifold, allowing the robot to reason abstractly about
its task while guaranteeing the feasibility of its plan.

We empirically evaluate this system on three complex pick-
and-place problems. In particular, the latter two problems
involve gate obstacles that the robot must toggle in order to
walk throughout the environment. Our experiments show that
our humanoid samplers are able to quickly operate while still
faithfully representing the capabilities of the robot allowing
HBF to efficiently solve these problems.

II. HBF ALGORITHM

HBF is an algorithm for solving high-dimensional planning
problems in hybrid state spaces [1]. It uses an approximate

(a) Start (b) Finish

(c) Lowering force field (d) Sidestepping through passage

Fig. 1. Second Scenario: Robot must swap the table that each object is
sitting on while dealing with a force field obstruction.

backwards search to focus the sampling of successor actions in
forward, state space heuristic search. When previously applied
to mobile manipulation problems using a PR2 robot, it was
able to solve long-horizon planning problems in around one
minute. In order to apply HBF to our humanoid manipulation
problems, we must represent the abstract manipulation actions
the robot may perform (such as Pick and Move) and specify
samplers that produce instantiations of these actions as fully
parameterized manipulation primitives.

Garrett et al. represent abstract actions such as Pick, Place,
Move, and MoveHolding as action templates, parameterized
sets of action constraints (con) and effects (eff) [1]. We
introduce the PressDown and PressRelease actions for pressing
buttons. In our experiments, we explore problems involving
“force fields” as obstacles which constrain the movement of
the robot. While the force fields cannot be manipulated directly
themselves, each force field is connected to button k which can
toggle the state of certain force fields m between a disabled
value fm = None and an enabled value fm = p0m where p0m is
the fixed initial pose of force field m. The buttons themselves
have an on state bk = Active and an off state bk = Inactive.
PressDown activates a button and PressRelease deactivates a



button. Depending on the “wiring” of buttons and force fields
given in a problem, activating a button may enable, disable,
or not affect a force field.

This description of a PressRelease action template resem-
bles the Pick template. A single trajectory τ is sufficient to
represent the move from standing robot configuration q to
press the button and return to q. Additionally, k is the label for
the button to be pressed. Releasing button k will disable some
force fields and enable other force fields. Note that PressDown
is defined similarly.
PressRelease(q, k, τ):

con : r, h, bk = q,None,Active
oi ∈ c-free-posesi(τ) ∀i

eff : bk = Inactive
fm = None ∀m ∈ disable-force-fields(k)
fn = p0n ∀n ∈ enable-force-fields(k)

III. HUMANOID MANIPULATION PRIMITIVES

Now that we have identified HBF’s task-level action tem-
plates, we must produce samplers that can efficiently produce
instantiations of these Move, Pick, Place, MoveHolding, Press-
Release, and PressDown actions. This requires developing
whole body inverse kinematics solvers, standing motion plan-
ners, and whole body motion planners for humanoid robots.
However, this is more challenging to do for humanoid robots
than standard mobile manipulators for several reasons. First,
humanoid robots tend to be much higher dimensional. A one-
armed robot manipulator on a mobile platform tends to have
10-11 degrees of freedom. Conversely, a humanoid platform
tends to have anywhere from 30-50 degrees of freedom. This
larger dimensionality makes it much more time consuming to
perform standard robotics procedures such as solving inverse
kinematics. Second, whereas mobile manipulators are only
restricted by joint limits and collision constraints, humanoid
robots also have to handle balance constraints and end effector
constraints. Finally, many standard mobile manipulators use a
holonomic, wheeled base while humanoid robots are bipedal,
requiring footstep planning. For the purpose of this extended
abstract, we just describe the walking motion planning.

In order to sample Move and MoveHolding actions in
our representation, we need a way of producing walking
trajectories. Rigorously planning out footsteps tends to require
a significant amount of computational time [2]. In our imple-
mentation, it takes on the order of thirty seconds to one minute
per call. HBF must produce a substantial number movement
actions during its search as it moves to manipulate objects
from different states. Many of these movement actions do
not ultimately end up in the final plan. Thus, it would be
incredibly cumbersome to generate full footstep trajectories
during the planning process. At the same time, totally ignoring
the walking motion planning by assuming a trajectory exists
can result in an substantially incomplete planner on problems
which impose constraints on the reachable walking configura-
tions.

To address this, we simplify the walking problem by turning
it into a route finding problem. This allows us to ignore the

Fig. 2. The route planning uses a 3D RRT: two dimensions for translation
and one dimension for yaw. Overlapping edges in the visualization are an
artifact of projecting away the yaw dimension. We treat the robot as holonomic
because it is capable of taking a step in any direction at any time. This allows
the RRT search to be unconstrained and therefore extremely fast.

(a) Start (b) Grabbing first block

(c) Moved both to center table (d) Finish

Fig. 4. Third Scenario: Robot must move both blocks across the room while
switching the force field back and forth.

balancing and end effector constraints that are required while
generating a standing trajectory. All we are left with is a
standard collision-free path finding problem, so we can employ
traditional RRT-connect[3] in a 3D domain (see Figure 2) for
blazingly fast planning times.

However, there is a catch: The full motion that the robot
must go through during a walking cycle is not captured with
a standard three-dimensional RRT. There are also torso sway
and leg motion factors that must be taken into account. We
do this by constructing a collision geometry that approximates
the swept volume that the robot might move through during
an arbitrary walk cycle. Performing collision checks against
this extended geometry guarantees that the robot will be able
to find a feasible footstep plan along any path that is swept
by it. Incorporating two translational dimensions and the yaw
dimension in the plan allows the robot to make use of its
sidestepping capabilities, which can be useful for squeezing
through tight spaces, as seen in Figure 1(d). Since we know
that the generated routes will allow for feasible footstep plans,
we can defer computing the footsteps until HBF produces a
final plan. This saves us from performing expensive footstep
computations on unused subplans.



P Deferred Route Motion Planning Standard RRTs Multi-Query Star Roadmap
% time len foot % time len foot % time len foot

1 55 251 (121) 24 (0) 433 80 199 (26) 24 (0) 549 80 187 (34) 24 (0) 701
2 0 600 (0) - (-) - 95 266 (19) 27 (0) 619 100 144 (13) 27 (0) 1611
3 0 600 (0) - (-) - 100 215 (17) 13 (0) 562 100 85 (11) 13 (0) 636

Fig. 3. Manipulation experiment results over 20 trials.

For an additional performance boost, at the expense of
completeness on some problems, we experimented with a meta
motion planning roadmap called a star roadmap. When tasked
with finding a trajectory from q to q′, if not already cached, it
computes RRT trajectories from a fixed center configuration
q0 (such as the initial robot configuration) to both q and q′.
The resulting trajectories are cached as edges in the star graph.
The returned solution is the reversed trajectory from q to q0
concatenated with the trajectory from q0 to q′.

IV. EXPERIMENTS

We tested the effectiveness of our system on three diverse
scenarios. These scenarios focus on pick-and-place tasks but
also include obstacles that require the robot to alter its en-
vironment in order to achieve its goals. Obstacles come in
two forms: small manipulatable items that obstruct the robot’s
ability to reach for goal items, and “force field” barriers that
are controlled by switches in the environment. The “force
fields” can be thought of as automated doors that can be
operated by pressing a button.

a) First Scenario: There are two tables in the environ-
ment. One table is empty while the other is covered in blocks.
The robot’s objective is to move the two blue blocks to the
other table. It is free to move the red blocks though.

b) Second Scenario: There are two tables and two force
fields. One force field is blocking the way to one of the tables
while the other force field leads nowhere. The robot’s objective
is to move each block to the table that it is not currently sitting
on. Also, courtesy dictates that the robot must return itself and
all force fields back to their original states. This is an example
of a non-monotonic problem which requires the robot to undo
some of its goals in order to accomplish others. See Figure 1.

c) Third Scenario: There are three tables. A button in
the center of the room is able to swap a force field from one
side of the room to the other side. The robot must move both
of the green blocks from the far side of the room to the near
side of the room while switching the force field as needed. To
do this, the robot must temporarily place each block on the
middle table in order to change the force field which results
in puzzle-like behavior. See Figure 4.

We tested three versions of the resulting system that each
handle route planning differently.

d) Deferred Route Motion Planning: This version defers
all walking motion planning, not just footstep computation,
until HBF finds a solution by assuming each trajectory is
feasible. If when HBF finds a solution the deferred motion
planning problems are not feasible, the algorithm fails.

e) Standard RRT: This version uses the standard strategy
of calling a new RRT to sample each movement action.

f) Multi-Query Star Roadmap: This version uses the
multi-query star roadmap to answer motion planning queries.

Each experiment had a 10 minute timeout. There were
20 trials per problem all conducted on a single 1.87GHz
Intel Core i7 processor. Each entry in figure 3 reports the
success percentage (%) as well as the median and median
absolute deviation (MAD) of the runtime, resulting symbolic
plan length, and the post-processing time it took to generate
footsteps for a single run. We use median-based statistics to
be robust against outliers. The statistics for trials that failed to
find a solution are included in the entries. Thus, entries with
a runtime of 600 and MAD of 0 did not solve any trial.

The multi-query star roadmap proved more efficient than the
normal RRT strategy as it was able to reduce the number of
new RRT calls. Note that the deferred route motion planning
strategy failed to solve problems two and three at all because
they involve force fields which need to be deactivated. Thus,
the route planning compromise of approximating the walking
robot using a swept volume is able to provide sufficient infor-
mation for HBF to solve these problems while being efficiently
computable and later resulting in a valid footstep trajectory.
Finally, although the post-processing footstep computation
time is still large, the footsteps themselves can be computed
online while the humanoid executes the plan because our
method guarantees that a satisfying solution exists.

REFERENCES

[1] Caelan Reed Garrett, Tomas Lozano-Perez, and
Leslie Pack Kaelbling. Backward-forward search
for manipulation planning. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS),
2015. URL http://lis.csail.mit.edu/pubs/garrett-iros15.pdf.

[2] J. Kuffner, S. Kagami, K. Nishiwaki, M. Inaba, and
H. Inoue. Online footstep planning for humanoid robots.
In International Conference on Robotics and Automation
(ICRA), volume 1, pages 932–937 vol.1, Sept 2003. doi:
10.1109/ROBOT.2003.1241712.

[3] J. J. Kuffner and S. M. LaValle. Rrt-connect: An
efficient approach to single-query path planning. In
International Conference on Robotics and Automation
(ICRA), volume 2, pages 995–1001 vol.2, 2000. doi:
10.1109/ROBOT.2000.844730.

http://lis.csail.mit.edu/pubs/garrett-iros15.pdf

	Introduction
	HBF Algorithm
	Humanoid Manipulation Primitives
	Experiments

