
Towards Fast Safe Mission Planning
Debadeepta Dey

Microsoft Research
Redmond, WA 98052
dedey@microsoft.com

Dorsa Sadigh
University of California

Berkeley, CA
dsadigh@berkeley.edu

Ashish Kapoor
Microsoft Research

Redmond, WA 98052
akapoor@microsoft.com

I. INTRODUCTION

Robotic and cyber-physical systems are proliferating at a
breakneck pace. A key technological hurdle is to ensure safety
of such systems especially within proximity of humans. While
there has been a push in identifying obstacles and unsafe sit-
uations via sensors and machine learned predictors [2, 1], the
task of embedding such information to determine safe course
while obeying rules-of-the-road is non-trivial [14]. Further, the
uncertainty and noise in prediction together with near real-time
requirements under bounded computation resources makes this
problem very challenging [5].

This work proposes an architecture for fast, safe planning of
autonomous missions. We build upon the recent work in Prob-
abilistic Signal Temporal Logic (PrSTL) [18] that synthesizes
provably safe controllers that take into account noisy sensors
and associated uncertainty in learned classifier/regressor pre-
dictions. Currently, solution for PrSTL requires solving Mixed
Integer Semi-Definite Programs (MISDPs), which quickly
become infeasible to solve in reasonable time as the number
of constraints grow. Further, PrSTL needs the description
of the mission goal and the required safety invariants as
logical formulations and often expressing such objectives and
constraints for long horizons and complicated rules-of-the-
road remain non-trivial at best.

We alleviate these problems by combining PrSTL with
random sampling based planners. We propose using Rapidly-
exploring Random Trees (RRT) [11] and associated variants
like RRT* [9] to simplify computation by first efficiently
sampling feasible points in the robot’s configuration space
and then generating trajectories by connecting them via safe
control. Such fast sampling of the feasible trajectories effec-
tively reduces the optimization from a MISDP to a sequence
of Second Order Cone Programs (SOCP), which being convex,
can be solved much more efficiently.

II. BACKGROUND

There has been recent developments in synthesizing con-
trol policies, inspired from program verification and artifi-
cial intelligence, that satisfy temporal properties, disjunctions,
conjunctions or negations of user-specified predicates. Several
temporal logic specification languages have been developed
and adapted for synthesizing controllers such as Linear Tem-
poral Logic (LTL) [10, 19], Metric Temporal Logic (MTL)
[6], Probabilistic Temporal Logic (PTL) [20] and Signal
Temporal Logic (STL) [16, 15, 12]. These approaches can
be used for task planning [14], where a system designer a
priori provides logical specifications composed of disjunctions,
conjunctions, negations as well as temporal permutations of
those combinations. Previous work has also proposed methods

for combining sampling-based motion planners with such
specification languages to do joint task and motion planning
[7, 6]. However, these approaches are limited in their capacity
to both express the constraints as well as the capability to
account for uncertainty in sensors and dynamics.

Recent work has proposed probabilistic logical specification
(PrSTL) [18] that introduces random variables in logical
formulae to express uncertainty in the robot state, environment
and other exogenous variables. Such probabilistic formulation
enables embedding of Bayesian classifiers and predictors in the
specification language, thereby allowing the systems to operate
in environments that are only partially observed. We propose
a new method that builds upon RRT* and uses PrSTL as a
steering function. This method combines the positive aspects
of both techniques: (1) PrSTL enables us to specify safety
invariants and allows embedding of machine learning predic-
tors operating on real-time signals. (2) The RRT* framework
allows fast computation of strategies circumventing the need
to solve computationally difficult problems that usually arise
in logical specification based control synthesis methods.

III. PROBABILISTIC SIGNAL TEMPORAL LOGIC

Probabilistic Signal Temporal Logic (PrSTL) allows ex-
pressing stochastic properties over real-valued, dense-time
signals. We can formally define temporal properties over
uncertainties that are present in sensors and classifiers of the
system. For example, we can express PrSTL formulas that
represent probability that the output of a Bayesian predictor
would lie in a desired range for time steps in the future.

Let x(t) denote a real-valued signal at time t, then (x, t) |=
ϕ specifies that the signal x satisfies the PrSTL formula ϕ at
time t. A PrSTL formula ϕ consists of temporal and Boolean
properties over atomic predicates represented as λεtαt

. Such
predicates are defined over time-varying random variables αt
drawn from a distribution at every time step. Furthermore,
εt ∈ [0, 0.5] represents a tolerance level for satisfaction of
the predicate. Therefore, satisfaction of this atomic predicate
translates to:

(x, t) |= λεtαt
⇐⇒ P

(
λαt

(x(t)) < 0
)
> 1− εt, (1)

where λαt
(x(t)) is a stochastic function of the signal, which

can express uncertainties regarding sensors, classifiers, etc.
For example, if αt represent parameters of a classifier then
computing the stochastic function simply corresponds to ap-
plication of the classifier to x(t). Consequently, the atomic
predicate described above signifies that only those trajectories
for which the condition λαt

(x(t)) < 0 holds with a high
probability should be considered valid. PrSTL allows nesting

of temporal and Boolean properties over the probabilistic
predicates. The syntax of PrSTL is defined as follows:

ϕ ::= λεtαt
| ¬̃λεtαt

|ϕ∧ψ |ϕ∨ψ |G[a,b]ψ |ϕU[a,b]ψ |F[a,b]ψ.

Here, ϕ is constructed as a probabilistic predicate λεtαt
,

its negation ¬̃λεtαt
, the Boolean conjunction or disjunc-

tion of two PrSTL formulae, or temporal operators applied
over PrSTL formulae. The temporal operators consist of
G (globally), F (eventually) and U (until). For example,
G[5,7](P (λαt

(x(t)) < 0) > 0.8) is a formula indicating that
the stochastic function λαt

(x(t)) must be less than zero with
0.8 confidence for all times in the interval t ∈ [5, 7].

The satisfaction of each temporal or propositional formula
is then defined as follows:

(ξ, t) |= λεtαt
⇔ P (λαt

(ξ(t)) < 0) > 1− εt
(ξ, t) |= ¬̃λεtαt

⇔ P (−λαt
(ξ(t)) < 0) > 1− εt

(ξ, t) |= ϕ ∧ ψ ⇔ (ξ, t) |= ϕ ∧ (ξ, t) |= ψ
(ξ, t) |= ϕ ∨ ψ ⇔ (ξ, t) |= ϕ ∨ (ξ, t) |= ψ
(ξ, t) |= G[a,b]ϕ ⇔ ∀t′ ∈ [t+ a, t+ b], (ξ, t′) |= ϕ
(ξ, t) |= F[a,b]ϕ ⇔ ∃t′ ∈ [t+ a, t+ b], (ξ, t′) |= ϕ
(ξ, t) |= ϕ U[a,b] ψ ⇔ ∃t′ ∈ [t+ a, t+ b] s.t. (ξ, t′) |= ψ

∧∀t′′ ∈ [t, t′], (ξ, t′′) |= ϕ.

It is shown that if αt is drawn from a Gaussian distribution,
the control synthesis problem under PrSTL constraints can be
solved as a mixed integer semi-definite program (MISDP).
While solving an MISDP is NP-complete, there exists a
subset of PrSTL called Convex PrSTL that is recursively
defined over the predicates using only conjunctions or the
globally operator. The optimization problem reduces to second
order cone programming (SOCP) and is convex. One of the
advantages of the proposed framework is that instead of
solving a general mission planning task as PrSTL, it uses
sampling-based motion planning to decompose the problem
into a sequence of simpler convex optimization tasks.

IV. APPROACH

In this section, we detail our approach for the cenario where
a robot is tasked with navigating from a start state to a goal
state and an incomplete map of the environment is available.
There might be additional obstacles and other latent variables
on the map, which are unknown in the beginning but as the
robot navigates, onboard sensors (noisily) detect them.

The key idea is to first sample the configuration space for
valid points that satisfy the safety invariants, and then seek
for a safe path or trajectory that would connect these sets
of sampled points. Such safe trajectories are determined via
safe control synthesis using the PrSTL framework. Given the
sampled points and the safe trajectories that connect these, the
framework finally chooses the shortest path from start to goal
which minimizes the cost criterion of interest.

One big advantage of this framework is that the validity
test for random samples does not need a rigid logical specifi-
cation and can be expressed as an imperative procedure. Such
imperative descriptions allows checking of fairly complex
safety conditions, which might be very hard to evaluate using
PrSTL. For example, the boundaries of a flying arena can be
of arbitrary shape, and constraints on such non-parametric

boundaries cannot be easily expressed as logical formulae.
However, given a map of such arena it is easy to check whether
a sample is valid or not.

Algorithm 1 PRSTL-TREE: Safe planning and control to goal.

Require: Map of known obstacles M
Start state sstart
Goal state sgoal
Goal region radius gradius
Number of vertices in tree nvertices
Number of steps per planning cycle nsteps

Ensure: Path traversed to goal p = {sstart, s1, . . . , sgoal}
1: p = {}
2: scurrent = sstart
3: while dist(scurrent, sgoal) > gradius do
4: tree← BuildSafeTree(M, scurrent, sgoal, nvertices)
5: snearest ← FindNearestNeighbor(tree, sgoal)
6: pshortest ← ShortestPathToGoal(tree, scurrent, snearest)
7: (ptraversed, scurrent, obsv)← TakeNSteps(pshortest, nsteps)
8: p← p ∪ ptraversed
9: UpdateBelief(obsv)

10: end while

Algorithm 1 details the main steps of the approach, which
we term as PRSTL-TREE. It requires a mapM of the environ-
ment which contains known obstacles and also encodes rules-
of-the-road like no-fly regions, a start state sstart, a goal state
sgoal, radius gradius which describes the goal region centered
around the goal state, the number of vertices to be built into the
sampling-based motion planner tree nvertices at each planning
cycle and the number of steps nsteps that the robot will actually
traverse each planning cycle.

Initially the path taken by the robot is set to the empty
sequence p = {} and the current state is set to scurrent (lines
1 − 2). While the robot is still more than gradius away from
the goal region the safe planner is invoked in a receding-
horizon style to find a safe path to goal (lines 3 − 10). In
line 4 the function BuildSafeTree invokes a sampling-based
motion planner on the map M of known obstacles. Suitable
choices for sampling-based motion planner include RRT [11]
and RRT* [8]. This function creates a tree so that it has nvertices
from the current state scurrent of the robot towards the goal state
sgoal. Note that it is not a requirement for the tree to reach the
goal in nvertices. Approaches like RRT and RRT* build a tree
towards the goal state by sampling states at random, checking
that they lie in free space and then connecting the sampled
state to the nearest node{s} in the tree using a steering func-
tion which is responsible for producing dynamically feasible
trajectories. These trajectories are then checked for collision
and satisfaction of rules-of-the-road and then added to the tree.
We take the approach of constructing dynamically feasible
and high-probability collision-free trajectories for connecting
states in the tree leveraging the PrSTL [18] framework for
synthesizing trajectories. PrSTL takes sensor uncertainty and
robot dynamics into account to synthesize trajectories which
are probabilistically safe up to user-specified confidence. If it
is not feasible to construct such a trajectory then the PrSTL

routine returns an empty trajectory and the sampled state is
rejected. So in line 4 the returned tree has edges (trajectories)
which are safe by construction.

In line 5 the nearest state snearest in the tree to the goal
state is found by an efficient nearest neighbor search. Then
the shortest path in the tree from root (scurrent) to snearest is
computed using A* [4] or Dijkstra’s shortest path algorithm
[3] in line 6 to give a path pshortest.

In line 7 the robot executes nsteps of pshortest and ends
up in a new current state scurrent. Along the way it makes
observations using onboard (noisy) sensors which then can be
used to update the obstacle classifier embedded in the PrSTL
framework. If the robot is not in the goal region at this time,
it builds a safe tree again using its updated beliefs from its
current state.

PRSTL-TREE mitigates the chief limitation of using
PRSTL alone for long-horizon mission planning with arbi-
trarily complicated obstacle maps and rules-of-the-road: it
eliminates the use of mixed-integer constraints which are nec-
essary for accounting for obstacles and sequential waypoints
in PRSTL. Since mixed-integer SOCPs or SDPs are NP-hard
[13] these are usually solved sub-optimally by branch-and-
bound based algorithms and have large runtimes for non-trivial
problem sizes. By relegating this difficult task of modeling
known obstacles and waypoints to a sample-based planner,
only the convex subset of PRSTL is needed which gives rise
to SOCPs which are convex and can be solved in polynomial
time.

We show via initial experiments in simulation the large
speedup in time obtained by using PRSTL-TREE as opposed
to PRSTL.

V. CASE STUDY

Our goal in this case study is to find control inputs for a
ground robot so it reaches a final goal while avoiding known
and unknown obstacles and staying within the road boundaries.
Figure 1a shows the initial setting of our experiment. The red
car represents our ground vehicle that must stay within the
boundaries of the circular road. The orange triangles represent
the obstacles present in this scenario. The robot is constrained
to travel on the road while avoiding the orange triangles. These
obstacles can either be known a priori or only known locally
based on uncertainties arising from classifiers.

We then use a mesh of points around the robot that act as
range finders that can detect obstacles. Using linear Gaussian
Processes [17], we are able to predict if a point in the space is
an obstacle or not based on the learned Gaussian distribution.
Therefore, the problem of obstacle avoidance translates to
probabilistic constraints as follows:

G[0,∞)

(
Pr(v ·

[
x y 1

]> ≤ 0) ≥ 1− ε
)

(2)

Here, v is a Gaussian vector learned by linear Gaussian
Processes, and (x, y) are the coordinates of the robot. The
inner product of v and

[
x y 1

]>
represents the current

belief of coordinates (x, y) being in an obstacle or not. We
would like to enforce that the coordinates are outside of
obstacles with high probability 1 − ε at all times t ∈ [0,∞).
For our experiments, we chose ε = 0.5, which allows an easier
fit of a prediction line to triangular shaped obstacles. Although

-5 0 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

(a) Initial state of the robot.

-5 0 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

(b) Final state of the robot.

Fig. 1: Autonomous robot reaching a final goal while avoiding obsta-
cles. Here, the red car on the road shows the autonomous robot. The
robot’s goal is to travel on the circular road while avoiding obstacles
and staying within boundaries. The orange triangles represent the
obstacles on the road. The green line on both figures shows the
computed future trajectory of the robot for the next horizon. The
blue line in 1b shows the trajectory computed and taken by the robot
to reach its goal.

-5 0 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

(a) Reaching the final state by
receding horizon optimization
for PrSTL under uncertainty.

-5 0 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

(b) Reaching the final state
by following PrSTL-Tree un-
der uncertainty.

Fig. 2: Comparing receding horizon optimization for safe control on
the left and PrSTL-Tree approach on the right for reaching the same
final goal while staying safe. Here, the orange triangles represent the
known obstacles and the pink ones represent the unknown obstacles.

ε is large, the resulting trajectories in Figure 2 do not collide
with any obstacles.

Note, in this case, the probabilistic constraints can equiv-
alently be written as semi-definite programs which makes
the constraints corresponding to uncertain obstacles convex.
However, the known obstacles and the boundary conditions of
the road are still non-convex constraints. Using PrSTL-Tree
we compute the optimal trajectory of traveling a quarter of the
circular road in 16.9848 seconds. This is shown in Figure 2a,
where the blue line shows the trajectory computed and taken
by the robot and the green line is the next horizon’s planned
trajectory. The computation time for this example is smaller
than the same example with known obstacles. Obstacle avoid-
ance under uncertainty results in convex properties, which can
help lower the computation time by reducing the number of
disjunctions in the formula.

Using PrSTL-Tree, we were able to find the controller in
2.1339 seconds. This is significantly (approximately 8 times)
faster than only using the optimization based method with
PrSTL constraints.

REFERENCES
[1] Georges S Aoude, Brandon D Luders, Joshua M Joseph, Nicholas Roy,

and Jonathan P How. Probabilistically safe motion planning to avoid
dynamic obstacles with uncertain motion patterns. Autonomous Robots,
2013.

[2] Debadeepta Dey, Kumar Shaurya Shankar, Sam Zeng, Rupesh Mehta,
M. Talha Agcayazi, Christopher Eriksen, Shreyansh Daftry, Martial
Hebert, and J. Andrew Bagnell. Vision and learning for deliberative
monocular cluttered flight. Field and Service Robotics, 2015.

[3] Edsger W Dijkstra. A note on two problems in connexion with graphs.
Numerische mathematik, 1959.

[4] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for
the heuristic determination of minimum cost paths. Systems Science and
Cybernetics, IEEE Transactions on, 1968.

[5] Eric Horvitz. Principles and applications of continual computation.
Artificial Intelligence, 2001.

[6] S Karaman and E Frazzoli. Optimal vehicle routing with metric temporal
logic specifications. In IEEE Conference on Decision and Control, 2008.

[7] Sertac Karaman and Emilio Frazzoli. Sampling-based motion planning
with deterministic µ-calculus specifications. In Decision and Control,
2009.

[8] Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for op-
timal motion planning. The International Journal of Robotics Research,
2011.

[9] Sertac Karaman, Matthew R Walter, Alejandro Perez, Emilio Frazzoli,
and Seth Teller. Anytime motion planning using the rrt*. In ICRA.

[10] Hadas Kress-Gazit, Georgios E Fainekos, and George J Pappas.
Temporal-logic-based reactive mission and motion planning. Robotics,
IEEE Transactions on, 25(6):1370–1381, 2009.

[11] Steven M Lavalle and James J Kuffner Jr. Rapidly-exploring random
trees: Progress and prospects. In Algorithmic and Computational
Robotics: New Directions, 2000.

[12] Oded Maler and Dejan Nickovic. Monitoring temporal properties of
continuous signals. In Formal Techniques, Modelling and Analysis of
Timed and Fault-Tolerant Systems, pages 152–166. Springer, 2004.

[13] Christos H Papadimitriou and Kenneth Steiglitz. Combinatorial opti-
mization: algorithms and complexity. 1982.

[14] Erion Plaku and Sertac Karaman. Motion planning with temporal-logic
specifications: Progress and challenges. AI Communications, 2015.

[15] Vasumathi Raman, Alexandre Donzé, Mehdi Maasoumy, Richard M
Murray, Alberto Sangiovanni-Vincentelli, and Sanjit A Seshia. Model
predictive control with signal temporal logic specifications. In Decision
and Control (CDC), 2014 IEEE 53rd Annual Conference on, pages 81–
87. IEEE, 2014.

[16] Vasumathi Raman, Alexandre Donzé, Dorsa Sadigh, Richard M Murray,
and Sanjit A Seshia. Reactive synthesis from signal temporal logic
specifications. In Proceedings of the 18th International Conference on
Hybrid Systems: Computation and Control, pages 239–248. ACM, 2015.

[17] Carl Rasmussen and Chris Williams. Gaussian processes for machine
learning. Gaussian Processes for Machine Learning, 2006.

[18] Dorsa Sadigh and Ashish Kapoor. Safe control under uncertainty.
Robotics Science and Systems, 2016.

[19] Paulo Tabuada and George J Pappas. Linear temporal logic control of
linear systems. IEEE Transactions on Automatic Control, 2004.

[20] Chanyeol Yoo, Robert Fitch, and Salah Sukkarieh. Probabilistic temporal
logic for motion planning with resource threshold constraints. 2012.

	Introduction
	Background
	Probabilistic Signal Temporal Logic
	Approach
	Case Study

