
Motions in Microseconds via Vectorized Sampling-Based Planning

Wil Thomason†, Zachary Kingston†, and Lydia E. Kavraki

Abstract— Modern sampling-based motion planning algo-
rithms typically take between hundreds of milliseconds to dozens
of seconds to find collision-free motions for high degree-of-
freedom problems. This paper presents performance improve-
ments of more than 500x over the state-of-the-art, bringing
planning times into the range of microseconds and solution
rates into the range of kilohertz, without specialized hardware.
Our key insight is how to exploit fine-grained parallelism
within sampling-based planners, providing generality-preserving
algorithmic improvements to any such planner and significantly
accelerating critical subroutines, such as forward kinematics
and collision checking. We demonstrate our approach over a
diverse set of challenging, realistic problems for complex robots
ranging from 7 to 14 degrees-of-freedom. Moreover, we show
that our approach does not require high-power hardware by
also evaluating on a low-power single-board computer. The
planning speeds demonstrated are fast enough to reside in the
range of control frequencies and open up new avenues of motion
planning research.

I. INTRODUCTION

High degree-of-freedom (DOF) robots rely on motion plan-
ning to move in complex workspaces, either using sampling-
based approximations [1–5] or numerical optimization [6, 7].
These planners are general and can solve realistic, challenging
problems in hundreds of milliseconds to dozens of seconds
on consumer CPUs. However, this level of performance falls
short—it is too slow for reactive operation in evolving envi-
ronments and hampers algorithms for higher-level autonomy
such as integrated task and motion planning.

A large literature accelerates motion planning with coarse-
grained (e.g., thread or process-level) parallelism [8–12], but
these methods have seen relatively little uptake in practice, as
their performance gains do not justify the added complexity.
More recent work [13–15] uses GPU-based parallelism to
improve performance, but at the cost of communication
overhead, algorithmic limitations, and the additional expense
and power consumption of GPU hardware. In general, the
field has come to believe that sampling-based motion planner
(SBMP) primitives (e.g., checking if motion between two
states is valid) are either inherently serial, cannot be acceler-
ated without specialized hardware, or cannot be parallelized
without paying a greater cost than the parallelism saves.

We refute this belief and show several orders of magnitude
performance improvement over the state-of-the-art (more
than 500x faster) by contributing insights into fine-grained
parallelism and work-ordering in SBMPs. Our core insight is

† Equal contribution. All authors are affiliated with the Department of
Computer Science, Rice University, Houston TX, USA {wbthomason,
zak, kavraki}@rice.edu. This work was supported in part by
NSF RI 2008720, NSF ITR 2127309 for the Computing Research Association
CIFellows Project, and Rice University Funds.

the use of vector-oriented state representations and planning
primitives (e.g., forward kinematics and collision checking),
which enable fine interleaving of parallel and serial operation.
Crucially, we use “Single Instruction/Multiple Data” (SIMD)
instructions to execute these primitives with high throughput
and low latency on ubiquitous consumer CPUs, accelerating
almost any SBMP for “free”. These insights let us plan
high-quality paths at reactive speeds (e.g., a median time of
40 µs for the 7 DOF Panda over the MotionBenchMaker [16]
dataset, i.e., 25 kHz—see Table I) on a single CPU core.

Our method significantly outperforms standard implemen-
tations [17] of state-of-the-art SBMPs on both desktop and
low-power single board computers. Moreover, this work
will enhance any work that uses motion planning, and our
perspective on vector-oriented planning primitives extends
beyond CPU SIMD instructions to other, similar parallelism
models, e.g., GPUs. The planning speeds demonstrated blur
the line between planning and control, and give cause to
re-evaluate assumptions about robot motion.

II. RELATED WORK

Motion planning is PSPACE-complete [18, 19] in general,
but sampling-based motion planners (SBMPs) empirically can
efficiently solve challenging problems. SBMP requires com-
putationally expensive subroutines, e.g., forward kinematics
(FK), collision checking (CC), and nearest neighbor (NN)
search [3]. CC dominates computational cost in SBMP (noted
by many, e.g., [10]); however, NN search may dominate in
high-dimensions or with large numbers of states [20]. FK is
used by CC and contributes to its cost. For efficiency, SBMPs
must use fast CC and avoid as much FK/CC as possible—as
such, in this work, we target FK and CC performance.

Most CC algorithms use a broadphase to approximate the
set of possible collisions, and a narrowphase to find exact
collisions from the approximate set [21]. The broadphase is
vital for performant CC and can be accelerated with GPU [22]
or SIMD [23] parallelism. Efficient, general CC libraries
(e.g., [24, 25]) offer many options for these phases. Given its
impact on SBMP performance, many works have reduced CC
effort via e.g., heuristic ordering [26], lazy checking [27, 28],
checking only likely-valid edges [29, 30], etc. Recent work
has learned a combined FK/CC “primitive” [31–33]; other
work has learned distance-to-collision functions [34, 35].

A. Parallelism in Motion Planning

Parallelized planners have been sought since the advent
of motion planning (e.g., Barraquand and Latombe [36] and
Henrich [37]). We broadly categorize parallelism in motion
planning as either coarse-grained or fine-grained. In our use,

ar
X

iv
:2

30
9.

14
54

5v
2 

 [
cs

.R
O

] 
 2

8 
Se

p 
20

23



coarse-grained refers to parallelism at the level of subroutines
or planner components, such as running many planners in
parallel, or running CC in a separate thread. Fine-grained
refers to parallelism at the level of primitive operations, such
as checking several states for collisions simultaneously in the
same thread, without architectural changes.

Parallelism in SBMP is typically coarse-grained, e.g., simply
running independent planners in parallel. This improves
average-case performance [38]; the set of solutions can also
be hybridized together to improve plan quality [39]. Early
work (e.g., Amato and Dale [9]) observed that roadmap-based
planners (e.g., PRM [5]) are amenable to coarse-grained paral-
lelism. Parallel SBMP has also been achieved by constructing
a forest of planning trees [40], potentially in distinct regions of
the search space [11], and by parallelizing components of the
RRT∗ ASAO planner [41, 42]. These methods typically offer
sub-linear (in the degree of parallelism) performance improve-
ment (with some exceptions [42]) due to the synchronization
overhead and architectural complexity required. Still other
work uses coarse-grained parallelism in graph search used in
roadmap- or search-based planning, both on CPUs [43, 44] and
GPUs [45–47]. In contrast to the work discussed above, this
work investigates a novel approach to fine-grained parallelism
in SBMPs, which is understudied in the field.

Recently, there has been significant interest in applying
GPUs more broadly to motion planning. The most successful
approaches include parallelized sampling-based MPC [13],
parallel particle-based optimization seeded by a partially par-
allelized RRT-like planner [14], and end-to-end learning of a
neural local control policy from a dataset of motion plans [15].
Earlier work also investigated GPU-parallelized CC [10, 48].
Although these methods show promising performance, they
require powerful GPUs for efficiency and impose the overhead
of moving data between the GPU and CPU.

B. Hardware-Accelerated Motion Planning

Hardware acceleration is crucial for our proposed vector-
based approach to SBMP. We use SIMD instructions, a feature
ubiquitous on consumer CPUs1. Hardware acceleration has
long been used for motion planning, with particular focus
on accelerating CC [50]. Some work (e.g., Ichnowski and
Alterovitz [51]’s compile-time specialized SBMP, or Carpen-
tier et al. [52]’s statically dispatched, precompiled dynamics
algorithms) implicitly exploits hardware acceleration by
creating “machine sympathetic” implementations—code that
enables compilers, etc. to better exploit hardware capabilities.

Many modern robotics algorithms are accelerated by GPUs,
e.g., using CUDA. GPU acceleration has been applied to
SBMPs [14, 53, 54], MPC [13, 55] and trajectory optimiza-
tion [12, 14]. Recently, ASIC- or FPGA-based accelerators [56]
have been proposed, e.g., to validate an entire roadmap at once
with an FPGA [57–59] or as an external CC accelerator [60].
Neuman et al. [61] investigated “robomorphic” computing
with specialized accelerators for common robotics algorithms.

1Our primary implementation uses AVX2, which has been broadly available
on Intel and AMD CPUs since 2013. Lower-width SIMD instruction sets
such as SSE have been available since 1999 [49].

However, GPUs and other accelerators come at a cost:
there is latency in communicating with the device, there are
restrictions on the types of algorithms that can be applied
on specialized hardware, and often there is a relatively high
cost to send data back and forth [60, 62]. Our approach uses
native SIMD instructions on the CPU, inflicting at worst a
slight overhead penalty2 to achieve large performance gains.

III. METHOD

Most SBMPs can be decomposed into a handful of “prim-
itive” operations (see Ch. 7 in Choset et al. [2]). Algorithms
typically use (approximate) nearest-neighbors (NN) to find
nearby states, a state validity function (e.g., checking for
collisions), a local planner or steering function to grow edges
between states, and an edge validity function to check these
edges. Validity functions usually require forward kinematics
(FK) to compute the poses of the robot’s links in its workspace
from a configuration.

We lift a selection of these primitives—FK and state/edge
validity checking—to operate over vectors of states in parallel.
This lifting immediately accelerates the primitive operations
by multiplying their throughput. More importantly, shifting
perspective to vector primitives (1) admits low-overhead par-
allelism that cooperates with sequential code, and (2) reveals
beneficial algorithmic changes to the primitives based on
insights about their specific uses in SBMP. This perspective
allows us to exploit ubiquitous hardware parallelism via SIMD
instructions, resulting in highly efficient implementations of
our vector primitives. Finally, by focusing on primitives com-
mon across SBMPs, we improve the performance of almost
any SBMP without requiring significant algorithmic changes.

A. Vectorized Motion Planning

“Vectorized” is an overloaded term; we use it in the SIMD
sense, where a “vector” is a fixed-length set of values with
the same scalar datatype (e.g., floating-point numbers) and
a “vectorized operation” is an operation that transforms all
values in a vector independently, in parallel.

This parallelism model is similar to GPU computing (and
our lifted vector operations may benefit GPU-based planners),
but with a few key differences. We focus on CPU-based SIMD
parallelism—our algorithms run on any modern computer,
even those without a GPU. This increases applicability and
decreases both the barrier to entry and the power consumption
of our technique. CPU-based SIMD parallelism is also better-
suited to the opportunities for parallelism in SBMP: it has
significantly lower overhead than GPU-, thread-, or process-
based parallelism3 and is amenable both to fine-grained
interleaving of parallel and sequential code and to efficient
computation for relatively small workloads.

Exploiting SIMD instructions requires careful consideration
of data structure and algorithm design, often involving

2CPUs may downclock when using SIMD instructions—there is also a cost
to move data in and out of vector registers.

3While modern hardware is quite parallelism-performant, there is still
non-negligible overhead (e.g., GPU-CPU communication latency) in the tens
of microseconds, which can easily add up into the milliseconds.



Fig. 1. Struct-of-Arrays (SOA) and Array-of-Structs (AOS) memory layout.
Here, there are three configurations a, b, and c, each with four dimensions.
AOS is the more “natural” layout of memory, but hard to exploit with SIMD.

unconventional memory layouts to ensure adequate data
parallelism. Our approach addresses this challenge through a
novel Struct-of-Arrays (SOA) memory layout for FK and CC.
This choice enables seamless exploitation of data parallelism,
allowing us to pose and check multiple configurations for
collision in parallel. The SOA layout stands in contrast to
the more common Array-of-Structs (AOS) layout (illustrated
in Fig. 1), which is less favorable for SIMD approaches as it
causes memory access patterns that slow access to values.

Many SBMP algorithms and subroutines make heavy use
of conditional branching, inimical to parallel code. However,
as CPU-based SIMD parallelism allows easy interleaving of
parallel and sequential code, and as our subroutines have
reduced branching, we are able to sidestep this problem
more easily compared to other forms of parallelism4. These
properties mean that our algorithm implementations, despite
being parallelized, are close to “standard” algorithms—there
is no explicit synchronization or communication code, etc.

The overhead of conventional mechanisms (e.g., threads)
limits naive parallelization of SBMP—reducing this overhead
is especially challenging as most SBMP algorithms rapidly al-
ternate between expensive, parallelization-friendly subroutines
(e.g., CC) and code that relies on these subroutines but is not
itself easily parallelized (e.g., graph search). Fortunately, the
relatively low overhead of CPU SIMD-based parallelism—and
the specific nature of this overhead, which modern compilers
excel at reducing—means that our vector-oriented primitives
(the expensive subroutines) can be efficiently interleaved
within a SBMP. This property may suffice to accelerate
SBMP by, e.g., reducing the cost of a single collision check.
However, by using SOA memory layouts for our vector-
oriented operations, we can not only perform the computation
required for SBMP in parallel, but also exploit motion-
planning-specific independence patterns in this computation
to intelligently order the requisite operations to improve
overall performance.

B. Vectorized Forward Kinematics

Vectorized FK is necessary to pose batches of states in
parallel for subsequent parallel CC; sequentially posing each
element in a batch introduces a bottleneck that reduces
overall throughput. Naive vectorization of FK attempts to

4We also benefit from advances in modern hardware, which have produced
branch predictors and fused “test-and-branch” instructions that are highly
performant on the limited set of branches we retain.

compute the poses for a single configuration faster—we
instead choose a less conventional use of vectorization:
carrying out each operation in sequence, but on multiple
configurations simultaneously.

FK implementations commonly use dynamic branching
and joint-type polymorphism to compute transforms between
links (e.g.,, KDL [63]). This structure is difficult for compilers
to optimize and has spurious data dependencies between link
transforms, which decreases throughput and causes slower
operations across the entire vector of configurations. These
dependencies arise as the compiler cannot determine if poses
later in the kinematic tree depend on earlier poses (or, better
still, on components of these poses). Even naively vectorizing
FK for multiple configurations requires vector configuration
and pose data structures, and use of vector operations, which
are tedious to manually implement.

We overcome these challenges with a novel tracing com-
piler for robot kinematics. This compiler takes in stan-
dard Universal Robot Description Format (URDF) files and
traces the operations of arbitrary functions of the robot’s
kinematics (e.g., FK). It uses this trace to automatically
generate (1) a vector configuration structure representing a
batch of configurations and (2) the minimal set of operations
required to compute the traced function. This latter output
constitutes an “unrolled” FK loop that avoids branching and
spurious data dependencies, allowing an optimizing compiler
to generate faster machine code. Further, our tracing compiler
applies optimizations to reduce the operations required, e.g.,
constant folding, algebraic simplification, removing redundant
negations, etc. This use of automatic code generation creates
hyper-specialized vector-lifted FK without loss of generality,
as the tracing compiler itself is general. We note other
techniques for efficient FK by, e.g., Carpentier et al. [52],
which uses static polymorphism and the Curiously Recurring
Template Pattern (CRTP) for compile-time optimized FK
routines. In contrast, our tracing compiler, by merit of tracking
the precise operations (e.g., the multiplies, sines, etc. from
input configuration to output pose), outputs “straightline” code
that removes operations that are not necessarily detectable at
compile-time with CRTP.

C. Vectorized Collision Checking

Existing approaches to CC (e.g., broadphases, narrowphase
triangle mesh collision algorithms [64]) are optimized for
checking a single configuration. Fully vectorizing these
approaches is challenging. We instead draw inspiration from
classical work on simplified representations of robots and ob-
stacles [65, 66] to automatically generate collision geometry
from meshes using primitives (i.e., spheres, cylinders, and
cuboids). Sphere-based representations are common in the
trajectory optimization literature [7, 15].

By representing the robot and environment as geometric
primitives we can vectorize intersection tests between pairs
of such primitives. We check batches of robot poses for self-
collision and environment collision in parallel and reject the
whole batch if any collide. Surprisingly, we see that this
narrowphase-only approach (due to its reduced branching)



a b

c

d

Fig. 2. Illustration of the “raked” motion validator for a two-link mechanism.
a) The rake consists of evenly spaced configurations (here, n = 4), which are
“raked” backwards to achieve sufficient resolution. b) These configurations
are computed in SOA form from an initial AOS layout, then checked in
parallel. c) Spherical approximations of collision geometry are checked in
parallel. A hierarchy of spheres is used to avoid unnecessary checks. d)
When any collision is discovered at the lowest refinement level (in red), the
entire check terminates (the last sphere in grey is skipped).

can be highly efficient even in complex environments. Further,
using spheres to represent the robot’s geometry synergizes
with our tracing compiler for FK—as we only compute the
position of each sphere (rather than a full SE(3) pose), the
compiler skips a large number of irrelevant operations.

D. Vectorized Motion Validation

SBMPs validate not only individual states, but also the
motions between them. Typically, motion validation requires
discretizing a continuous motion and validating each state in
the discretization. Thus, this is where SBMPs spend most of
their time, and a significant body of work [27, 67, 68] has gone
into reducing the number of edges validated during planning.
However, here is where our perspective on vector-lifted
primitives shines: by combining our previously developed
insights into vectorized FK and individual state CC, we unearth
further algorithmic insights to improve the performance of
motion validation via vectorization.

For efficient motion validation, we want to stop checking
invalid motions as quickly as possible. Assuming uniform
probability of collision along a motion5, n

2 CC attempts are
wasted (in expectation) for an invalid motion discretized into
n states. Due to our perspective on vector-lifted FK and
CC, we can reduce the amount of wasted computation by
testing a spatially distributed set of states in parallel. Without
loss of generality, consider a vector of eight states, and a
motion discretized into n states. We can simultaneously check
states [0, n

8 , . . . ,
7n
8 ] for the cost of a single check6, and—if

no collisions are found—comb through the remaining states

5In reality, for, e.g., motion toward objects, this distribution is not uniform.
6This is a slight simplification; vector operations have low but nonzero

overhead, and using them as we do may prevent auto-vectorization.

by incrementing each index, for at most n
8 iterations. We

refer to this spatially distributed collision check as the “rake”
(Fig. 2). Beyond improving CC throughput by decreasing
the total number of checks required by a factor of the width
of the vector, by spatially distributing the states checked,
we increase the probability of exiting CC early for invalid
motions—the validity of close states is correlated, so we
have a higher chance of finding an invalid state by testing
along the entire motion at once, compared to, e.g., the first
eight states at once. Other work has investigated spatially
distributed collision check scheduling in both hardware [60]
and non-parallel software [27].

Although the pure narrowphase approach is highly effec-
tive, we augment it with a “mid-phase” check. Specifically:
we employ a hierarchy of increasingly refined sphere collision
models of the robot, and use coarse levels of this hierarchy
to avoid expensive checks at the finer levels. We generate
a sphere model for the robot with a single sphere per
link, conservatively over-approximating the actual collision
geometries. If this sphere does not collide with a given
obstacle, we know that the actual collision geometry cannot
collide with that obstacle, and can skip checking the spheres
of the higher-fidelity model. Notably, this does not require the
typical branching-heavy approaches to broadphase collision
detection, e.g., bounding volume hierarchies—our approach
does not require or use the typical recursive tree structure or
any update operations beyond FK.

For efficiency, it is preferable to not compute poses for
any of a robot’s links that come after a link in collision.
We exploit a property of our tracing compiler, which can
re-order instructions topologically, to interleave each sphere’s
collision check (environment and self-collision) within the
generated FK code, placing checks immediately after the
position of the sphere has been computed, wasting almost no
effort on irrelevant FK computation and achieving a significant
performance gain. This interleaving is compatible with the
previously-described hierarchical sphere tree.

E. Bringing it Together: Design of the Planner

We also leverage SIMD instructions elsewhere to improve
planner performance. Although not required in general, we
assume the configuration space of the robot is Euclidean
and thus linear interpolation between two AOS configurations
becomes simply adding and multiplying their vectors together.
Similarly, the ℓ2-norm is computed efficiently as a horizontal
summation. We use these improvements to quickly compute
the intermediate configurations used in the rake as well as
distances in our NN data-structure [51, 69].

We have implemented two SBMPs: RRT-Connect [1] and
PRM [5], without algorithmic changes or additional com-
plexity due to our focus on planner primitives.We have also
implemented simplification algorithms: randomized shortcut-
ting [70, 71] and B-spline smoothing [72].

IV. EXPERIMENTS

We evaluate our approach against two baselines which use
the Open Motion Planning Library (OMPL) [17]: MoveIt [73]



a)

b) c)

d) e)

Fig. 3. Results for the 7 DOF Panda. a) Planning times for each
problem class. b) Planning time vs. initial path length and c) planning and
simplification time vs. simplified path length for entire dataset. d) Cumulative
distribution of planning time and e) cumulative distribution of simplified
path length for entire dataset. All times are on a logarithmic scale.

Mean
Simpl.System Mean Q1 Median Q3 95% Succ.

Pa
nd

a

PyBullet/OMPL 58.47 12.76 21.21 43.35 224.41 121.38 99.6%
MoveIt/OMPL 23.51 14.28 16.58 22.54 63.08 46.95 100%
VAMP (ARM) 0.70 0.18 0.29 0.62 2.73 1.03 100%

VAMP 0.10 0.02 0.04 0.08 0.43 0.12 100%

Fe
tc

h

PyBullet/OMPL 3035.83 135.88 461.48 1544.34 10358.44 225.17 99.8%
MoveIt/OMPL 788.68 94.11 243.80 666.56 3107.80 137.14 100%
VAMP (ARM) 28.24 1.72 5.76 23.25 116.74 3.93 99.5%

VAMP 6.25 0.25 1.12 4.92 25.16 0.52 99.5%

B
ax

te
r

PyBullet/OMPL 4309.19 881.31 1500.44 2711.61 13100.54 938.62 99.3%
MoveIt/OMPL 668.80 192.23 362.34 757.69 2267.35 96.81 100%
VAMP (ARM) 32.54 8.02 13.93 25.89 104.57 9.77 100%

VAMP 6.68 1.22 2.32 4.68 22.97 1.22 100%

Table I. Planning time for RRT-Connect from Figs. 3 to 5. The mean, first
quantile, median, third quantile, and 95% quantile are shown, along with
mean simplification time and success rate. All times are in milliseconds.

through Robowflex [74] (MoveIt/OMPL) and OMPL’s Python
bindings with PyBullet [25] (PyBullet/OMPL). These repre-
sent two common interfaces of motion planning in practice:
the standard motion planner for ROS [75], and a Python
implementation using a popular simulation framework. We
evaluate our implementation, “Vector Accelerated Motion
Planning” on an x86-based desktop computer (VAMP) as
well as a small ARM-based single-board computer (VAMP
(ARM))7. All hyperparameters are shared between each
implementation: all planners use equivalent implementations

7For VAMP, AVX2 was used. The authors attempted using AVX-512, but
found lower throughput than AVX2, possibly due to downclocking, lack of
512-bit registers, or other issues that will be investigated in future work. For
VAMP (ARM), ARM’s Neon SIMD instructions were used.

a)

b) c)

d) e)

Fig. 4. Results for the 8 DOF Fetch. a) Planning times for each problem class.
b) Planning time vs. initial path length and c) planning and simplification
time vs. simplified path length for entire dataset. d) Cumulative distribution
of planning time and e) cumulative distribution of simplified path length for
entire dataset. All times are on a logarithmic scale.

System Mean Q1 Median Q3 95% Succ.

Pa
nd

a PyBullet/OMPL 4481.66 127.63 328.73 1328.37 14183.90 99.1%
MoveIt/OMPL 615.58 415.14 416.73 418.23 1116.90 96.2%

VAMP 11.12 0.16 0.37 1.69 39.39 99.7%

Fe
tc

h PyBullet/OMPL 36422.87 2417.08 13060.40 38550.10 174517.60 71.3%
MoveIt/OMPL 4514.73 468.71 1037.15 3000.64 23895.72 85.7%

VAMP 337.23 7.69 30.09 181.73 2014.40 94.7%

Table II. Planning times for PRM over problem classes table pick, table
under pick, and box. The mean, first quantile, median, third quantile, 95%
quantile, and success rate are shown. All times are in milliseconds.

of algorithms with identical validity checking resolution.
Moreover, we determinize all planners by sampling from
a multi-dimensional Halton sequence [76–78]. The same
sequence is used between all systems. Thus, performance
differences can be attributed to vector-acceleration8.

All benchmarks for MoveIt/OMPL, PyBullet/OMPL, and
VAMP were performed with a AMD Ryzen™ 9 7950X CPU
clocked at 4.5GHz. For VAMP (ARM), benchmarks were run
on an Orange Pi 5B with an ARM Cortex-A76 CPU clocked at
2.4GHz. Our approach is implemented in C++17 with Python
bindings through nanobind [79]. All code (including OMPL
and MoveIt) was compiled using clang 15.0.7 with
the -Ofast optimization level9 and with all architecture

8MoveIt/OMPL uses the ℓ1 metric for nearest neighbors rather than ℓ2.
9Note that some of the issues with -ffast-math, e.g., handling non-

finite values, subnormals, etc., are not particularly relevant for the motion
planning case, where configurations are from a compact, closed, and bounded
space with relatively similar range in each dimension. However, we warn
practitioners to still be wary of issues arising from reciprocal approximation.



a) b)

c) d)

Fig. 5. Results for the 14 DOF Baxter over entire dataset. a) Planning time
vs. initial path length. b) Planning time plus simplification time vs. simplified
path length. d) Cumulative distribution of planning time and e) cumulative
distribution of simplified path length. All times are on a logarithmic scale.

optimizations (-march=native, i.e., znver4).
We evaluate on seven different environments from the

MotionBenchMaker [16] dataset, a collection of realistic,
difficult motion planning problems: 1) table pick and table
under pick environments to evaluate tabletop manipulation,
2) bookshelf small, tall, and thin to demonstrate reaching, and
3) box and cage to demonstrate highly constrained reaching.
We use the publicly available pre-generated 100 problems
for each of the environments. We evaluate on the following
systems: 1) the 7 DOF Franka Emika Panda10, 2) the 8 DOF
Fetch Robotics Fetch, including the prismatic torso joint,
and 3) the 14 DOF bimanual Rethink Robotics Baxter. For
the Baxter, we use the bookshelf tall {easy, medium, hard}
datasets for bimanual manipulation. For Fetch and Baxter,
we use the algorithm of Bradshaw and O’Sullivan [65] to
automatically generate a spherized model (after ensuring
manifold meshes [80, 81])—these approximations were also
manually tuned. We evaluate each planner on each problem
5 times. For MoveIt/OMPL and PyBullet/OMPL, we give
a timeout of 5 minutes. For VAMP and VAMP (ARM), we
give a limit of 1 million planner iterations.

Results for RRT-Connect on the Panda, Fetch, and Bax-
ter are respectively shown in Figs. 3 to 5 and summarized
in Table I. We note the following general features of these
plots: 1) times are all reported on a logarithmic scale, 2) the
distribution of planning time for VAMP is almost completely
separated from both PyBullet/OMPL and MoveIt/OMPL,
and 3) the distribution shapes of planning time versus
path length are qualitatively similar and simplified path
length distributions are equivalent for each planner, indicating
planner similarity at the algorithmic level. Over all robots,
VAMP is roughly 500x faster than PyBullet/OMPL and 100
to 200x faster than MoveIt/OMPL, while achieving similar
path quality. VAMP provides high-quality plans at control
frequencies, e.g., 10 kHz mean, 25 kHz median, and 2.3 kHz
95% planning rates for the Panda arm for the entire dataset,

10We use the approximation of the Panda from Fishman et al. [15]

which includes trivial problems such as tabletop manipulation
and complex problems such as reaching into shelves. Note
that even the slowest number in Table I, 25ms for the Fetch’s
95% quantile, achieves a 40Hz planning rate. Morever,
VAMP (ARM) also achieves similar speed-ups on a low-
power single-board computer (the Orange Pi 5B uses up to
7W), still 20–50x faster than baselines on a desktop CPU. We
also report times for PRM for the Panda and Fetch over the
table pick, table under pick, and box environments (Table II),
and show the same caliber of performance improvements,
indicating our approach generalizes across SBMPs.

V. DISCUSSION

Efficient motion planning is critical for many applications
of robotics. In this paper, we demonstrate a novel approach to
accelerating motion planning, based on a new perspective on
vector-oriented operations for simple, high-frequency inter-
leaving of high-performance parallelized and serial sections
of code present in most sampling-based motion planning
algorithms. By applying this perspective to the most expensive
and ubiquitous motion planning subroutines (i.e., collision
checking, forward kinematics, and distance computation),
we achieve algorithmic improvements and create proof-of-
concept planners that achieve more than 500x speedup over
the state of the art on realistic, challenging planning problems
for three different robots. Our approach solves planning
problems at kilohertz rates on ordinary consumer CPUs and
low-power single-board computers.

We also believe that our ideas will extend naturally to
harder motion planning problems, such as kinodynamic
and manifold-constrained planning. Further, because we can
produce so many motion plans so fast, we may be able to
efficiently provide empirical proofs of solution nonexistence, a
feat that has long been challenging for SBMP. There may also
be potential for using our vector-oriented planners as local
planners inside higher-level motion planning algorithms.

The planning performance demonstrated in this work
pushes SBMP for high-DoF manipulators to frequencies
required for control—providing a complete, global, high-
quality plan at each update. We believe that this is cause
to re-examine old assumptions in robotics about the roles of
planning and control, as well as about the “best” way to solve
problems such as planning under uncertainty or integrated
task and motion planning. In particular, we are excited to
explore extensions of this work around, e.g., rapid replanning,
integrated task and motion planning, etc. In general, there is
a rich discussion to be had about implications for algorithms
that use motion planning as a subroutine, and that have
traditionally needed to be designed around motion planning
as an expensive subroutine, now that we can consistently
provide high-quality motion plans at high frequencies.

ACKNOWLEDGEMENTS

The authors would like to thank Mark Moll for help evaluat-
ing MoveIt, Sofia Paola Medina-Chica for ARM development,
and Stefan Bukorovic for collision primitive development.



REFERENCES

[1] J. J. Kuffner and S. M. LaValle. “RRT-connect: An efficient approach
to single-query path planning”. In: IEEE International Conference
on Robotics and Automation. Vol. 2. IEEE. 2000, pp. 995–1001.

[2] H. Choset, K. M. Lynch, S. Hutchinson, G. A. Kantor, W. Burgard,
L. E. Kavraki, and S. Thurn. Principles of robot motion: theory,
algorithms, and implementations. MIT press, 2005.

[3] S. M. LaValle. Planning algorithms. Cambridge university press,
2006.

[4] L. E. Kavraki and S. M. LaValle. “Motion planning”. In: Springer
Handbook of Robotics. Springer, 2016, pp. 139–162.

[5] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars. “Proba-
bilistic roadmaps for path planning in high-dimensional configuration
spaces”. In: IEEE Transations on Robotics and Automation 12.4
(1996), pp. 566–580.

[6] M. Zucker, N. Ratliff, A. D. Dragan, M. Pivtoraiko, M. Klingensmith,
C. M. Dellin, J. A. Bagnell, and S. S. Srinivasa. “CHOMP: Covariant
Hamiltonian optimization for motion planning”. In: The International
Journal of Robotics Research 32.9–10 (2013), pp. 1164–1193.

[7] J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow, J.
Pan, S. Patil, K. Goldberg, and P. Abbeel. “Motion planning with
sequential convex optimization and convex collision checking”.
In: The International Journal of Robotics Research 33.9 (2014),
pp. 1251–1270.

[8] W. C. Agboh and M. R. Dogar. “Real-Time Online Re-Planning for
Grasping Under Clutter and Uncertainty”. In: IEEE-RAS International
Conference on Humanoid Robots. 2018, pp. 1–8.

[9] N. M. Amato and L. K. Dale. “Probabilistic Roadmap Methods
Are Embarrassingly Parallel”. In: IEEE International Conference on
Robotics and Automation. Vol. 1. May 1999, 688–694 vol.1.

[10] J. Bialkowski, S. Karaman, and E. Frazzoli. “Massively Parallelizing
the RRT and the RRT”. In: IEEE/RSJ International Conference on
Intelligent Robots and Systems. Sept. 2011, pp. 3513–3518.

[11] S. A. Jacobs, K. Manavi, J. Burgos, J. Denny, S. Thomas, and N. M.
Amato. “A Scalable Method for Parallelizing Sampling-Based Motion
Planning Algorithms”. In: IEEE International Conference on Robotics
and Automation. 2012, pp. 2529–2536.

[12] C. Park, J. Pan, and D. Manocha. “Real-Time Optimization-Based
Planning in Dynamic Environments Using GPUs”. In: IEEE Interna-
tional Conference on Robotics and Automation. 2013, pp. 4090–4097.

[13] M. Bhardwaj, B. Sundaralingam, A. Mousavian, N. D. Ratliff, D. Fox,
F. Ramos, and B. Boots. “STORM: An Integrated Framework for Fast
Joint-Space Model-Predictive Control for Reactive Manipulation”.
In: Conference on Robot Learning. 2021.

[14] B. Sundaralingam, S. K. S. Hari, A. Fishman, C. Garrett, K. Van Wyk,
V. Blukis, A. Millane, H. Oleynikova, A. Handa, F. Ramos, N. Ratliff,
and D. Fox. “CuRobo: Parallelized Collision-Free Robot Motion
Generation”. In: IEEE International Conference on Robotics and
Automation. 2023, pp. 8112–8119.

[15] A. Fishman, A. Murali, C. Eppner, B. Peele, B. Boots, and D. Fox.
“Motion Policy Networks”. In: Proceedings of The 6th Conference
on Robot Learning. Ed. by K. Liu, D. Kulic, and J. Ichnowski.
Vol. 205. Proceedings of Machine Learning Research. PMLR, Dec.
2023, pp. 967–977.

[16] C. Chamzas, C. Quintero-Pena, Z. Kingston, A. Orthey, D. Rakita,
M. Gleicher, M. Toussaint, and L. E. Kavraki. “MotionBenchMaker:
A tool to generate and benchmark motion planning datasets”. In:
IEEE Robotics and Automation Letters 7.2 (2021), pp. 882–889.

[17] I. A. Sucan, M. Moll, and L. E. Kavraki. “The open motion planning
library”. In: IEEE Robotics & Automation Magazine 19.4 (2012),
pp. 72–82.

[18] J. H. Reif. “Complexity of the mover’s problem and generalizations”.
In: Annual Symposium on Foundations of Computer Science. IEEE
Computer Society. 1979, pp. 421–427.

[19] J. Canny. The complexity of robot motion planning. MIT press, 1988.
[20] M. Kleinbort, O. Salzman, and D. Halperin. “Collision Detection

or Nearest-Neighbor Search? On the Computational Bottleneck in
Sampling-based Motion Planning”. In: Algorithmic Foundations of
Robotics. Ed. by K. Goldberg, P. Abbeel, K. Bekris, and L. Miller.
Cham: Springer International Publishing, 2020, pp. 624–639.

[21] C. Ericson. Real-time collision detection. CRC Press, 2004.
[22] C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, and D. Manocha.

“Fast BVH construction on GPUs”. In: Computer Graphics Forum.
Vol. 28. 2. Wiley Online Library. 2009, pp. 375–384.

[23] T. Tan, R. Weller, and G. Zachmann. “SIMDop: SIMD Optimized
Bounding Volume Hierarchies for Collision Detection”. In: IEEE/RSJ
International Conference on Intelligent Robots and Systems. IEEE.
2019, pp. 7256–7263.

[24] J. Pan, S. Chitta, and D. Manocha. “FCL: A general purpose library for
collision and proximity queries”. In: IEEE International Conference
on Robotics and Automation. IEEE. 2012, pp. 3859–3866.

[25] E. Coumans and Y. Bai. PyBullet, a Python module for physics
simulation for games, robotics and machine learning. http://
pybullet.org. 2016–2021.

[26] G. Sánchez and J.-C. Latombe. “A single-query bi-directional
probabilistic roadmap planner with lazy collision checking”. In:
International Symposium on Robotics Research. Springer. 2003,
pp. 403–417.

[27] R. Bohlin and L. E. Kavraki. “Path planning using lazy PRM”. In:
IEEE International Conference on Robotics and Automation. Vol. 1.
IEEE. 2000, pp. 521–528.

[28] N. Haghtalab, S. Mackenzie, A. Procaccia, O. Salzman, and S.
Srinivasa. “The provable virtue of laziness in motion planning”.
In: International Conference on Automated Planning and Scheduling.
Vol. 28. 2018, pp. 106–113.

[29] C. L. Nielsen and L. E. Kavraki. “A two level fuzzy PRM for
manipulation planning”. In: IEEE/RSJ International Conference on
Intelligent Robots and Systems. Vol. 3. IEEE. 2000, pp. 1716–1721.

[30] S. Choudhury, S. Srinivasa, and S. Scherer. “Bayesian active edge
evaluation on expensive graphs”. 2017. arXiv: 1711 . 07329
[cs.RO].

[31] N. Das and M. Yip. “Learning-based proxy collision detection for
robot motion planning applications”. In: IEEE Transactions on
Robotics 36.4 (2020), pp. 1096–1114.

[32] M. Danielczuk, A. Mousavian, C. Eppner, and D. Fox. “Object
rearrangement using learned implicit collision functions”. In: IEEE
International Conference on Robotics and Automation. IEEE. 2021,
pp. 6010–6017.

[33] A. Murali, A. Mousavian, C. Eppner, A. Fishman, and D. Fox.
“CabiNet: Scaling Neural Collision Detection for Object Rearrange-
ment with Procedural Scene Generation”. In: IEEE International
Conference on Robotics and Automation. 2023, pp. 1866–1874.

[34] D. Rakita, B. Mutlu, and M. Gleicher. “RelaxedIK: Real-time
Synthesis of Accurate and Feasible Robot Arm Motion”. In: Robotics:
Science and Systems. Vol. 14. Pittsburgh, PA. 2018, pp. 26–30.

[35] M. Koptev, N. Figueroa, and A. Billard. “Neural Joint Space Implicit
Signed Distance Functions for Reactive Robot Manipulator Control”.
In: IEEE Robotics and Automation Letters 8.2 (Feb. 2023), pp. 480–
487.

[36] J. Barraquand and J.-C. Latombe. “A Monte-Carlo algorithm for path
planning with many degrees of freedom”. In: IEEE International
Conference on Robotics and Automation. IEEE. 1990, pp. 1712–1717.

[37] D. Henrich. “Fast motion planning by parallel processing—a review”.
In: Journal of Intelligent and Robotic Systems 20 (1997), pp. 45–69.

[38] N. A. Wedge and M. S. Branicky. “On heavy-tailed runtimes and
restarts in rapidly-exploring random trees”. In: AAAI Conference on
Artificial Intelligence. Citeseer. 2008, pp. 127–133.

[39] B. Raveh, A. Enosh, and D. Halperin. “A little more, a lot better:
Improving path quality by a path-merging algorithm”. In: IEEE
Transactions on Robotics 27.2 (2011), pp. 365–371.

[40] E. Plaku, K. E. Bekris, B. Y. Chen, A. M. Ladd, and L. E. Kavraki.
“Sampling-Based Roadmap of Trees for Parallel Motion Planning”.
In: IEEE Transactions on Robotics 21.4 (2005), pp. 597–608.

[41] S. Xiao, N. Bergmann, and A. Postula. “Parallel RRT* architecture
design for motion planning”. In: International Conference on Field
Programmable Logic and Applications. IEEE. 2017, pp. 1–4.

[42] J. Ichnowski and R. Alterovitz. “Parallel sampling-based motion
planning with superlinear speedup”. In: IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE. 2012, pp. 1206–
1212.

[43] S. Mukherjee, S. Aine, and M. Likhachev. “ePA*SE: Edge-based
Parallel A* for Slow Evaluations”. In: International Symposium on
Combinatorial Search. Vol. 15. 1. 2022, pp. 136–144.

[44] S. Mukherjee, S. Aine, and M. Likhachev. “MPLP: Massively
Parallelized Lazy Planning”. In: IEEE Robotics and Automation
Letters 7.3 (2022), pp. 6067–6074.

[45] Y. Zhou and J. Zeng. “Massively Parallel A* Search on a GPU”. In:
29.1 (), p. 7.

http://pybullet.org
http://pybullet.org
https://arxiv.org/abs/1711.07329
https://arxiv.org/abs/1711.07329


[46] A. Fukunaga, A. Botea, Y. Jinnai, and A. Kishimoto. “A Survey of
Parallel A*”. 2017. arXiv: 1708.05296 [cs.AI].

[47] A. Fukunaga, A. Botea, Y. Jinnai, and A. Kishimoto. “Parallel A* for
State-Space Search”. In: Handbook of Parallel Constraint Reasoning.
Ed. by Y. Hamadi and L. Sais. Springer International Publishing,
2018, pp. 419–455.

[48] J. Pan and D. Manocha. “GPU-based parallel collision detection for
fast motion planning”. In: The International Journal of Robotics
Research 31.2 (2012), pp. 187–200.

[49] Intel®. Intel® 64 and IA-32 architectures software developer’s
manual. Tech. rep. Intel®, 2023.

[50] M. Kameyama, T. Amada, and T. Higuchi. “Highly parallel collision
detection processor for intelligent robots”. In: IEEE Journal of Solid-
State Circuits 27.4 (1992), pp. 500–506.

[51] J. Ichnowski and R. Alterovitz. “Motion planning templates: A motion
planning framework for robots with low-power CPUs”. In: IEEE
International Conference on Robotics and Automation. IEEE. 2019,
pp. 612–618.

[52] J. Carpentier, G. Saurel, G. Buondonno, J. Mirabel, F. Lamiraux,
O. Stasse, and N. Mansard. “The Pinocchio C++ library: A fast and
flexible implementation of rigid body dynamics algorithms and their
analytical derivatives”. In: IEEE/SICE International Symposium on
System Integration. IEEE. 2019, pp. 614–619.

[53] B. Ichter, E. Schmerling, and M. Pavone. “Group Marching Tree:
Sampling-Based Approximately Optimal Motion Planning on GPUs”.
In: IEEE International Conference on Robotic Computing. IEEE.
2017, pp. 219–226.

[54] R. C. Lawson, L. Wills, and P. Tsiotras. “GPU Parallelization of
Policy Iteration RRT#”. 2020. arXiv: 2003.04920 [cs.RO].

[55] P. Hyatt, C. S. Williams, and M. D. Killpack. “Parameterized
and GPU-Parallelized Real-Time Model Predictive Control for
High Degree-of-Freedom Robots”. 2020. arXiv: 2001 . 04931
[eess.SY].

[56] Z. Wan, B. Yu, T. Y. Li, J. Tang, Y. Zhu, Y. Wang, A. Raychowdhury,
and S. Liu. “A survey of FPGA-based robotic computing”. In: IEEE
Circuits and Systems Magazine 21.2 (2021), pp. 48–74.

[57] S. Murray, W. Floyd-Jones, Y. Qi, D. Sorin, and G. Konidaris. “Robot
Motion Planning on a Chip”. In: Robotics: Science and Systems.
AnnArbor, Michigan, June 2016.

[58] S. Murray, W. Floyd-Jones, Y. Qi, G. Konidaris, and D. J. Sorin. “The
microarchitecture of a real-time robot motion planning accelerator”.
In: IEEE/ACM International Symposium on Microarchitecture. IEEE.
2016, pp. 1–12.

[59] S. Murray. “Accelerated Motion Planning Through
Hardware/Software Co-Design”. PhD thesis. Duke University, 2019.

[60] D. Shah, N. Yang, and T. M. Aamodt. “Energy-Efficient Realtime
Motion Planning”. In: International Symposium on Computer Archi-
tecture. New York, NY, USA: ACM, June 17, 2023, pp. 1–17.

[61] S. M. Neuman, B. Plancher, T. Bourgeat, T. Tambe, S. Devadas,
and V. J. Reddi. “Robomorphic Computing: A Design Methodology
for Domain-Specific Accelerators Parameterized by Robot Morphol-
ogy”. In: ACM International Conference on Architectural Support
for Programming Languages and Operating Systems. ACM, 2021,
pp. 674–686.

[62] B. v. Werkhoven, J. Maassen, F. Seinstra, and H. Bal. “Performance
Models for CPU-GPU Data Transfers”. In: 2014 14th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing.
2014, pp. 11–20.

[63] H. Bruyninckx. “Open robot control software: the OROCOS project”.
In: IEEE International Conference on Robotics and Automation.
Vol. 3. IEEE. 2001, pp. 2523–2528.

[64] E. Gilbert, D. Johnson, and S. Keerthi. “A Fast Procedure for
Computing the Distance between Complex Objects in Three Space”.
In: IEEE International Conference on Robotics and Automation.
Vol. 4. Mar. 1987, pp. 1883–1889.

[65] G. Bradshaw and C. O’Sullivan. “Adaptive medial-axis approximation
for sphere-tree construction”. In: ACM Transactions on Graphics
(TOG) 23.1 (2004), pp. 1–26.

[66] C. O’Sullivan and J. Dingliana. “Real-Time Collision Detection and
Response Using Sphere-Trees”. In: Spring Conference on Computer
Graphics 1 (Apr. 1999).

[67] A. Mandalika, S. Choudhury, O. Salzman, and S. Srinivasa. “Gener-
alized lazy search for robot motion planning: Interleaving search and
edge evaluation via event-based toggles”. In: International Conference
on Automated Planning and Scheduling. Vol. 29. 2019, pp. 745–753.

[68] M. P. Strub and J. D. Gammell. “Adaptively informed trees (AIT*)
and effort informed trees (EIT*): Asymmetric bidirectional sampling-
based path planning”. In: The International Journal of Robotics
Research 41.4 (2022), pp. 390–417.

[69] J. Ichnowski and R. Alterovitz. “Concurrent nearest-neighbor search-
ing for parallel sampling-based motion planning in SO(3), SE(3), and
Euclidean spaces”. In: Algorithmic Foundations of Robotics. Springer.
2020, pp. 69–85.

[70] R. Geraerts and M. H. Overmars. “Creating high-quality paths for
motion planning”. In: The International Journal of Robotics Research
26.8 (2007), pp. 845–863.

[71] K. Hauser and V. Ng-Thow-Hing. “Fast smoothing of manipulator
trajectories using optimal bounded-acceleration shortcuts”. In: IEEE
International Conference on Robotics and Automation. IEEE. 2010,
pp. 2493–2498.

[72] J. Pan, L. Zhang, and D. Manocha. “Collision-free and smooth tra-
jectory computation in cluttered environments”. In: The International
Journal of Robotics Research 31.10 (2012), pp. 1155–1175.

[73] S. Chitta, I. Sucan, and S. Cousins. “Moveit!” In: IEEE Robotics &
Automation Magazine 19.1 (2012), pp. 18–19.

[74] Z. Kingston and L. E. Kavraki. “Robowflex: Robot motion planning
with MoveIt made easy”. In: IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE. 2022, pp. 3108–3114.

[75] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R.
Wheeler, A. Y. Ng, et al. “ROS: an open-source Robot Operating
System”. In: ICRA Workshop on Open Source Software. Vol. 3. 3.2.
Kobe, Japan. 2009, p. 5.

[76] J. H. Halton. “On the efficiency of certain quasi-random sequences
of points in evaluating multi-dimensional integrals”. In: Numerische
Mathematik 2 (1960), pp. 84–90.

[77] S. M. LaValle, M. S. Branicky, and S. R. Lindemann. “On the
relationship between classical grid search and probabilistic roadmaps”.
In: The International Journal of Robotics Research 23.7-8 (2004),
pp. 673–692.

[78] D. Hsu, J.-C. Latombe, and H. Kurniawati. “On the probabilistic
foundations of probabilistic roadmap planning”. In: International
Symposium on Robotics Research. Springer. 2007, pp. 83–97.

[79] W. Jakob. nanobind: tiny and efficient C++/Python bindings.
https://github.com/wjakob/nanobind. 2022.

[80] J. Huang, H. Su, and L. Guibas. “Robust watertight manifold surface
generation method for shapenet models”. 2018. arXiv: 1802.01698
[cs.CG].

[81] J. Huang, Y. Zhou, and L. Guibas. “ManifoldPlus: A Robust and
Scalable Watertight Manifold Surface Generation Method for Triangle
Soups”. 2020. arXiv: 2005.11621 [cs.GR].

https://arxiv.org/abs/1708.05296
https://arxiv.org/abs/2003.04920
https://arxiv.org/abs/2001.04931
https://arxiv.org/abs/2001.04931
https://arxiv.org/abs/1802.01698
https://arxiv.org/abs/1802.01698
https://arxiv.org/abs/2005.11621

	I Introduction
	II Related Work
	II-A Parallelism in Motion Planning
	II-B Hardware-Accelerated Motion Planning

	III Method
	III-A Vectorized Motion Planning
	III-B Vectorized Forward Kinematics
	III-C Vectorized Collision Checking
	III-D Vectorized Motion Validation
	III-E Bringing it Together: Design of the Planner

	IV Experiments
	V Discussion

