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Abstract: In automated assembly, before parts can be putA new direction in programmable part feeding that has
together, they often have to be appropriately oriented anecently gained attention in research is the use of a new
positioned. The device performing this task is generaliiass of devices for non-prehensible distributed manipula
referred to as a part feeder. A new class of devices fioon. Examples are, in microscale, the use of MEMS actu-
non-prehensible distributed manipulation, such as MEM#Bors arrays [4], and in macroscale, the use of mechanical
actuator arrays, vibrating plates, etc., provides an altedevices [15], vibrating plates [7], or air jets actuatork [3
native to traditional mechanical platforms for part feedThe analysis of the capabilities of these devices is based
ing. These devices can be abstracted as programmadiethe abstraction of these devices as programmable vec-
vector fields. Manipulation plans for these devices caor fields. This analytical approach is pioneered by [4],
therefore be considered as strategies for applying a sghere programmable vector fields are used to represent
guence of fields to bring parts to some desired configdEMS actuator array. The underlying idea is that a part
rations. Typically, to uniquely orient and position a partlying in a force field is driven toward a stable equilibrium
several fields have to be sequentially employed. In duythe resultant force and torque induced by the field at the
recent work [18], we have shown that this objective cgrlanar contact. This basic idea allows a manipulation task
be accomplished using a single field. The work charactéo-be considered as a strategy for applying a sequence of
izes such afield for a given part. In this paper, we discovields to bring a part from one equilibrium to another un-
another interesting property of the field. In particular, wél it reaches a desired configuration. In [4], it has been
show that for a finite set of parts (with different shapesghown that polygonal parts can be oriented by a sequence
we can specify a single field that can uniquely orient arud squeeze fields. The sequence is planned using an al-
position every part in the set. A force field device implgorithm similar to the one in [12] for orienting polygonal
menting this field therefore may be used as a part feegharts with a sensorless parallel jaw gripper. The number
for every part in the set without any reconfiguration.  of steps in the sequence depends on the complexity of the
geometry of the convex hull of the oriented part and the
_ unigueness of the final orientation is only upto modulo
1 Introduction 180°.
Another research direction attempting to apply force
In automated assembly, before parts can be put togetfietds to the positioning problem aims at inventing a sin-
they often have to be appropriately oriented and pogie force field that can induce a unique stable equilibrium
tioned. The device performing this task is generally réar any part, and therefore may be used as a universal part
ferred to as a part feeder. The traditional and mostly usie@der. Such a field would be able to orient any partin one
automated part feeder is the vibratory bowl feeder [8]. \V&tep without any sensor or any sequencing control. Along
bratory bowl feeders are designed to orient a single ptris avenue, the elliptical force field that induces two sta-
shape, therefore they have to be re-designed and re-builil® equilibria was introduced in [14]. Further progress
handle different shapes. Some recent research attemptsdase presented recently in [6] with a proof confirming the
develop systematic approaches for designing and analganjecture in [4], namely, that there exists a combination
ing vibratory bowl feeders [2, 13], while the mainstrearof the unit radial field and a small constant field capable
research in manufacturing has focused in developing mofauniquely orienting and positioning parts. The proof is
flexible and more robust platforms, such as programmabkesed on characterization of local minima of the lifted po-
part feeders. This type of part feeder can be programmntedtial function induced by the field. Unfortunately, due
to handle different parts without the need for hardwate the nature of the proof, this work cannot address how to
modification [9, 12, 10, 1, 7]. compute a finite magnitude of the small constant field that



satisfies the proof. Therefore it is impossible to explcitivhere both integrations are performed over the plane re-
specify the field for a given part. gion occupied by the part. Note that the lateral force mod-
Recently, we introduced a force field that can be sgling used here results in first order dynamics of the mo-
to induce a unique stable equilibrium for almost any pdien of parts under force fields. It is a commonly used
with uniform support [18]. This force field is a combinahypothesis in part orientation with force fields [5, 4, 14].
tion of a linear radial force field and a constant force field. |n this paper, we deal with only two types of force

A linear radial force field is simply a radial force fieldfields: constant fields and radial fields. cénstant field
for which the magnitude of the force at a point is a ling a force field (see Figure 1(a)) with the same force at
ear function of the distance from the point to the center gfery point and aadial field (see Figure 1(b)) is a force
the field. The field is defined by the parameters consigikld for which all forces point toward a single center and
ing of the magnitude of the constant force field and thge magnitude of the force at a point depends only on the
coefficients defining the linear function associated witllstance between the point and the center. It is clear from
the linear radial force field. Unlike [6], we showed howhe definition above that the resultant force induced by a
to explicitly determine the parameters of the field for gdial field must pass through the center of the field.
given part such that the part has a unique stable equilib-
rium when it is placed in this parameterized field. The
objective of this paper is to present an important property
of the field. In [18], the field is determined for a single
given part. Here, we will show that, for a set of parts with
different shapes, we can specify a single field such that
any part in the set can be uniquely oriented. This means
that, when we know the shapes of all parts under consid- (@)
eration, we can set a single field to orient them all without ] )
reconfiguring the field specifically for each part. Elgure 1: Examples of (a) a constant field, and (b) a radial
The rest of the paper is organized as follows. We Wﬁreld.
begin by giving some background and necessary notations
in Section 2. In Section 3, some properties of constantye denote by a tupléz, f(\)) a radial field with center
fields and linear radial force fields which are the found@-and the force at any point be the unit force in the di-
tion of the work will be presented. Then, in Section 4ection fromp to ¢, scaled byf(\) where) is the distance
we will summarize the main contribution of our previougetweerp ande. Note that a linear radial field is a radial
work for which this paper is based on, namely, the lemnfig|d for which the functionf is linear inA. We also use

specifying a field for orienting a given part. Then, in Segg pictorial representation to illustrate a radial field. Uiy
tion 5, we will present Lemma 5 which we will refer to a$ shows an example.

the main result. This lemma states how to specify a sin-
gle field for orienting a set of parts with different shapes.
We will then conclude the paper with some discussion in
Section 6. f(n)
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2 Background
. . . . . igure 2:Pictorial representation of the radial field, f(\)),

We consider a MO dlmer_15|onal part with a umfo_rm ma%?h f(A) > 0. The aF;rows on the rays depict theea di{éct)ién of

and aread that is placed in the plane of a force field. We ¢ forces.

attach the world framé£, n) to this plane.

The part is in equilibrium under the fielg(£, n) when

the resultant forcé” and torqueM vanish. More pre- We define thepivot point of a part under a radial field

cisely, anequilibriumis achieved if and only if to be a fixed point in the part's coordinate frame situated
at the center of the field when an equilibrium is achieved.

_ _ Note that the pivot point is unique for the unit and linear
F= / / g(&,m)dgdn =0 and radial fields [18].

radial field.

M = // ( 157 > x g(&,n) dédn =0, 1We borrow this term from [4] where it is defined only for the wni



3 Geometry of Force Fields 4 Positioning and Orienting aSingle

_ _ o o Shape
As mentioned earlier, our force field is a combination of a

linear radial field and a constant field. This section sunhis paper is based on the previous work which can be
marizes some properties of these two types of fields thahtured in the following lemma. In specific, the lemma
are relavant to the work in this paper. Instead of purely aghows, for a given part, how to specify a force field that
alyzing the fields algebraically, we seek geometric explaguces a unique stable equilibrium for the part. The field
nations. As we will see soon, this approach nicely yiel@gn then be used to orient the part based on the basic idea
intuitive insight about the fields. that a part lying in a force field is driven toward a sta-
The following two lemmas express the relationship bete equilibrium configuration by the resultant force and
tween the resultant forces induced by the fields and tfeéque induced by the field at the planar contact. Due to
vectors from the pivot points to the centers of the fieldghe space limitation, we cannot include the entire proof
This geometric relationship is very helpful as we can ugere. Interested readers are referred to [18]. The key idea
it to visualize the effect of the fields on a part at differemif the proof consists of two steps. The first step identifies
configurations. Both lemmas are thoroughly used in thé possible equilibria configuration using certain preper
proof of the main result. ties of the fields. This step uses geometric reasoning to
characterize that there are only two possible equilibrium

Lemma 1 Forthe resultant forceF induced by the radial configurations. Then second step applies potential field

field 7 def (0,h + kX) on a part, itis true thatf” - pé > concept to conclude that only one configuration is stable.

0 and |F| > k|po|A, where constantd,k > 0 andp |emma3 Leth, k andc be arbitrary positive constants,
denote the position of the pivot point of the part under thgd letd be the distance between the centroid and the
field 7 (Figure 3). pivot point of a part under the radial fiel€ % (o, h +

(k + ¢)A). If d > 0, then the part has a unique stable
The proof of this lemma can be found in Appendix of thequilibrium configuration under the combination of the

paper. radial field 7* 9 (0, h+(2k+c)A) and the constant field
o & ( _gd ) This stable equilibrium occurs when

the part is in the configuration such that its pivot point
underK is positioned ab and its centroid is positioned

E
ato — ( E]l )

Figure 3: The resultant forceF” induced by the radial field Note that determining the distandefor a given part re-
(0,h + k). quires the computation of the part’s centroid and the part's
pivot point under the radial fielfl. Because the centroid
of a part is essentially the center of the distribution of the
) ~ part'sarea, it can therefore be computed, in general, using
Lemma 2 The resultant force induced by the radial field nymerical integration method [16]. The pivot point can
(0, k)) on a part iskpoA, wherep denotes the positionpe computed using a numerical optimization of the corre-
of the centroid of the part (Figure 4). sponding potential function. We present in detail in [17] a
variation of this optimization approach for computing the
The proof of this lemma is very similar to that of Lemma&ivot point under the linear radial.
1, so it is omitted here.

|

5 A Single Field for Positioning and
Orienting Multiple Shapes

kA

= In most works about part feeding, a strategy for part ori-
entation is usually computed for a single part’s shape. In
this section, we present a rather different approach. We
will show that a single field may be used to orient several
parts with different shapes. A device implementing this
field may be used as a part feeder for several types of parts

Figure 4: The resultant forceF induced by the radial field
{0, k).



without any reconfiguration, resulting in more flexibility The following lemma helps complete the proof of

in manufacturing lines. Lemma 4. The lemma identifies that the distance between
The result in this section is an extension of the fieltie centroid and the pivot point under a linear radial field

presented in the previous section. More precisely, in ttiea monotonic function of the linear coefficient of the

following lemma, for a given set of parts with differenfield.

shapes B;,i = 1,2,...,n), we will show how to set the )

field in Lemma 3 so that it induces a unique stable eqli€MMa5 Letd, = [P1P| andd; = |, P| whereP is

librium for every part in the set. The proof of the lemm{1€ centroid, of a part, ané?, and P, are the pivot points

applies continuity and a monotonicity property of the fielff the same part under the radial fields = (o,h +

which will be given later in Lemma 5 to reduce the prodfiA) @ndJ2 = (0, h + k2A) respectively. For constants
to Lemma 3. h,ki,ka >0 andP; 75 P,if ks > k1, we havely < d;.

Lemma4 Consider partsB;, i = 1,2,..,n, each of PROOFE Let'us denote by, p; andp, the positions of
which has distinct shape. Lét k and ¢ be arbitrary 1 andP in the world frame. Let us suppose that the
positive constants and lel; be the distance between th®artis now at a configuratiogpwhere it is in equilibrium

centroid of B; and the pivot point oB; under the field Under the field7,. This implies thap, = o when the
i def (0, h+(k+c)A). Any partB, i € {1,2, ...,n} with part is at this conflguraudo?. Imagine that we add to the
d; > 0 has a unique stable equilibrium under the combfyStem the radial field, = (o, kr) wherek = ky—k; >
nation of the radial field/ % (o, h+ (2k+ ) and the O BY Lemma 2 and the fact that 7 P, the part can
" no longer be in equilibrium at the configuratignunder
constant field® %' ( _Igd ),whered* = min{d;, i = the combination of the radial field$; and7;. Let us
1,2,..,n} consider the part under this combination of the fields at
P el another configuration: in particular, consider an arbjtrar
PROOF Consider the patB;, j € {1,2,...,n}. If d; = configuration for whictpo-p;o > 0. From Lemma 2, we
d*, the lemma follows immediately from Lemma 3. FoRaveF» = kpoA whereF’, is the force induced by the
the casel; > d*, let us denote by, the distance betweenfi€ld 7; and from Lemma 1, we hav - p;6 > 0 where
the centroid ofB; and the pivot point of3; under the F'1 is the force induced by the field. Butpd - 516 > 0
radial field (o, h + (2k + ¢ — k;)A). By definition, we implies thatF, - p1é > 0 and consequentially that an
haved; = d; whenk; = k and consequentialli;@; > equilibrium is impossible becaugd, + F) - pio >
kd*. Using Lemma 5, as the value &f decreases, the0. This means that an equilibrium undgy + J; can be
value ofd; decreases monotonically. By continuity, thidchieved only whepd- 5,6 < 0 (a necessary condition).
implies that there exists a valug = k} € (0,k) and Itis easy to verify that whepd - 16 < 0, we always
corresponding; = d; < d; for whichkd; = kd*. We havelpo| < |p,p] (Figure5). Because the combination of
s det [ —kd* _k*d J1 andJj is essentially7,, we therefore know thas, =
can therefore rewrit€ = ( 0 ) = < o’ ) o when the object is in equilibrium. We can thus write
~ def . dy = |P,P| = |op|. Recall thatl; = |P, P| = |p,p|. We
andJ = (o,h + (2k + c)A) = (0,h + (2k] + ¢')A)  therefore have, < d; and complete the prook.
wherec' = 2k + ¢ — 2k}. Becausés} € (0, k), we have
¢' > 0 and once again the lemma follows from Lemma 3. Py
|
From Lemma 4, computing the fieldf andC amounts
to computing alld;’s. This requires the computation of d
the pivot point of eachB; under the fieldC. As men-
tioned in the previous section, pivot point computation is

discussed in detail in [18]. The computation of the sta- “

ble equilibrium of eachB; can be found by considering

Lemma 3 with the rewritten fieldg &' (o, h + (2k; + 0 d, p

c)A)yandC = 6 J ) which are given near the endFigure 5: WherP0 - m < 0, we haved € [, 7] and

of the proof of Lemma 4. This computation requires us {&#0O| < | P, P|.

seek the value of; for which k;d; = kd*. Sinced; can

be considered as a monotonic functionkgf the search ~ We have shown how to set a force field for orienting a

can be performed using the bisection method on the rarsge of parts with different shapes. Besides part feeding,
(0, k). an interesting application of this field is part sorting. One



idea is to combine a force field device with physical se@? and M in the world frame when the part is at a config-
arators, such as fences above the plane of force field. Boationg.

instance, two parts with different shapes can be sorted aBy settingg;(m) = f;,(m) — f;(m — p), fori =
follows. First, we set the field to orient both parts accord; 2, we can write the resultant force at as f(m) =
ing to Lemma 4. Place an input part on this field to brinf, (m)+ fo(m) = f,(m—p)+ fo(m—p)+g,(m) +

it to a unique equilibrium. Then reprogram the field tg,(m) and we can write the resultant foréeexerted on
behave as a conveyer belt to move the part through setbe-part at the configuratiapas

rating fences. Because we can compute the unique equi-

librium for each part under the field (Lemma 4) and we JJ £1(m) + fa(m)dédn =

can design a sequence of fences and traps that let go only a JJ fi(m —p) + fr(m —p) dédn+ (1)

specific part's shape at a certain orientation [19], we there [ J g1(m) dédn+
fore can build a sorter system that allow only one type of [ [ g>(m) dédn,
part to pass. More complex sortor may also be built USIh all the integrations performed over the plane region

this basic. occupied by the part at the configuratipnitis easy to see

that the first term of the right side of Equation 1 vanishes.
. . . This is becausd, (m — p) + f,(m — p) is essentially
6 Discussion and Conclusion the force at the point/ when the part is at the configura-

tion such that the pivot poin® is positioned at the field’s

The use of force fields as a modeling tool for analyzingniero and the orientation of the part is the same as that
hardware force field devices has become a common prageme configurationy. We therefore need to consider only
tice because it usually leads to tractable analytical t&SUl,e second and the third terms.

Although this modeling approach is reasonable, it doescqnsider the second term of the right side of Equation
not address the discretization which is usually inherentyn £ the definition, we have,(m) = f,(m) —
most hardware implementation. This calls for a carefyll(m —p) = (=km) — (=k(m — p)) = —kp = kpo.

investigation on the effect of discretization. As a result, we obtailf [ g, (m) dédy = kpdA.

In this paper, we have presented a way to program a\ow consider the third term of the right side of Equa-
force field for orienting a set of parts with differentshapegon 1. Leta = |pm|, b = |om/|, a = /pmo, and¢ be
Being able to bring a part from an unknown configuratigfe angle betweemmp and the x-axis (Figure 6) . We can
to aknown one is an elimination in the part’s configuratiqgyjie
uncertainty. Being able to do as such for several types of
parts may also be considered as some sort of tolerance for £ (m) _ ( cos(¢ + ) )

uncertainty in part’s geometry. However, in our method, sin(¢ + a)
geometry of a part is captured in terms of the distance be- fom—p) = ( cos ¢ )
tween the part’s pivot point and its centroid. Therefore, 2 sing )’
our next goal is to study analytical relationship between _ ( cos ¢ )

. . P = m+a . and
the distance and the geometry. This knowledge would ul- sin ¢
timately help us describe variation of part's shapes that = m+b ( C95(¢ + a) )
could be oriented by a given field. sin(¢ + )

We thus obtain after some simplification
Appendix go(m) - p6 = h(a +b)(1 — cos ),
Proof of Lemma 1 which implies
Without loss of generality, let us assume that ( 8 ) (//Qz(m) dédn) - po > 0.

and rewrite the field7 as the combination of two radial

fields 7, < (0, k\) and 7 % (o, h). Let us denote by AS @result, we have

f1, f» : R = R? the functions that map point positions

in the world frame to the forces at the positions induced || > |//91(m)d€d77| = k|po|A, and

by J1 and 7, correspondingly. Also, let us denote Iy

the pivot point unde7 and by M an arbitrary point of
pivot point undet/ 6)’ itrary pol F-Iﬁ:(//gl(m)+g2(m)dEdn)-p_&ZO.l
the part. Letp andm = ( 0 > denote the positions of
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