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Abstract— Robot manipulation in cluttered environments of-
ten requires complex and sequential rearrangement of multiple
objects in order to achieve the desired reconfiguration of the
target objects. Due to the sophisticated physical interactions
involved in such scenarios, rearrangement-based manipulation
is still limited to a small range of tasks and is especially
vulnerable to physical uncertainties and perception noise.
This paper presents a planning framework that leverages the
efficiency of sampling-based planning approaches, and closes
the manipulation loop by dynamically controlling the planning
horizon. Our approach interleaves planning and execution to
progressively approach the manipulation goal while correcting
any errors or path deviations along the process. Meanwhile, our
framework allows the definition of manipulation goals without
requiring explicit goal configurations, enabling the robot to
flexibly interact with all objects to facilitate the manipulation of
the target ones. With extensive experiments both in simulation
and on a real robot, we evaluate our framework on three ma-
nipulation tasks in cluttered environments: grasping, relocating,
and sorting. In comparison with two baseline approaches, we
show that our framework can significantly improve planning
efficiency, robustness against physical uncertainties, and task
success rate under limited time budgets.

I. INTRODUCTION

Research in robotic manipulation has investigated how
to reconfigure objects in different task scenarios and robot-
object-environment formulations, such as grasping, pick-and-
place, in-hand manipulation, dual-arm manipulation, objects
sorting, and placement [1]–[3]. Traditionally, most manipula-
tion tasks have been studied as standalone problems without
considering the physical interactions with any other objects.
For example, grasping is often modeled as a static process
where a hand needs to reach a stable grasp on the target ob-
ject without touching anything else. Although such isolated
formulations can simplify the problem and are in many cases
sufficient, e.g., in-hand manipulation only concerns a hand
and the grasped object, they are inherently oversimplified and
not applicable to many real-world settings, since the target
objects are not always located in free spaces. Importantly,
even if we can sequentially manipulate one object at a
time to achieve certain goals, concurrent manipulation of
multiple objects has proven a much more efficient strategy
for various tasks [4], especially when multiple objects need
to be relocated relatively to each other.

As such, rearrangement-based manipulation, defined as a
class of problems requiring a robot to concurrently manip-
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Fig. 1: Example rearrangement-based planning tasks. The left
column shows the start states, and the right column shows the
goal states achieved by our proposed planner. Grasping: The robot
approaches a grasp for the target object (yellow) surrounded by
other movable objects (blue) while avoiding collisions with the
obstacles (gray); Relocating: The robot pushes the target object
(yellow) to a goal region (red); Sorting: The robot rearranges to
separate objects of different classes into clusters.

ulate multiple objects to achieve the task goal, has been
broadly studied [5], [6]. A few example tasks are illustrated
in Fig. 1. Nevertheless, it still remains a difficult class
of problems because: 1) it has proven to be NP-hard [7];
and 2) as the problem space is composed of the robot
configuration, robot control, and the configurations of all
objects, the dimensionality of such problems is much higher
than most other manipulation problems, rendering them
computationally very challenging. Such challenges can be
intuitively seen in the example grasping task, where the
robot needs to rearrange the surrounding objects so that the
gripper can reach a stable pre-grasp pose. A major difficulty
of this task is that, while the surrounding objects are being
rearranged, the target object is simultaneously moved by
multiple object-object interactions.

Moreover, almost all existing nonprehensile rearrangement
planners rely on either hand-crafted physics models or sim-
ulators to model the system state transitions. Such methods
usually assume very precise models, e.g., the geometries and
physical parameters of objects to be available during the
planning time, which is in general infeasible. This fact brings
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up a significant problem: the inherent discrepancies between
the system models and the real world will accumulate errors
throughout the entire execution of the planned actions. Thus,
even if a planner has successfully generated a plan, the
real execution will likely deviate the manipulation from the
desired path and cause task failures. In other cases, if the
initial perception of the system’s state is not reliable [8], or
if the system’s state has been changed during execution due
to human interruptions or environment changes, most open-
loop approaches will merely continue executing without the
capability to actively correct the errors.

In this work, inspired by dynamic window-based ap-
proaches for robot navigation in partially observable envi-
ronments [9], we propose a kinodynamic planning frame-
work for rearrangement-based manipulation with dynamic
planning horizons. In brief, our approach is able to:

1) monitor the planning progress and dynamically deter-
mine the planning horizons, and direct the planning
into more task-relevant subspaces to significantly im-
prove the planning efficiency;

2) react to physical and perception uncertainties online,
and work with imperfect system models, e.g., in-
accurate object geometries, to progressively generate
and execute rearrangement actions while correcting
observed errors;

3) address various rearrangement problems, with and
without explicitly defined goal configurations, to allow
the robot to flexibly interact with all objects to facilitate
the manipulation of the target objects.

II. RELATED WORK

Motion Planning: In physical interaction-based motion
planning problems where the robot-object-environment con-
figurations are constantly changed, kinodynamic planning
has been investigated to jointly model the robot configu-
ration, the robot control, and the system transitions [10].
Among other approaches, sampling-based kinodynamic plan-
ning algorithms have been widely employed due to its great
efficiency and generalizability. As compared with kinody-
namic problems in collision-free environments [11], however,
kinodynamic manipulation planning is much more complex
due to the challenges of the dramatically increased problem
dimensionality, highly nonlinear physics, and uncertainties
in perception. Rearrangement-based manipulation is in par-
ticular a difficult set of problems for kinodynamic planning.
In addition to the aforementioned challenges, as rearrange-
ment is often about the relative reconfiguration between
objects, it is infeasible for a planner to always explicitly
define goal configurations. In this work, inspired by the
work of robot navigation planning in partially observable
or dynamically changing spaces [9], [12], we introduce
progress control into kinodynamic manipulation planning.
By dynamically adapting the planning horizon, our method
is able to progressively plan the manipulation motions with
significantly improved efficiency, and can handle problems
without explicitly-defined goal configurations.

Planning-based Rearrangement: Kinodynamic RRT-based
planning algorithms have shown promising potentials in
rearrangement tasks. Using a problem-specific contact model
under quasi-static assumptions, [13] analytically plans a
diverse set of pushing motions but prohibits object-object
interactions. Based on an efficient physics simulator, multi-
object interactions are enabled, and dynamic motions of
objects, e.g., rolling, can be incorporated [14]. Additionally
by modeling the uncertainties in physics [15], or optimizing
a continuous motion trajectory online [16], grasping in clut-
tered environments has been achieved by locally rearranging
the occluding objects. Further, rearrangement tasks with
relative goals, e.g., sorting, have been addressed by learning-
based Monte Carlo Tree Search [17], and iterative local
search to concurrently manipulate a large amount of objects
[18]. However, the existing approaches either are not able
to address the physical uncertainties during execution, or
require very complex modeling of physics and sophisticated
problem-specific heuristics, making them difficult to be eas-
ily generalized to various rearrangement-based manipulation
problems. In contrast, based on any physical simulators, even
without precise physical models, our proposed framework is
able to react to physical uncertainties online, and generalize
to complex tasks based on simple heuristics.

Learning-based Rearrangement: Recently, data-driven re-
arrangement planning has been extensively studied to tackle
various tasks. In end-to-end settings, pushing-based reloca-
tion [19], multi-object rearrangement and singulation [20],
[21], rearrangement-based grasping [22], etc., have been
formulated as policy-learning problems to reactively generate
robot actions online. Although such approaches have greatly
simplified the system pipeline and allow for direct action
generation purely based on the input images, as a common
challenge, they in general require a large amount of training
data for specific tasks, while the learned models are difficult
to be transferred to achieve different tasks [23].

III. PROBLEM STATEMENT

We formulate rearrangement-based manipulation planning
as a kinodynamic motion planning problem. Given a bounded
workspace W ⊂ SE(2), containing a robot manipulator,
N movable objects to manipulate, and a set O of static
obstacles, we aim to find a sequence of robot motions, called
a motion plan, such that the environment will be rearranged
to reach a state satisfying the goal criterion.

A. Terminology

1) State Space: Formally, we denote the robot state as
qR ∈ QR ⊂ Rr, where QR is the robot configuration space
and r ∈ R is the robot’s degree of freedom. Let the state
of a movable object be qi ∈ Qi ⊂ W , where Qi ⊂ SE(2),
and i ∈ {1, ..., N}. The state space of the planning problem
is then defined by the Cartesian product Q = QR × Q1 ×
... × QN , and a system state q ∈ Q is denoted by a tuple
q = (qR, q1, ..., qN ). A state q is valid only when the robot
does not collide with itself or any static obstacle in O, and
all the movable objects are inside the workspace W . All the



valid states compose the valid state space Qvalid ⊆ Q. Note
that, Qvalid is different from the Cfree space in traditional
motion planning problems, as the contacts between movable
objects and static obstacles, as well as between any pair of
movable objects or the robot are allowed for a valid state.

2) Control Space and Transition Function: The control
space U ⊂ Rr is a sampleable continuous space consisting
of all controls the robot is allowed to perform. We denote
by a transition function, Γ : Qvalid × U 7→ Q, to represent
the physics laws of the real world, which maps a state qt ∈
Qvalid and a control action ut ∈ U at time t to the state
outcome at the next step qt+1 ∈ Q.

3) Goal Criterion: We define the goal criterion as a
function g : Qvalid 7→ {0, 1} specified by the manipulation
task. Therefore, the goal region of the planning problem is
defined by a set QG = {q ∈ Qvalid | g(q) = 1} of all states
that satisfy the goal criterion.

B. Problem Formulation

Given a start state qt0 ∈ Qvalid, we aim to find a sequence
of K robot controls τ = {ut0 , . . . , utk , . . . , utK} such that:
• The end state arrives at a configuration inside the goal

region: Γ(qtK , utK ) ∈ QG; and
• All the intermediate states along the plan are valid, i.e.,
∀k : qtk ∈ Qvalid.

However, due to the modeling inaccuracies, physical and
perception uncertainties, the control sequence τ will likely
result in states different from what the planner predicted
and cause task failures. As will be described below, in this
work, we reformulate the problem by iteratively finding
segments of controls τ ⊂ τ , and interleave planning and
robot execution between the control segments to close the
manipulation loop, so that the system state is progressively
transitioned towards the goal region QG.

IV. KINODYNAMIC MANIPULATION PLANNING WITH
DYNAMIC HORIZONS

To address the problem defined in Sec. III, we base our
approach on the sampling-based kinodynamic RRT (kdRRT)
framework [10], as it provides the ability to explore large
high-dimensional state spaces, and can be easily integrated
with any physics models or simulators to facilitate the
generalization to various tasks.

Different from purely geometry-based motion planning
algorithms, which explore the search space by sampling
random state configurations and connect them to the search
tree via linear interpolation, kinodynamic planning is much
more complex due to the highly nonlinear system dynamics.
In kinodynamic planning, given any sampled qrand, one
needs to find its nearest node, qnear, in the search tree,
randomly sample a set of M controls at qnear, {u1, . . . , uM},
and then selects one u∗ to expand the search tree, such that
the distance between Γ(qnear, u

∗) and qrand is minimized.
This strategy of tree expansion can be computationally very
expensive, especially for rearrangement problems involving
multiple objects and many concurrent contacts, since adding

Goal
Valid Space

Goal
Valid Space

Replan

Fig. 2: A schematic plot of dhRRT (Right), detailed in Sec. IV-A,
compared to kdRRT (Left). Left: The kdRRT extensively explores
the entire valid space, and the execution (red) does not lead to the
goal due to uncertainties, even if it finds a feasible plan (green).
Right: The dhRRT progressively grows its tree towards the goal,
with replanning along the way, and finally reaches the goal.

each node into the tree requires M times of physics calcu-
lation. Therefore, it could take up to several minutes to find
a motion solution by expanding the tree very extensively
in Qvalid [13]. In addition, as illustrated in Fig. 2, given a
motion solution (green), the real-world execution (red) can
deviate due to the physical uncertainties.

Another major challenge of such problems is the motion
constraints. Although a robot arm can move in SE(3),
the motion of its end-effector has to be constrained within
W to rearrange the objects, although sometimes teleport
can be achieved via free-space motions. Therefore, control
sampling needs to be constrained in a task manifold. For
this, specialized planners can be used [24], [25]. In this
work, controls v ∈ se(2) are sampled for the end-effector
only, and are subsequently converted by Jacobian-based local
projections, JOCOBIANPROJECTION(v), to check if any u ∈
U can realize the sampled controls, as detailed in Sec. IV-B.

A. Planning with Dynamic Horizons

To address the aforementioned challenges, we propose a
kinodynamic RRT-based framework by incorporating Dy-
namic Horizon control in the planning process, and we term
it as dhRRT .

For this, instead of explicitly defining goal configurations
as in traditional settings, we require the task to be represented
by a heuristic function: h : Qvalid 7→ R, such that when
the state of the system moves closer to the task goal,
h(·) will decrease and will drive the system towards the
goal region to eventually complete the task. In general, to
guarantee that a search algorithm will be able to find an
optimal solution for the task of h(·), the heuristic function
has to be admissible and monotonic [26], meaning that h(·)
should never overestimate the cost and should monotonically
decrease as the state moves closer to the goal. However, it is
infeasible to always prove or guarantee these two criteria
due to the complexity of problems in the real world. In
practice, since most rearrangement-based planning problems



can be defined with simple cost-decreasing functions, non-
optimal heuristics can also successfully drive the search to
find solutions, although without optimality guarantees. As
will be described in Sec. V and shown with experiments,
our planning framework can easily integrate such functions
to achieve various tasks.

While we grow the search tree similarly to kdRRT al-
gorithms, h(·) can be used to inform us about the planning
progress. Given a search tree T rooted at the start state, every
node added in the tree represents a state qt, with its inward
edge representing a control ut that transitioned the state to qt.
During the tree expansion, we monitor the progress and will
execute the current best control segment once good enough
progress, determined by a threshold p ∈ R, can be made by
a leaf node.

Algorithm 1 The dhRRT algorithm

Input: Start state qt0 , goal region QG(·), heuristic h(·), progress
threshold p, tree limit Dmax

Output: Control sequence τ
1: T ← {nodes = {(qt0 , 0)}, edges = ∅}
2: τ ← {}, q∗ ← Null
3: while TIME.AVAILABLE() do
4: T ← EXPANDTREE(T ) . Alg. 2
5: τ ← EVALUATEPROGRESS(T, h, p,Dmax) . Alg. 3
6: if τ 6= {} then
7: q∗ ← EXECUTECONTROLS(τ) . Observe Real State
8: if q∗ ∈ QG then . Task Complete
9: return

10: end if
11: T ← {nodes = {(q∗, 0)}, edges = ∅}
12: τ ← {},
13: q∗ ← Null
14: continue
15: end if
16: end while

As such, our planning is controlled by a horizon that dy-
namically changes in terms of the current state and motions.
After each execution, our system observes the current state,
which is likely to be different from the plan, and then repeats
this procedure with different dynamically determined hori-
zons, until the goal is reached. Note that, sometimes the robot
can freely move around for a while without touching any
object, hence making no positive progress. This is especially
likely when the robot needs to relocate itself before making
any rearrangement. To allow such motions without enforcing
the robot to manipulate at every step, as well as facilitating
random trap-escaping actions, the planning horizon is further
limited by a threshold, Dmax, of the maximum tree depth. If
not enough progress can be made when Dmax is reached, our
algorithm will execute the best solution so far. The algorithm
is summarized in Alg. 1.

As illustrated in Fig. 2, rather than planning and executing
the entire control sequence, our approach progressively tran-
sitions the system state towards the goal region with control
segments, while observing the state in the real world after
every EXECUTECONTROLS(·), making it possible to close
the manipulation loop to deal with errors along the path. In
practice, the dynamic horizon threshold p can be determined

in terms of the expected magnitude of physical uncertainties,
as well as the granularity of the physics models. By setting p
to a smaller value, the system will be more reactive, however,
less efficient in finding solutions. Meanwhile, the tree depth
limit Dmax can be set to smaller values to avoid getting
trapped in local optimum via more random local motions,
while a larger Dmax can allow more aggressive dynamic
horizon control.

Algorithm 2 ExpandTree(·)
Input: Current motion tree T
Output: Expanded tree T

1: qrand ← SAMPLESTATE()
2: qnear ← FINDNEAREST(T, qrand)
3: for i = 1, ...,M do
4: vi ← SAMPLECONTROL() . In se(2)
5: qi ← Γ(qnear, vi) . State Transition
6: end for
7: (qnew, v

∗)← arg min(qi,vi)
DISTANCE(qi, qrand)

8: u∗ ← JOCOBIANPROJECTION(v∗) . Sec. IV-B
9: if u∗ 6= Null then

10: T.ADDNODE(qnew) . Expansion
11: T.ADDEDGE((qnear, qnew), u∗)
12: end if
13: return T

Algorithm 3 EvaluateProgress(·)
Input: Current motion tree T , heuristic h(·), progress threshold p,

tree limit Dmax

Output: Control sequence τ
1: qnew ← T.GETLATESTNODE()
2: τ ← {}
3: if qnew ∈ QG then . Goal Reached
4: τ ← EXTRACTCONTROLS(T, qnew)
5: else if h(T.GETROOT())− h(qnew) > p then . Horizon
6: τ ← EXTRACTCONTROLS(T, qnew)
7: else if T.GETDEPTH() = Dmax then . Depth Limit
8: q′ ← arg minq∈T.GETLEAVES()h(q)
9: τ ← EXTRACTCONTROLS(T, q′)

10: end if
11: return τ

B. Jacobian-based Motion Projection

Since we sample robot controls in the end-effector’s
velocity space in se(2) to ensure the generated motions are
constrained to the workspace, we need to project the controls
to the robot’s control space U to enable real robot executions.
As indicated by the function JACOBIANPROJECTION(·) in
Alg. 2, for every new state qnew to be added in the tree, we
check whether the associated control v∗ can be projected to
a valid u∗ to transition the state from qnear to qnew.

Note that, as Jacobian matrix can constantly change
while a control is being applied over a duration [0, D], the
Jacobian-based projection needs to be conducted continu-
ously throughout the transition from qnear to qnew, and
a constant robot end-effector control v∗ can be generally
projected to a smooth trajectory in U . In practice, we address
this by sufficiently discretizing the control duration with a



small interval ∆t, and then calculate the control u∗i for each
intermediate state qi.

Given a state qi, its Jacobian matrix Ji = JACOBIAN(qRi )
is calculated based on the current robot configuration qRi ∈
QR. The control u∗i is then obtained by ui = J†i · v∗. While
we iterative over qi, we can determine that a control u∗i is
invalid if: 1) the resulted robot configuration is invalid; or 2)
the manipulability of the robot configuration, calculated by√

det JiJTi [27], is smaller than a threshold, indicating that
the robot is going to hit its singularity. If every intermediate
projection is valid, JACOBIANPROJECTION(·) will return
by composing a control trajectory u∗ based on all the
intermediate u∗i , and will otherwise return Null.

V. EXAMPLE APPLICATIONS

To evaluate our framework, we task the robot with 3
different rearrangement-based manipulation tasks in clutter,
as exemplified in Fig. 1.

1) Grasping: For grasping a target object in clutter, the
robot needs to rearrange the surrounding objects so that the
gripper can reach a stable pre-grasp pose. The major chal-
lenge of this task is that, while the surrounding objects are
being rearranged, the target object is simultaneously moved
by object-object interactions. The task goal is achieved when
the center of the target object (xo, yo) is inside the area
between the two fingers, denoted as GR, and the orientation
of the gripper is roughly aligned with a feasible grasping
angle. Formally, the goal criterion is:

(xo, yo) ∈ GR ∧min
α∈A
|θR − α| ≤ εα (1)

where θR is the orientation of the gripper, A is the set of
feasible grasping angles, and εα > 0 is a threshold in radians
for which we set to be 0.2 in all experiments.

The heuristic function used by our dhRRT planner for
grasping encourages the gripper to approach the target object.
Let us denote the state of the gripper as (xR, yR, θR) ∈
SE(2), we define the grasping heuristic function hg to take
the following simple form:

hg(q) =wd ·
√

(xR − xo)2 + (yR − yo)2

+wα · |θR − atan(yo − yR, xo − xR)|
(2)

where wd, wα are weighting factors and set to be wd = 0.7,
wα = 0.3 in all experiments.

2) Relocating: The relocating task for the robot is to push
the target object to a circular goal region G centered at
(xG , yG) with a radius of 0.1m. The goal criterion is:

(xo, yo) ∈ G (3)

This is a difficult task since the target object is not neces-
sarily reachable by the gripper, and its motion is indirectly
determined by all other objects. The heuristic function used
by our dhRRT planner is simply defined by the summation
of the distance between the target object and the gripper, and
the distance between the target object and the goal region:

hr(q) =
√

(xo − xR)2 + (yo − yR)2

+
√

(xo − xG)2 + (yo − yG)2
(4)

3) Sorting: The sorting task is to rearrange all the mov-
able objects to separate them into different classes, which are
represented by different colors in our experiments. We denote
by L the number of object classes, and by CHi(q) ⊆ R2,
i ∈ {1, ..., L}, the convex hull containing all the objects of
the i-th class in state q ∈ Qvalid, then the goal criterion
of sorting is satisfied if all classes have at least a distance
εd > 0 from each other. Formally, ∀i, j ∈ {1, . . . , L}:

min
i 6=j

DISTANCE(CHi(q),CHj(q)) > εd (5)

Our dhRRT planner uses a heuristic function similar to
the reward signals in our previous work in [17] for sorting.
Intuitively, a state where the objects are placed closer to each
other for the same class and further apart for different classes
will receive a lower cost value.

VI. EXPERIMENTS

With the three tasks defined in Sec. V, we evaluate the
proposed framework from three aspects relevant to real-world
challenges. First, by increasing the size of the object clutter
(number of objects), we test and report the success rate and
planning efficiency of the planner. Second, we evaluate the
robustness against inaccurate models with quantified model
granularities. Finally, we challenge the planner by introduc-
ing nondeterministic physics to evaluate its reactivity. Our
experiments were conducted both with a real Franka Emika
Panda robot and in the MuJoCo simulator [28]. All objects
were tracked via AprilTags [29].

In addition, we implemented two baseline algorithms to
compare with the proposed dhRRT approach. First, we im-
plemented a kdRRT algorithm modified from [13], and for a
fair comparison, we replaced the physics model with the Mu-
JoCo simulator, and we do not limit the number of concurrent
contacts. Second, we enable kdRRT with replanning, termed
as r-kdRRT, by observing the end states after every execution,
and will trigger replanning if the goal is not reached. In
all experiments, the controls were sampled in the robot
gripper’s velocity space. The linear velocity was bounded
by [−0.2, 0.2]m/s in simulation, but by [−0.1, 0.1]m/s in
the real world for better safety. The angular velocity was all
bounded by [−1, 1]rad/s. The control duration was fixed to
0.2 seconds (grasping, relocation) and 0.4 seconds (sorting).
In addition, all reported planning times were calculated from
the successful runs only, and all the time budgets were set
for planning only, excluding the execution time.

A. Efficiency and Robustness

For this part of our evaluation, we conducted only real-
world experiments as the planning efficiency will be similar
to simulation-based experiments, but the system’s robustness
can be more realistically challenged in the real world.
Example executions for the 3 tasks are shown in Fig. 3.
For the grasping and relocating tasks, we used N = 10 and
N = 20 objects, with one of them being the target object
in each task. The sorting task used 6 objects and 2 classes:
3 blue objects and 3 red objects. For all experiments with
our algorithm and the baseline algorithms, the time budget
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Fig. 3: Real-world experiments on 3 rearrangement-based manipulation tasks: grasping, relocating, and sorting. The target object is
highlighted by yellow boxes for grasping and relocating, and the convex hulls for object classes are shown in blue and red for sorting.

(a) Grasping
Scene Metric kdRRT r-kdRRT dhRRT

N = 10 Success Rate 1 / 10 6 / 10 10 / 10
Time (seconds) 13.0 ± 0.0 22.5 ± 16.7 9.8 ± 2.5

N = 20 Success Rate 0 / 10 2 / 10 8 / 10
Time (seconds) - 20.1 ± 8.6 11.0 ± 4.3

(b) Relocating
Scene Metric kdRRT r-kdRRT dhRRT

N = 10 Success Rate 3 / 10 4 / 10 9 / 10
Time (seconds) 33.6 ± 16.6 40.1 ± 18.2 15.2 ± 4.9

N = 20 Success Rate 1 / 10 2 / 10 9 / 10
Time (seconds) 34.9 ± 0.0 35.4 ± 0.5 18.1 ± 11.1

(c) Sorting
Metric kdRRT r-kdRRT dhRRT

Success Rate 0 / 10 0 / 10 4 / 10
Time (seconds) – – 28.3 ± 16.4

Fig. 4: Experiment results of the 3 real-world tasks.

was set to 60 seconds, accumulated through the process if
replanning was needed.

The experiment results are reported in Fig. 4. We can see
that while both kdRRT and r-kdRRT could barely achieve
50% of success rates in grasping and relocating, our dhRRT
has succeeded in more than 90% of tests, with only failure
case happening due to one of the objects being pushed
outside of the workspace due to physical uncertainties. It is
evident that the dynamic horizon significantly improved the
robustness by closing the manipulation loop, and enabled
progressive manipulation while observing the real-world
transitions. Moreover, we observe that dhRRT is much more
efficient than the baseline algorithms. This is because: 1)
dhRRT can more adaptively focus on task-relevant subspaces
of the problem; and 2) it avoids making large trajectory
deviations and requires less replanning effort compared with
r-kdRRT.

For the sorting task, however, while none of the baseline
algorithms could solve it at all, dhRRT achieved 40% success

rate. This is due to the much higher complexity of the sorting
problem, which does not have a single target object, and the
goal is achieved only when all objects are relatively recon-
figured in certain ways. Under the time budget, and without
training or carefully designing problem-specific heuristics,
such as done in [17], [18], as well as not being able to
teleport the gripper in between of actions, our dhRRT was
not able to provide good sorting performance in the real
physical world, although we achieved a success rate of 90%
in simulation.

B. Inaccurate Object Models

In real-world applications, due to the perception limita-
tions, we do not always have access to perfect object models.
For example, the object models can be incorrectly estimated,
or the resolutions of the models are not good enough to
reflect real-world contact physics. As such, we designed
two test cases to evaluate the algorithms’ robustness against
perception uncertainties in grasping tasks by: 1) using incor-
rect object models in planning; and 2) iteratively reducing
the resolution of object models in planning. For case 1),
we conducted real-world experiments using 10 objects as
exemplified in Fig. 5. We tested case 2) in simulation to be
able to access perfect and resolution-reduced object models.
The time budget was set to 60 seconds and 120 seconds for
case 1) and case 2) respectively.

The experiment results of case 1) are summarized in Fig. 6.
Due to the discrepancies between object models in planning
and in the real world, kdRRT was never able to complete
the task. Under this difficult setting, our dhRRT was able to
succeed 9 out of 10 times, and the planning efficiency was
almost not affected in comparison to the cases where accurate
models were available. In addition, even if r-kdRRT was able
to complete 3 out of 10 trials, the planning efficiency was,
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Fig. 5: The robot is tasked to grasp the yellow object in a clutter.
Despite the fact that our planner incorrectly models perfect cube
shapes for all objects, it can successfully rearrange the irregular
object shapes in the real world and complete the task via dynamic
planning horizons.

Metric kdRRT r-kdRRT dhRRT
Success Rate 0 / 10 3 / 10 9 / 10

Time (seconds) – 42.3 ± 9.9 8.6 ± 3.4

Fig. 6: Experiment results of real-world grasping tasks with inac-
curate object models.

Fig. 7: Experiment setup for grasping with resolution-reduced
object models. The target object is shown in yellow and static
obstacles are shown in gray. Left: start configuration. Right: a goal
state reached by our dhRRT.

again, evidently lower than our dhRRT, indicating that the
proposed dynamic horizons provided essential reactivity to
the system for both improved efficiency and robustness.

The experiment setup for case 2) is illustrated in Fig. 7.
We selected 4 complex object shapes, shown in Fig. 8, and
iteratively reduced their resolutions to 33%, 10%, 3.3%, and
1% to be used by planners. Note that, once a plan was gen-
erated for execution, the simulated execution used only the
original object models. We can observe that, as reported in
Fig. 9, although the model reduction significantly affected the
baseline algorithms, dhRRT still could complete the task with
high success rates. Also, the planning time for dhRRT was
much lower than the baseline approaches. Notice that, the
planning time for the baseline algorithms was occasionally
faster than dhRRT due to their small number of successes and

0 20 40

33%

10%

3.3%

1%

19.54

21.47

25.66

27.01

Tree Nodes per Second

Fig. 8: Object models used in the experiment shown in Fig. 7.
Left: The resolution-reduction level, determined by face reduction
percentage, were 100% (original), 33%, 10%, 3.3%, and 1% from
top to bottom. Right: Number of nodes added in the tree per second
in terms of the reduction rates.

Red. Success Rate Time (seconds)
Rate. kdRRT r-kdRRT dhRRT kdRRT r-kdRRT dhRRT
33 % 5/20 16/20 20/20 11.9± 4.8 48.8±32.0 13.3±13.7
10 % 3/20 12/20 17/20 28.7±12.5 34.2±28.5 17.6±10.4
3.3 % 2/20 11/20 15/20 2.2± 0.7 38.9±30.2 16.1± 9.4

1 % 1/20 12/20 17/20 24.4± 0.0 32.1±19.0 22.6±18.1

Fig. 9: Results of grasping tasks with resolution-reduced models.

Success Rate Time (seconds)
∆t(s) kdRRT r-kdRRT dhRRT kdRRT r-kdRRT dhRRT

20 17/20 17/20 20/20 27.2±19.7 27.2±19.7 20.1±17.7
10 17/20 19/20 20/20 22.9±15.3 25.6±16.8 15.1±11.0

5 7/20 16/20 19/20 26.5±18.9 40.7±23.5 19.5±22.8
2 3/20 12/20 17/20 24.9±11.3 45.6±33.5 14.9±11.1
1 3/20 6/20 15/20 13.2± 7.0 15.8± 7.4 11.6± 8.0

0.5 0/20 9/20 17/20 – 35.9±23.7 13.3± 7.4

Fig. 10: Results of grasping tasks under nondeterministic physics.

randomness in statistics. Furthermore, Fig. 8 reports the tree
expansion efficiency in terms of the number of added nodes
per second. It is interesting to note that, although imperfect
models enlarge the gaps between planning and the real
world, simpler models can facilitate the planning efficiency.
Therefore, in terms of the task requirements, in practice we
can balance between the needed robustness and the modeling
resolution of models to achieve higher efficiency.

C. Nondeterministic Physics

Another factor that challenges manipulation planning in
the real world is the nondeterministic physics. For example,
the object’s friction coefficient against the table surface is not
a constant resulting in different dynamics over the execution,
or that the objects can be moved by external perturbations.
Therefore, we designed an experiment to introduce random
local perturbations to the objects during the execution of
manipulation plans. In this experiment, we used 16 cubes
similar to the experiments shown in Fig. 1, and in every
time interval ∆t, we randomly select one object and assign
it with a linear velocity of 0.4m/s, and the goal is for the
robot to grasp the target object. The time budget was set to
120 seconds.



The results are reported in Fig. 10. In this experiment, a
shorter interval for applying random perturbations simulates
a higher level of nondeterministic physics. Being consistent
with other experiments, dhRRT outperformed both baseline
planners in efficiency and robustness, which again shows that
the proposed dhRRT planner can focus the planning proce-
dure to more task-relevant subspaces, and facilitates a close-
loop manipulation solution against physical uncertainties in
executing motions plans.

VII. CONCLUSION

We presented a kinodynamic manipulation planning
framework for rearrangement-based manipulation problems.
Based on efficient sampling-based planning, we proposed
to monitor and dynamically adapt the kinodynamic plan-
ning horizons, and progressively transition the system states
towards the goal region by interleaving planning and ex-
ecution, which greatly enhanced the system’s robustness.
Using simple heuristics, we showed that our approach is not
only able to focus the planning on task-relevant subspaces
to significantly improve the planning efficiency, but also
enables implicit definitions of manipulation goals, in contrast
to many traditional goals defined by explicit configurations.

With extensive experiments both in the real world and
in simulation, we demonstrated the proposed approach with
3 challenging rearrangement-based manipulation tasks, and
compared its performance against 2 baseline algorithms.
In terms of efficiency and robustness, we showed that our
approach is significantly faster and is able to complete tasks
under perception uncertainties, local modeling errors, and
nondeterministic physics in the real world.

In future work, we plan to incorporate motions that
alternate the end-effector’s poses across subsequent action
segments, enabling the robot to quickly switch between
different problem subspaces without being constrained to
move continuously in SE(2), so as to improve the efficiency
of rearrangement actions. In addition, we plan to study the
adaptation of the planning horizon in terms of other task-
relevant factors, e.g., the number and distribution of concur-
rent contacts, in order to more tightly close the manipulation
loop. Besides, we will also investigate the optimization of the
local trajectories to reduce the execution time.
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