
RICE UNIVERSITY

From High-Level Tasks to Low-Level Motions: Motion Planning for

High-Dimensional Nonlinear Hybrid Robotic Systems

by

Erion Plaku

A THESIS SUBMITTED
IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE

Doctor of Philosophy

Approved, Thesis Committee:

Lydia E. Kavraki, Professor, Chair
Computer Science

Moshe Y. Vardi, Professor
Computer Science

Marcia K. O’Malley, Assistant Professor
Mechanical Engineering & Materials Science

Houston, Texas

July 2008

Abstract

From High-Level Tasks to Low-Level Motions: Motion Planning for

High-Dimensional Nonlinear Hybrid Robotic Systems

by

Erion Plaku

A signi�cant challenge of autonomous robotics in transportation, exploration, and

search-and-rescue missions lies in the area of motion planning. The overall objective

is to enable robots to automatically plan the low-level motions needed to accomplish

assigned high-level tasks.

Toward this goal, this thesis proposes a novel multi-layered approach, termed

Synergic Combination of Layers of Planning (SyCLoP), that synergically combines high-

level discrete planning and low-level motion planning. High-level discrete planning,

which draws from research in AI and logic, guides low-level motion planning during

the search for a solution. Information gathered during the search is in turn fed back

from the low-level to the high-level layer in order to improve the high-level plan in

the next iteration. In this way, high-level plans become increasingly useful in guiding

the low-level motion planner toward a solution.

This synergic combination of high-level discrete planning and low-level motion

planning allows SyCLoP to solve motion-planning problems with respect to rich models

of the robot and the physical world. This facilitates the design of feedback controllers

that enable the robot to execute in the physical world solutions obtained in simulation.

In particular, SyCLoP e�ectively solves challenging motion-planning problems that

incorporate robot dynamics, physics-based simulations, and hybrid systems. Hybrid

systems move beyond continuous models by employing discrete logic to instanta-

neously modify the underlying robot dynamics to respond to mishaps or unantic-

ipated changes in the environment. Experiments in this thesis show that SyCLoP

obtains signi�cant computational speedup of one to two orders of magnitude when

compared to state-of-the-art motion planners.

In addition to planning motions that allow the robot to reach a desired destination

while avoiding collisions, SyCLoP can take into account high-level tasks speci�ed using

the expressiveness of linear temporal logic (LTL). LTL allows for complex speci�ca-

tions, such as sequencing, coverage, and other combinations of temporal objectives.

Going beyond motion planning, SyCLoP also provides a useful framework for dis-

covering violations of safety properties in hybrid systems.

Acknowledgments

I thank my advisor, Dr. Lydia Kavraki, for her guidance and support. I am

grateful to Dr. Moshe Vardi for the constructive discussions and close collaborations,

and to Dr. Marcia O’Malley for her instructive comments. I owe special thanks to my

wife, Amarda Shehu, and the rest of my family for unconditional love and support.

This thesis is dedicated to the memory of my father, Hekuran Plaku.

This work was supported by NSF (0713623, 0205671, 0308237, CNS-0615328, ITR-

0205671), NIH (GM078988), and the Advanced Texas Technology Program (003604-

0010-2003). Equipment was supported in part by NSF (EIA-0216467) and the Rice

Computational Research Cluster funded by NSF (CNS-0421109 and CNS-0454333)

in a partnership between Rice University, AMD and Cray.

Contents

1 Introduction 1

1.1 Contributions . 5

1.2 Organization . 8

1.3 Notation . 8

2 Related Work: Sampling-based Motion Planning 11

2.1 Motion Planning with Geometric Models: Generalized Mover’s Problem 11

2.1.1 Roadmap Methods . 13

2.1.2 Tree Methods . 14

2.1.3 Sampling-based Roadmap of Trees 15

2.2 Motion Planning with Rich Models: Toward Realistic Applications . . 16

3 Preliminaries 20

3.1 Motion-Planning Problem . 20

3.1.1 State Space . 21

3.1.2 State Constraints . 23

3.1.3 Motion-Planning Goal . 23

3.1.4 Trajectory . 24

3.2 Motion-Planning Components . 24

3.2.1 Trajectory Concatenation . 24

3.2.2 Trajectory Sampling . 25

vi

3.2.3 Trajectory Validation . 26

3.2.4 State-Space Projections . 27

3.2.5 Coverage Estimates . 28

3.3 Motion Planning as a Search Problem 30

4 SyCLoP: Synergic Combination of Layers of Planning 32

4.1 Overall Approach . 32

4.2 High-Level Discrete Model of Motion-Planning Problem 35

4.3 Interplay of Planning Layers . 38

4.4 High-Level Discrete Planning: Guiding the Search 41

4.4.1 Balancing Greedy and Methodical Search 42

4.4.2 Estimating the Feasibility of High-Level Plans 43

4.4.3 Computing the High-Level Plan 44

4.5 Low-Level Motion Planning: Explore 45

4.5.1 Selecting a Region From the High-Level Plan 46

4.5.2 Selecting a State From a High-Level Region 47

4.5.3 Extending the Search Tree by Trajectory Sampling 47

4.5.4 Adding a New Branch to the Search Tree 47

5 Motion Planning with Nonlinear Dynamics 48

5.1 Control-based Systems . 48

5.1.1 Control Space . 49

5.1.2 Dynamics . 49

vii

5.2 Applying SyCLoP to Motion Planning with Nonlinear Dynamics . . . 51

5.2.1 High-Level Discrete Model of Motion-Planning Problem 51

5.2.2 Low-Level Motion Planning 53

5.3 Computational E�ciency . 55

5.3.1 Motion-Planning Methods used in the Comparisons 55

5.3.2 Models of Robots with Second-Order Dynamics 56

5.3.3 Motion-Planning Benchmarks 58

5.3.4 Experiments and Results . 59

5.3.5 A Closer Look at the State-Space Exploration 60

5.4 Impact of Workspace Decompositions 63

5.4.1 Grid Decompositions . 64

5.4.2 Triangular Decompositions . 64

5.4.3 Trapezoidal Decompositions 64

5.4.4 Conforming Delaunay Triangulations 65

5.4.5 Results . 65

5.4.6 Advantages of Delaunay Triangulations 68

6 Motion Planning for Hybrid Systems 69

6.1 Introduction . 69

6.2 Hybrid Systems . 71

6.3 Applying SyCLoP to Motion Planning for Hybrid Systems 74

6.3.1 High-Level Discrete Model of Motion-Planning Problem 75

viii

6.3.2 Low-Level Motion Planning 77

6.4 Computational E�ciency . 80

6.4.1 A Hybrid Robotic System Navigation Benchmark 80

6.4.2 Experiments . 83

6.4.3 Results . 84

7 Motion Planning with Linear Temporal Logic 88

7.1 Introduction . 88

7.2 Linear Temporal Logic (LTL) . 89

7.2.1 Propositional Map and Propositional Assignments 90

7.2.2 Propositional Assignments Satis�ed by a Trajectory 90

7.2.3 Syntax and Semantics . 91

7.2.4 Automata Representation . 92

7.2.5 Problem Statement . 93

7.3 Applying SyCLoP to Motion Planning with LTL 93

7.3.1 High-Level Discrete Model of the Motion-Planning Problem . 94

7.3.2 Low-Level Motion Planning 95

7.4 Experiments . 97

7.4.1 Problem Instances . 98

7.4.2 LTL Speci�cations . 99

7.5 Results . 100

8 Falsi�cation of Safety Properties in Hybrid Systems 103

ix

8.1 Veri�cation of Safety Properties in Hybrid Systems 103

8.2 From Veri�cation to Falsi�cation . 105

8.3 Applying SyCLoP to Hybrid-System Falsi�cation 106

8.3.1 Falsi�cation of LTL Safety Properties in Hybrid Systems . . . 107

8.4 Experiments . 107

8.4.1 Aircraft Con
ict-Resolution Protocol 108

8.4.2 Safer Aircraft Con
ict-Resolution Protocol 111

8.4.3 Experimental Settings . 112

8.5 Results . 114

9 Discussion 115

List of Figures

1.1 Proposed multi-layered approach, SyCLoP, seamlessly combines high-

level discrete planning and low-level motion planning. 5

3.1 In this motion-planning problem the objective is to �nd a trajectory

that allows the robotic car to reach the goal position starting while

avoiding collisions with the obstacles. 21

4.1 (a) A grid-based partition. (b) The high-level discrete model repre-

sented as a graph. (c) Example of a high-level plan. 38

4.2 Interplay of high-level discrete planning and low-level motion planning

in SyCLoP. Given a high-level plan, the low-level motion planner ex-

tends the search tree T , so that it closely follows the high-level plan.

Information gathered during the search is fed back from the low-level

to the high-level layer to compute increasingly feasible high-level plans

in future iterations. Obstacles are shown in yellow. High-level plans

are shown in light red. Tree vertices are shown as blue circles, while

tree edges are shown as red curves. 40

5.1 Various workspace decompositions. 53

5.2 Several benchmarks used for the experimental comparisons of SyCLoP. 56

xi

5.3 Speedup obtained by SyCLoP when compared to RRT, ADDRRT, and EST

using various robot models (KCar, SCar, SUni, SDDrive) and motion-

planning benchmarks ((A)\Misc" (B) \WindingCorridors" (C) \Ran-

domObstacles" (D) \RandomSlantedWalls"). 60

5.4 Snapshots of the tree exploration by SyCLoP with the smooth car

(SCar) as the robot model. Red dots indicate state projections onto

the workspace. The green line in each �gure indicates the current

high-level plan. 61

5.5 (a) Workspaces used for the experiments. Each �gure also illustrates a

typical query for a second-order car model with the initial state shown

in green and the goal state shown in red. (b-e) Illustrations of di�erent

workspace decompositions. 66

5.6 Bars (from left to right) correspond to the results when using di�er-

ent decompositions (x-axis) on the workspaces in Fig. 5.5. tD denotes

the computational time of SyCLoP when using a conforming Delau-

nay triangulation. tOther denotes the computational time of SyCLoP

when using a di�erent decomposition. Decompositions 1, 2, 4, 8, 16,

32, 64, and 128 denote grid decompositions. Decompositions T1, T2,

T3, T4 denote triangular decompositions. Decomposition Tr denotes

trapezoidal decomposition. 67

xii

6.1 Impact of decompositions on SyCLoP for hybrid systems. Graphs show

some typical results when using conforming Delaunay (TD) or grid

decompositions with 2i � 2i cells, i = 4; 5; 6. Finding the right grid

size is problem dependent. With no �ne-tuning TD yields signi�cant

computational speedups. 87

7.1 Illustration of a set of propositions and the propositional assignment

map. 90

7.2 Computational time (in seconds, averaged over 100 runs) of SyCLoP

when computing solution trajectories for motion-planning problems

with various LTL formulas. 101

7.3 Comparison of the computational time (in seconds, averaged over 100

runs) of SyCLoP when using a minimal DFA, a minimal NFA con-

structed by hand, or an NFA constructed by standard tools for the

LTL motion-planning problems speci�ed by �n
2 102

8.1 A collision between two aircraft is quickly found after a few seconds

(less than 10s). The exploration is shown in red. Goal positions are

shown as blue circles. 111

8.2 Example of a witness trajectory that indicates a collision between two

aircrafts in a scenario involving 10 aircrafts. Blue circles indicate goal

positions. 112

List of Tables

6.1 Comparison of SyCLoP to other methods as a function of the number

of modes jQj and the driver model. Times are in seconds (averages

over 40 runs). Entries marked with X indicate a timeout, which was

set to 3600s. 85

8.1 Comparison of the computational e�ciency for solving the aircraft

con
ict-resolution problem with respect to the number of aircrafts N .

For each N , the computational e�ciency of each method is measured

as the median computational time obtained on 200 random instances

of the aircraft con
ict-resolution problem. Entries marked with X in-

dicate a timeout, which was set to 3600s. 114

1

Chapter 1

Introduction

The �eld of robotics nowadays is marked by an emphasis towards increasing the

autonomy of robots in planning and carrying out assigned tasks. The Minerva robotic

tour guide [CNN98], the Sony robot dog [FOR07], the Twendy-One robot [ABC07],

the robotic vehicles racing in the DARPA Grand Challenge [DAR07], and the IRobot

array of domestic and military robots [USN08] are just some examples of robots that

exhibit a great degree of autonomy in accomplishing their assigned tasks.

A basic component of autonomy is the ability of the robot to plan the motions

needed to accomplish an assigned task. While signi�cant progress has been made, as

research in the last forty years has demonstrated, motion planning still constitutes a

signi�cant challenge in autonomous robotics:

Some of the most signi�cant challenges confronting autonomous robotics

lie in the area of automatic motion planning. The goal is to be able to

specify a task in a high-level language and have the robot automatically

compile this speci�cation into a set of low-level motion primitives, or feed-

back controllers, to accomplish this task [CLH+05].

Due to the complexity of both the robot hardware and the physical world, motion

planning generally takes place using simulated and simpli�ed models of the robot

2

and the environment on which the robot operates. The motion planner employs

these models to produce a sequence of motions that in simulation enables the robot

to accomplish an assigned task. In order for the robot to execute the simulated

motions and accomplish the assigned task in the physical world, feedback controllers

are then used to convert the output of the motion planner into low-level commands

to the robot hardware.

Moreover, most motion-planning methods to date focus on the simple task of

computing a sequence of motions that in simulation allows the robot to move from

an initial to a goal destination while avoiding collisions with obstacles. Motion

planning is further simpli�ed by computing a sequence of rotations and transla-

tions to accomplish this task in a simulated world that models only the geometry

of the robot and the obstacles [Lat91, CLH+05, LaV06]. Even with these simpli�-

cations, the geometric motion-planning problem is by no means easy, as evidenced

by theoretical results that have shown it is PSPACE-complete [Can88a, Can88b].

Despite the hardness theoretical results, great progress has been made in solving

challenging geometric motion-planning problems, especially by sampling-based mo-

tion planners [K�SLO96,HLM97,LaV98,BMA98,ABD+98a,BOvdS99,LK01,HKLR02,

Ist02,SL02,BV02,MRA03,LK04b,MTP+04,JYLS05,BB05,HSAS05,PBC+05,HLK06,

KH06,BB07], and many others surveyed in [CLH+05,LaV06].

Motions of a robot in a physical world, however, are governed by the underlying

robot dynamics that often impose constraints on velocity, acceleration, and curvature.

3

Consequently, solution paths obtained in simulation by motion planners that do not

take into account robot dynamics but consider only geometric models cannot be

easily followed by the robot in the physical world. It is in general di�cult and an

open problem to design feedback controllers that can convert a geometric solution

path into low-level hardware commands that enable the robot to follow the geometric

path and thus accomplish the assigned task in the physical world.

This gap between paths produced by geometric motion planning in simulation and

the design of feedback controllers that can enable the robot to follow these geometric

paths in the physical world underscores the need for incorporating robot dynamics

directly into motion planning. Such an approach facilitates the design of feedback

controllers, since the solution computed by the motion planner in simulation not only

avoids collisions with obstacles, but also respects the robot dynamics.

Motion planning with dynamics, however, poses signi�cant challenges. Modeling

the dynamics in addition to the geometry of the robot can considerably increase

the dimensionality of the motion-planning problem. Moreover, solutions no longer

consist of translations and rotations, but instead of sequences of motions obtained by

simulating the robot dynamics. Constraints imposed by the robot dynamics add to

the di�culty of �nding sequences of motions that allow the robot to reach the goal

while avoiding collisions with obstacles.

Current approaches to motion planning with dynamics are usually based on sim-

ple adaptations of popular geometric motion planners. Geometric motion planners,

4

however, are designed to take advantage of the assumption that the possible motions

of the robot are purely geometric, i.e., translations and rotations. Such assumption

does not hold in the case of motion planning with dynamics, since constraints imposed

by the dynamics limit the possible motions of the robot. Research has shown that ap-

proaches based on adaptations of geometric motion planners are generally ine�ective

in solving challenging motion-planning problems with dynamics [LK04a,LK05,BK07,

BTK07a,BTK07b,PKV07a,PKV07b,PKV07c,PKV08a,PKV08b,PKV08c,PKV08d].

These limitations become even more pronounced when considering richer models,

such as physics-based simulations. Physics-based simulations add an increased level

of realism by modeling not only the dynamics and geometry of the robot, but also

friction, gravity, and other interactions of the robot with the environment.

Moreover, many robots used in navigation and exploration of unknown and possi-

ble hazardous environments can quickly modify the underlying dynamics to respond

to mishaps or unanticipated changes in the environment. Such behavior is often mod-

eled by hybrid systems, which go beyond continuous models by employing discrete

logic to instantaneously switch to a di�erent operating mode.

Incorporating richer models, such as robot dynamics, physics-based simulations,

and hybrid systems, directly into motion planning is crucial, as it facilitates the

design of feedback controllers that enable the robot to execute in the physical world

the solutions obtained in simulation. This approach adds signi�cant computational

challenges to current motion planners, rendering them practically ine�ective.

5

Novel approaches are needed to signi�cantly reduce the computational cost asso-

ciated with incorporating richer models into motion planning. This has the potential

to enable robots employed in service, search-and-rescue missions, and exploration to

autonomously plan low-level motions needed to accomplish assigned tasks.

1.1 Contributions

To e�ectively incorporate rich models, such as robot dynamics, physics-based

simulations, and hybrid systems, directly into motion planning, this thesis proposes

a novel multi-layered approach, termed Synergic Combination of Layers of Planning

(SyCLoP), that seamlessly combines motion planning at di�erent levels of modeling

complexity. Fig. 1.1 provides an illustration.

Fig. 1.1: Proposed multi-layered approach, SyCLoP, seamlessly combines high-level discrete
planning and low-level motion planning.

In the �rst layer, motion planning takes place in a simpli�ed high-level and discrete

model. In the second layer, motion planning is based on the full low-level model of

6

the robot and the physical world. The high-level discrete planning in the �rst layer,

which draws from research in AI and logic, guides the low-level motion planning in

the second layer during the search for a solution.

A distinctive feature and a crucial property of SyCLoP is that high-level discrete

planning and low-level motion planning are not independent of each-other but in

fact work in tandem, as illustrated in Fig. 1.1. At each iteration, high-level discrete

planning provides a high-level plan that constitutes a solution to the motion-planning

problem under the simpli�ed discrete model. Low-level motion planning attempts in

turn to guide the search for a solution under the full model so that it closely follows

the current high-level plan. Information gathered during the search, such as the

progress made in following the current high-level plan, is fed back from the low-level

to the high-level layer in order to improve the high-level plan computed in the next

iteration. In this way, high-level plans become increasingly useful in guiding the

low-level motion planner toward a solution.

This symbiotic combination of high-level discrete planning and low-level motion

planning in SyCLoP, as demonstrated in this thesis, has several advantages:

(i) It obtains solutions to the motion-planning problem with respect to the full

model of the robot and the physical world in which the robot operates [PKV07a,

PKV07b, PKV07c, PKV08a, PKV08b, PKV08c, PKV08d]. This facilitates the

design of feedback controllers that enable the robot to follow in the physical

world solutions obtained in simulation. (Chapter 4)

7

(ii) It reduces by one to two orders of magnitude the computational cost in solving

challenging problems when compared to current state-of-the-art motion plan-

ners [PKV07a,PKV07b,PKV08a,PKV08b,PKV08c,PKV08d]. (Chapters 4{8)

(iii) It incorporates robot dynamics and even physics-based simulations, which in-

crease the realism by modeling friction, gravity, and other interactions of the

robot with the environment [PKV07a,PKV08b,PKV08c,PKV08d]. (Chapter 5)

(iv) It is particularly well-suited for hybrid systems, which move beyond continuous

models by employing discrete logic to instantaneously modify the underlying

robot dynamics to respond to mishaps or unanticipated changes in the environ-

ment [PKV07b, PKV07c, PKV08a]. Hybrid systems are often part of sophis-

ticated embedded controllers used in robots exploring unknown and possibly

hazardous environments. (Chapter 6)

(v) It incorporates richer tasks expressed in Linear Temporal Logic (LTL) in ad-

dition to enabling the robot to move from an initial to a goal placement while

avoiding collisions with obstacles [PKV08c]. LTL allows for complex speci�ca-

tions, such as sequencing, coverage, and other combinations of temporal goals,

such as \after inspecting a contaminated area A, visit a decontamination station

B, before returning to any of the base stations C or D." (Chapter 7)

(vi) Going beyond traditional motion planning, it provides a useful framework for

discovering violations of safety properties in hybrid systems [PKV07b,PKV08a,

8

PKV08c]. Safety properties assert that nothing \bad" happens. For instance,

when the hybrid system models air-tra�c control, safety properties assert that

planes will not come too close to one another. (Chapter 8)

1.2 Organization

Related work is described in Chapter 2. The motion-planning problem, com-

mon components used in sampling-based approaches, and a basic search framework

for solving motion-planning problems are described in Chapter 3. The proposed

multi-layered approach, SyCLoP, is described in Chapter 4. Applications of SyCLoP

to motion-planning problems that incorporate dynamics are presented in Chapter

5. Chapter 5 also includes experiments with several second-order models of robotic

vehicles and physics-based simulators. Chapter 6 describes applications of SyCLoP

to motion planning for hybrid systems, including experiments on a scalable naviga-

tion benchmark. Chapter 7 describes applications of SyCLoP to incorporate tasks

expressed by LTL. Chapter 8 focuses on applications of SyCLoP for the falsi�cation of

safety properties in hybrid systems. Chapter 8 presents experiments based on falsi�-

cation of safety properties for an aircraft collision-avoidance protocol in the context

of air-tra�c management. The thesis concludes in Chapter 9 with a discussion.

1.3 Notation

The section includes a summary of common notation used in this thesis.

9

Name Short Description De�ned in

> boolean value: true

? boolean value: false

� trajectory concatenation Section 3.2.1

� set of all trajectories Section 3.1.4

 trajectory Section 3.1.4

valid valid part of trajectory Section 3.2.3

� propositional map Section 7.2

A NFA De�nition 7.2.3

Cov coverage estimate Section 3.2.5

D discrete model Section 4.2

E discrete transitions in hybrid systems De�nition 6.2.1

f dynamics
ow function Section 5.1.2

Goal motion-planning goal function Section 3.1.3

GR graph of discrete model Section 4.2

Guard guards in hybrid systems De�nition 6.2.1

H hybrid automaton De�nition 6.2.1

Jump jumps in hybrid systems De�nition 6.2.1

P motion-planning problem De�nition 3.1.1

Proj state-space projection function Section 3.2.4

continued in next page...

10

Name Short Description De�ned in

Q discrete space in hybrid systems De�nition 6.2.1

R high-level regions Section 4.2

RGoal goal high-level regions Section 4.2

Rinit init high-level regions Section 4.2

S state space Section 3.1.1

SampleTraj trajectory sampling Section 3.2.2

sinit initial state De�nition 3.1.1

States associate tree states to region Section 4.4.2

T tree data structure Section 3.3

Traj tree-trajectory function Section 3.3

U control space Section 5.1.1

Valid checks if a state is valid Section 3.1.2

ValidTraj trajectory validation Section 3.2.3

W workspace Section 5.2.1

X continuous space in hybrid systems De�nition 6.2.1

11

Chapter 2

Related Work: Sampling-based Motion Planning

This chapter provides a summary of related work on sampling-based motion plan-

ning, which has shown great promise in solving challenging motion-planning problems.

The low-level motion planning layer of the proposed multi-layered approach, SyCLoP,

is also sampling based and draws signi�cantly from progress made in recent years

in sampling-based motion-planning research. The chapter starts with an informal

de�nition of the motion-planning problem and a description of early approaches to

motion planning. The chapter then focuses on recent approaches that incorporate rich

models of the robot and the physical world directly into motion planning in order to

facilitate the execution in the physical world of plans produced in simulation.

2.1 Motion Planning with Geometric Models: Generalized

Mover’s Problem

Stated in its simplest form, the motion-planning problem involves planning a

sequence of motions that take a robot from an initial con�guration to a �nal con-

�guration, while avoiding collisions with obstacles in the environment. The robot

may be comprised of several rigid objects either moving independently or attached

to one another through joints, hinges, and links. A con�guration refers to a spatial

12

arrangement of the robot, and the set of all con�gurations is referred to as the con�gu-

ration space. The environment can be a two-dimensional or three-dimensional world,

referred to as the workspace, containing obstacles that the robot needs to avoid.

Early on it was shown that the generalized mover’s problem, where the robot is

comprised of several rigid objects moving independently or connected through joints,

was PSPACE-hard [Rei79]. Additional study on exact motion-planning methods for

the generalized mover’s problem led Schwartz and Sharir [SS88] to an algorithm that

was doubly exponential in the degrees of freedom of the robot (subsequent work in

real algebraic geometry rendered the algorithm singly exponential [BPR03]). This

was followed by Canny’s algorithm, which introduced the notion of a roadmap, i.e.,

a network of 1-dimensional curves that capture the connectivity of the con�guration

space, and showed that the general mover’s problem is PSPACE-complete [Can88a,

Can88b]. The algorithms, however, are mainly of theoretical interest due to the

prohibitive complexity and di�culty of implementation.

The hardness theoretical results on the generalized mover’s problem motivated the

development of alternative approaches that do not rely on an explicit computation

of the con�guration space, but rely instead on an e�cient sampling of this space.

Several distinct formulations of the sampling-based approach have emerged. One of

the �rst sampling-based planners, Randomized Path Planning (RPP) [BL91], utilized

a potential �eld to attract the robot toward the goal, while pushing the robot away

from obstacles. When the robot would get stuck in a local minimum of the potential

13

�eld, RPP relied on sampling of the con�guration space to generate random motions

for escaping the local minima. The \Ariadne’s Clew" [BMA95,BMA98] used sampling

of the con�guration space and genetic optimization to guide the exploration of the

con�guration space toward the goal.

2.1.1 Roadmap Methods

The Probabilistic RoadMap (PRM) [K�SLO96] was the �rst planner that demon-

strated the tremendous potential of sampling-based methods. PRM not only completely

decoupled collision checking and planning, but also used sampling in innovative ways

that resulted in performance gains that had not been observed earlier. PRM creates

a roadmap by �rst sampling the con�guration space. Each sample corresponds to a

placement of the robot in the workspace. If the placement does not result in a colli-

sion, then the sample is considered valid and it is added to the roadmap. During a

second step, neighboring roadmap samples are connected via simple paths that avoid

collisions with obstacles. A motion-planning problem is then solved by �rst connect-

ing the initial and goal con�gurations to the roadmap, then using graph search on

the roadmap to �nd a path between the initial and goal con�gurations.

A critical aspect of PRM is the sampling strategy, since PRM relies on sampling to

capture the connectivity of the free con�guration space. The original PRM implemen-

tation [K�SLO96] employed uniform random sampling, which is easy to implement and

has been shown to work well in a variety of di�erent problems. It has also been ob-

served, however, that problems where the solution path must go through narrow pas-

14

sages are particularly challenging, since the probability of generating samples inside

narrow passages is low due to these passages’ small volume [K�SLO96,HKL+98]. Sev-

eral sampling strategies were developed to improve sampling inside narrow passages

by sampling more around disconnected components of the roadmap [K�SLO96,Kav95],

near obstacles [ABD+98a, HKL+98, BOvdS99], on or near the medial axis [GHK99,

WAS99,HK00], or using machine learning and workspace information to sample more

inside narrow passages [MTP+04,BB05,HSAS05,SHJ+05,HLK06,KH06,ZKB08], and

many other strategies surveyed in [CLH+05,LaV06].

2.1.2 Tree Methods

An alternative to roadmap-based approaches is to explore the con�guration space

by incrementally extending a tree from the initial con�guration toward the goal con-

�guration. While a roadmap-based approach attempts to capture the connectivity of

the free con�guration space so that multiple queries can be solved quickly, the objec-

tive of a tree-based approach is to quickly extend the tree toward the goal to solve the

one query under consideration. Tree-based approaches were popularized by sampling-

based motion planners such as Rapidly-exploring Random Tree (RRT) [LaV98,LK01]

and Expansive Space Tree (EST) [HLM97, HKLR02], which successfully solved chal-

lenging motion-planning problems. A vertex in the tree corresponds to a valid sample,

while an edge from a sample s0 to s00 indicates a valid path connecting s0 to s00.

An RRT \pulls" the tree toward the unexplored parts of the con�guration space

by extending the tree toward random samples. At each iteration, a sample srand is

15

generated according to some sampling strategy. The closest sample in the tree, snear,

is then computed according to a distance metric that de�nes closeness. A branch in

the tree is created by extending a path from snear toward srand. As in the case of PRM,

the sampling strategy plays a critical role in the ability of RRT to rapidly extend the

tree toward the goal con�guration.

An EST \pushes" the tree to unexplored parts of the con�guration space by sam-

pling points away from densely sampled areas. For each sample s in the tree, EST

maintains a density estimate as a weight w(s), which is usually measured as the

number of outgoing edges or the number of neighboring samples. At each iteration,

a sample s is selected from the tree with probability inversely proportional to the

density estimate w(s), and a branch is created by extending a random path from s.

As in the case of roadmap approaches, the sampling strategy plays a critical role in

tree-based approaches. In addition to RRT and EST, in order to improve the sampling

strategy so that the tree quickly extends toward the goal, researchers have proposed

numerous methods, such as [SL02, BV02, LL03, JYLS05, LK04a, LK05, BB07, BK07,

PKV07a,PKV08b,ZM08] and many others surveyed in [CLH+05,LaV06].

2.1.3 Sampling-based Roadmap of Trees

It is also possible to combine roadmap and tree approaches. Drawing from the

success of multi-tree searches in discrete spaces in AI, the Sampling-based Roadmap

of Trees (SRT) [PBC+05] searches a high-dimensional con�guration space by creating

a roadmap of trees that integrates the global sampling properties of roadmap-based

16

planners, such as PRM [K�SLO96], with the local sampling properties of tree-based

planners, such as RRT [LaV98,LK01] and EST [HLM97,HKLR02]. As in PRM, SRT con-

structs a roadmap aimed at capturing the connectivity of the free con�guration space.

The nodes of the roadmap, however, are not single con�gurations but trees, which are

grown by using tree-based motion planners. The edges of the roadmap correspond to

connections between trees, which are also computed by sampling-based tree planners.

SRT is shown to be signi�cantly faster and more robust than the roadmap- and the

tree-based planners it combines. The multi-tree search in SRT also provides a natu-

ral framework for a large-scale distribution based on asynchronous communication,

yielding near linear speedup on hundreds of processors [PK05,PK07a].

2.2 Motion Planning with Rich Models: Toward Realistic

Applications

The generalized mover’s problem considers the motion-planning problem from a

purely geometric perspective that ignores the underlying robot dynamics. Motions of

a robot in the physical world, however, are governed by dynamics that often impose

constraints on the velocity, acceleration, and curvature. As a result, solution paths

obtained by motion-planning methods that solve the generalized mover’s problem

may not be easily executed by the robot in the physical world.

The execution of a solution path obtained in simulation requires the design of

feedback controllers that can convert the simulated motions into low-level hardware

17

commands. The design of feedback controllers is a laborious and challenging task,

since it depends on the robot dynamics and the interaction of the robot with the

environment. While feedback controllers have been designed that can enable robots

with essentially linear dynamics to follow geometric paths, the case of robots with

nontrivial dynamics remains open to research [CLH+05,LaV06].

This challenge in designing feedback controllers that can enable complex robots to

follow simple geometric paths underscores the need for incorporating robot dynam-

ics directly into motion planning, so that the produced motions obey the physical

constraints of the robot. The con�guration space is augmented with new parameters

necessary to express the robot dynamics. Motion planning then takes place in this

augmented con�guration space, which is referred to as the state space. Solutions

obtained by motion-planning methods that respect the underlying robot dynamics

are referred to as trajectories.

Some progress has been made in this direction by adapting popular geometric mo-

tion planners, such as RRT [LaV98,LK01] and EST [HLM97,HKLR02]. To incorporate

robot dynamics into motion planning, tree-based approaches, such as RRT and EST,

extend the search tree with trajectories that respect the underlying robot dynamics.

Such trajectories are generally computed by propagating the robot dynamics forward

in time (see [CLH+05,LaV06], and Chapter 5).

The Path-Directed Subdivision Tree (PDST) [LK04a,LK05,Lad06] motion planner,

takes this idea a step further and proposes the integration of motion planning with

18

physics-based simulations that model not only the dynamics of the robot, but also fric-

tion, gravity, and other interactions between the robot and the environment in which

the robot operates. Motions produced by PDST in simulation have also been executed

without much error by modular-chain robots in the physical world [SKYK08]. The

work in [GRS+07] also uses physics-based simulations of articulated chains in com-

bination with sampling-based motion planners to e�ectively solve high-dimensional

motion-planning problems for articulated-chain robots.

The work in [BK07] builds upon PDST [LK04a,LK05,Lad06] to incorporate safety

constraints in the presence of moving obstacles directly into motion planning. The

work is further extended in [BTK07a,BTK07b] to allow for safe replanning not only

for one robot, but for a group of robotic vehicles with second-order dynamics.

Sampling-based motion planners have also been adapted to solve motion-planning

problems involving
exible or deformable objects [HKW98,GHK99,AOLK00,GLM05,

Mol06,SI07], humanoid robots [KKN+02], modular robots [YSS+07,VKR08,SKYK08],

and many others surveyed in [CLH+05,LaV06].

Most motion planners to date, however, focus on robots whose underlying dy-

namics are continuous. Many robots expected to perform complex tasks combine dis-

crete and continuous dynamics. These hybrid systems, designed to explore unknown,

dynamic, or possibly hazardous environments, can quickly modify their continuous

dynamics to respond to mishaps or unanticipated changes in the environment. Such

responses are often realized by employing discrete logic to instantaneously switch be-

19

tween di�erent operating modes. This combination of discrete logic and continuous

dynamics in hybrid systems poses a signi�cant challenge for current motion plan-

ners. Some sampling-based motion planners [KEK05,BF04,ND07,EKK04] based on

RRT [LaV98,LK01] have been adapted to address motion planning for hybrid systems

with few modes. The applicability of RRT-based motion planners to hybrid systems

with a large number of modes remains challenging, since computational e�ciency

signi�cantly deteriorates as the number of modes increases.

Motion planning with rich models of the robot and the physical world poses signif-

icant computational challenges that dramatically increase the computational cost of

current motion-planning methods. As discussed in the introduction in Chapter 1, this

thesis proposes a novel multi-layered approach, SyCLoP, that seamlessly combines mo-

tion planning at di�erent levels of modeling complexity. As shown in the rest of this

thesis, a signi�cant advantage of SyCLoP is that it signi�cantly reduces the computa-

tional cost to solve challenging motion-planning problems for robots with dynamics,

physics-based simulations, and hybrid systems by one to two orders of magnitude

when compared to state-of-the-art motion planners.

20

Chapter 3

Preliminaries

This chapter de�nes the motion-planning problem and describes several compo-

nents used by sampling-based motion planners, including the multi-layered approach,

SyCLoP, developed in this thesis. The chapter concludes with a description of the un-

derlying tree-search framework commonly used in sampling-based motion planning.

3.1 Motion-Planning Problem

The objective of motion planning is to compute a trajectory that enables the robot

to accomplish the assigned task while satisfying constraints such as collision avoid-

ance, and velocity and acceleration bounds along the trajectory. Fig. 3.1 provides an

illustration. A formal de�nition follows.

De�nition 3.1.1. (Motion-Planning Problem). A motion-planning problem is a

tuple P = (S;Valid; sinit;Goal), where

� S is a state space consisting of a �nite set of variables that completely describe

the state of the system (see Section 3.1.1);

� Valid : S ! f>;?g is a state-constraint function, i.e., Valid(s) = > i� s 2 S

satis�es the state constraints (see Section 3.1.2);

21

Fig. 3.1: In this motion-planning problem the objective is to �nd a trajectory that allows
the robotic car to reach the goal position starting while avoiding collisions with the obstacles.

� sinit 2 S is an initial state;

� Goal : S ! f>;?g is a goal function, i.e., Goal(s) = > i� s 2 S satis�es

the motion-planning goal (see Section 3.1.3);

A solution to the motion-planning problem P is a valid trajectory
 : [0; T]! S (see

Section 3.1.4) that starts at sinit and satis�es the motion-planning goal, i.e.,

(0) = sinit; Goal(
(T)) = >; and 8t 2 [0; T] : Valid(
(t)) = >:

3.1.1 State Space

A state consists of a collection of variable values that completely describe the

system at a given instance. The set of all states constitutes the state space, which is

denoted by S and de�ned as

S = fs : s is a stateg:

22

When a system is composed of multiple robots, then the state of the system is

obtained by concatenating the states of each robot in the system. The state space S

of a multi-robot system is then obtained as the Cartesian product of the state spaces

S1;S2; : : : ;Sn of each robot, i.e.,

S = S1 � S2 � � � � � Sn:

The following example illustrates common representations of the state spaces for

several simple robots. More complex examples can be found in Chapters 5 and 6.

Example 3.1.1. (State Space of a 2D Point Robot). Each state can be fully

described by the point’s position (x; y). Since the state describes only the robot con-

�guration, the state space is commonly referred to as the con�guration space.

(State Space of a 2D Polygonal Robot). The description of a state of a 2D

polygonal robot requires the speci�cation not only of the position (x; y), but also of the

orientation � of the polygon w.r.t to a frame of reference. Similarly as in the case of

a 2D point robot, the state space is commonly referred to as the con�guration space.

(State Space of a 3D Polyhedral Robot). A state (con�guration) of a 3D

polyhedral robot can be fully described by the position (x; y; z) and the orientation

of the polyhedra w.r.t a frame of reference. Orientation in 3D can be described in a

variety of ways, e.g., by Euler angles, by an axis and an angle, or by a quaternion.

(State Space of a Simple Car). In addition to the con�guration (x; y; �), the state

of a simple car can include information about the velocity v and steering angle .

23

3.1.2 State Constraints

State constraints indicate a desired invariant that each state should satisfy. In

motion planning, it is common to require avoiding collisions with obstacles and, for

greater safety, even require that a minimum separation distance be maintained. When

planning for an articulated robotic arm, constraints are also imposed on the joint

limits in order to keep the rotations at each joint within desired bounds. In motion-

planning problems that involve robotic vehicles, state constraints are often used to

ensure that the vehicles maintain a reasonable speed and avoid sharp turns.

This thesis allows for a general speci�cation of state constraints as a function

Valid : S ! f>;?g, where

Valid(s) = > i� s satis�es the state constraints.

3.1.3 Motion-Planning Goal

The motion-planning goal is speci�ed as desired constraints that a goal state

should satisfy. Such constraints could include a desired position or orientation. In

motion-planning with dynamics, it is also common to require that a robot’s velocity

remain within certain bounds.

As in the case of Valid, this thesis allows for a general speci�cation of a motion-

planning goal as a function Goal : S ! f>;?g, where

Goal(s) = > i� s satis�es the motion-planning goal.

24

3.1.4 Trajectory

A trajectory indicates the evolution of a system’s state w.r.t time.

De�nition 3.1.2. (Trajectory). A trajectory is a function
 : [0; T]! S, parame-

terized by time T 2 R
�0. The notation j
j indicates the time duration T . The set of

all trajectories is denoted by �.

Note that there is no requirement that
 should be a continuous function. This

general de�nition of a trajectory accommodates hybrid-system trajectories, which, as

described in Chapter 6, contain discrete transitions.

3.2 Motion-Planning Components

Sampling-based motion planners, including the multi-layered approach, SyCLoP,

developed in this thesis, make use of common motion-planning components, such

as trajectory concatenation, trajectory sampling, trajectory validation, state-space

projections, and coverage estimates.

3.2.1 Trajectory Concatenation

Trajectory concatentation allows sampling-based motion planners to extend a tra-

jectory by concatenating to its end another trajectory.

De�nition 3.2.1. (Trajectory Concatenation). Let
1 : [0; T1] ! S and
2 :

[0; T2]! S, where
1(T1) =
2(0). The concatenation of
1 by
2, written as
1 �
2,

25

is another trajectory
 : [0; T1 + T2]! S de�ned as

(t) =

8

>>><

>>>:

1(t); if t 2 [0; T1]

2(t� T1); if t 2 (T1; T1 + T2]:

3.2.2 Trajectory Sampling

Sampling-based motion planners often employ a trajectory-sampling strategy to

generate a trajectory
 : [0; T]! S that starts at a given state s 2 S, i.e.,
(0) = s.

De�nition 3.2.2. (Trajectory Sampling). Let P = (S;Valid; sinit;Goal) be

a motion-planning problem. Given a state s 2 S, a trajectory-sampling strategy

SampleTraj(P; s) is a sampling function that, according to some probability distri-

bution, generates a trajectory
 : [0; T]! S that starts at s, i.e.,
(0) = s.

The only requirement imposed on SampleTraj(P; s) is that it should be a sam-

pling function. The purpose of this requirement is to provide the motion planner

with alternative trajectories that can start at s 2 S. In this way, subsequent calls to

SampleTraj(P; s) produce di�erent trajectories based on the probability distribu-

tion and the sampling strategy. This allows the motion planner to extend the search

for a solution along di�erent directions.

Note that trajectory sampling depends on the motion-planning problem P and in

particular the robot model. In this way, SampleTraj provides SyCLoP with a general

formulation that hides away the speci�cs of a particular motion-planning problem.

26

Chapters 5 and 6 describe common trajectory-sampling strategies used by SyCLoP in

the case of motion planning for robot with dynamics and hybrid systems, respectively.

3.2.3 Trajectory Validation

The purpose of trajectory validation is to compute the largest part of a given

trajectory
 : [0; T] ! S, starting at time 0, that satis�es the state constraints.

Trajectory validation is typically used in combination with trajectory sampling. Given

a state s 2 S, trajectory sampling generates a trajectory
 : [0; T]! S that starts at

s. Then, trajectory validation is used to keep only the valid part of
, starting at s.

This allows the motion planner to consider only valid trajectories as it proceeds with

a search for a solution to the motion-planning problem.

De�nition 3.2.3. (Trajectory Validation). Let P = (S;Valid; sinit;Goal) be a

motion-planning problem. Given a trajectory
 : [0; T]! S, the function ValidTraj :

� ! � computes the largest valid part of
, starting at time 0, as follows: Let K,

0 � K � T , be as large as possible such that

8k 2 [0; K] : Valid(
(k)) = >:

Then,
valid : [0; K]! S, where

8k 2 [0; K] :
valid(k) =
(k)

denotes the largest valid part of
 starting at time 0.

The implementation of ValidTraj(
) relies on an incremental discretization of

 in order to compute
valid. At the i-th iteration, ValidTraj(
) checks the validity

27

of
(i � �), where � > 0 is a constant. If Valid(
(i � �)) = ?, then an invalid state is

found, so K = (i� 1) � �, and the iteration stops. Otherwise, i is incremented by one

until i�� > T . Note that � > 0 should be set to a small value in order to minimize the

possibility of skipping over an invalid state, i.e.,
(i��) = > and
((i+1)��) = >, but

(t) = ? for some t 2 (i � �; (i + 1) � �). Such an incremental approach is advocated

in [CLH+05,LaV06] and is commonly used by sampling-based motion planners.

3.2.4 State-Space Projections

A projection of a space S onto another space Z is obtained via a projection func-

tion Proj : S ! Z. The multi-layered motion-planning approach SyCLoP developed

in this thesis uses state-space projections to e�ectively reduce the dimensionality of

S by projecting S onto a lower dimensional space Z. Given a set of state samples

�S = f�s1; : : : ; �sng from S, the projection of �S is obtained as �Z = f�z1; : : : ; �zng, where

�zi = Proj(�si):

The objective of the projection is to reduce the dimensionality while at the same time

preserve the underlying structure of the original set. For many motion-planning prob-

lems, simple projections that consider only some of the state components have been

shown to work well in practice [LK04a, LK05, Lad06, PKV07a, PKV08b, PKV08d].

In particular, for motion-planning problems involving robotic vehicles such as cars,

di�erential drives, unicycles, low-dimensional projections are usually obtained by con-

sidering only the position component of a state, i.e., (x; y) 2 R
2 (resp., (x; y; z) 2 R

3)

28

for a robot operating in a 2D (resp., 3D) workspace. For articulated-arm robots, the

position of the end-e�ector is typically used for the projection.

For other motion-planning problems, such as those arising in recon�gurable robots

and computational biology, it is more challenging to design an appropriate projection

function that reduces the dimensionality while preserving the underlying structure

of the original set. In these cases, dimensionality reduction [Jol86, CC00, HKO01]

can provide a viable approach for automatically computing projections onto low-

dimensional Euclidean spaces. The author’s work in [PK06, PSCK07, PK07b] has

developed an e�ective framework for computing low-dimensional projections that

preserve the underlying structure of high-dimensional data remarkably well.

3.2.5 Coverage Estimates

An important issue that arises frequently in sampling-based motion planning re-

lates to the estimation of coverage of a region of the state space by the samples

generated by the motion planner. The motion-planning approach SyCLoP developed

in this thesis, as described in Chapter 4, relies on coverage estimates in order to

determine which parts of the state space should be further explored.

Consider a region Y and a set of samples �Y = f�y1; : : : ; �yng from Y . The objective

of a coverage estimate

Cov(Y ; �Y)

is to quantify how well �Y covers Y . Coverage estimates were �rst introduced in the

context of Monte Carlo methods as a way to measure the quality of deterministic sam-

29

pling (also referred to as quasirandom sampling) in comparison to random sampling

(see recent books [Nie92, DT97] for details and extensive references on the subject).

One such measure that has been widely used is the dispersion. As noted in [EKK04],

while dispersion has been used in sampling-based motion planning to generate quasir-

andom samples [LBL03], its use as a coverage estimate is impeded by the signi�cant

cost required to compute it in high dimensions.

A viable way to avoid computational bottlenecks due to the high-dimensionality

of the state space is to compute the coverage in a low-dimensional projection onto a

Euclidean space. Such an approach, which has been advocated in [CLH+05, LaV06,

LK04a,LK05,Lad06,PKV07a,PKV08b,PKV08d], is also followed in this thesis.

1. Given �Y = f�y1; : : : ; �yng, compute a low-dimensional projection �Z = f�z1; : : : ; �zng �

R
m as described in Section 3.2.4, i.e., �zi = Proj(�yi):

2. Overlay an implicit grid with n cells over R
m.

3. Compute the coverage by counting the number of grid cells that have at least

one sample inside, i.e.,

Cov(Y ; �Y) =
nX

i=1

8

>>><

>>>:

1; if the i-th cell contains at least one sample �z from �Z

0; otherwise.

Note that it is not necessary to maintain an explicit representation of the grid. In

fact, a hash data structure is typically used to maintain a list of nonempty grid cells.

When a new sample �y is added to �Y , then its projection is computed as

�z = Proj(�y):

30

The cell that �z belongs to is then added to the list of nonempty grid cells (if not already

there). This approach allows for fast updates and minimal memory requirements

since the number of nonempty grid cells is always less than or equal to the number

of samples. Note that a di�erent spacing can be used along each dimension, allowing

the grid to be coarser along some dimensions and �ner along others.

3.3 Motion Planning as a Search Problem

Let P = (S;Valid; sinit;Goal) be a motion-planning problem, as de�ned in

Section 3.1. Motion planning is generally considered as a search problem for a valid

trajectory
 : [0; T]! S that satis�es the motion-planning goal, i.e.,

(0) = sinit; Goal(
(T)) = >; and 8t 2 [0; T] : Valid(
(t)) = >:

Many sampling-based motion planners follow a common framework that searches for

a solution by extending in the state space S a tree rooted at the initial state sinit.

Pseudocode of the basic search is given in Algo. 1.

A search data structure is maintained as a tree T = (VT ; ET) (Algo. 1:2). A

vertex v(s) 2 VT is associated with a state s 2 S, where Valid(s) = >. An edge

(v(s1); v(s2)) 2 ET indicates that a valid trajectory
s1;s2
: [0; T] ! S from s1 to s2

has been computed, i.e.,

s1 =
s1;s2
(0); s2 =
s1;s2

(T); and 8t 2 [0; T] : Valid(
s1;s2
(t)) = >:

Initially, VT = fv(sinit)g and ET = ; (Algo. 1:2). As the search proceeds iteratively

(Algo. 1:3{10), T is extended by adding new vertices and edges. At each iteration, a

31

Algorithm 1 A Basic Search-Tree Framework for the Motion-Planning Problem

Input: P = (S;Valid; sinit;Goal): motion-planning problem
tmax 2 R

>0: upper bound on overall computation time
Output: A solution trajectory or ? if no solution trajectory is found

1: StartClock

2: T = (VT ; ET); VT fsinitg; ET ;
3: while ElapsedTime < tmax do
4: s SelectStateFromSearchTree(P; T)
5:
 SampleTraj(P; s) }see Section 3.2.2
6:
valid ValidTraj(
) }see Section 3.2.3
7: snew ! last state of
valid

8: VT VT [fsnewg; ET ET [f(s; snew)g
9: if Goal(snew) = > then

10: return Traj(T ; snew) }compute solution trajectory
11: return ?

state s is �rst selected from the states already in T (Algo. 1:4). The search tree T is

then extended by using a trajectory-sampling strategy (see Section 3.2.2) to generate

a trajectory
 : [0; T] ! S that starts at s (Algo. 1:5) and keeping only the valid

part
valid of
 (Algo. 1:6). The vertex v(snew), where snew is the last state of
valid, is

added to VT (Algo. 1:8). The edge (v(s); v(snew)) is added to ET , and
 is associated

with (v(s); v(snew)) (Algo. 1:8). If Goal(snew) = >, then a solution trajectory is

found (Algo. 1:9). In fact, the solution trajectory Traj(T ; snew) (Algo. 1:10) can

be computed by concatenating the trajectories associated with the tree edges that

connect v(sinit) to v(snew), i.e.,

Traj(T ; snew)
def
=
sinit;s1

�
s1;s2
� � � � �
sn;snew

;

where v(s1); : : : ; v(sn) denotes the sequence of vertices that connects v(sinit) to v(snew).

32

Chapter 4

SyCLoP: Synergic Combination of Layers of

Planning

This chapter describes the proposed multi-layered approach, SyCLoP, which syn-

ergically combines high-level discrete planning with low-level motion planning to

dramatically reduce the computational time for solving challenging motion-planning

problems. SyCLoP, as shown later in the thesis, can be applied to motion-planning

problems that incorporate robot dynamics, physics-based simulations, hybrid sys-

tems, and high-level tasks speci�ed using the expressiveness of linear temporal logic.

4.1 Overall Approach

The e�ciency of the search-tree framework presented in Section 3.3 depends on

the ability of the motion planner to quickly extend the search tree T along those

directions that can be used for computing a solution trajectory.

SyCLoP utilizes information provided by the problem speci�cation and informa-

tion gathered during previous exploration steps to guide future explorations closer to

obtaining a solution to the given motion-planning problem. This is a concept that has

been studied before mainly in the context of geometric motion planning by sampling-

based motion planners that construct roadmaps. For example, PRM [K�SLO96] uses

33

the information of the connectivity of the samples to create more samples in parts of

the con�guration space where connectivity is low. The work in [BB05] uses nearest-

neighbors information in the context of PRM to de�ne the utility of each sample in an

information-theoretic sense and only add to the roadmap those samples that increase

the overall entropy. The planners in [MTP+04] and [HSAS05] also utilize information

in the context of PRM to �nd appropriate sampling strategies for di�erent parts of the

con�guration space. In contrast to roadmap methods, traditional tree-based motion

planners such as RRT [LaV98,LK01] and EST [HLM97,HKLR02] rely on limited infor-

mation, such as distance metrics or simple heuristics to guide the search. Although

the tree may initially advance quickly, as the time goes on, the growth slows down

rapidly as it becomes more and more di�cult to �nd promising directions for the

search. These limitations become even more pronounced when solving challenging

motion-planning problems that incorporate richer models of the robot and the physi-

cal world, such as robot dynamics, physics-based simulations, and hybrid systems. In

these cases, the added complexity renders current motion planners practically inef-

fective. To address some of the limitations observed in tree-based planners in solving

challenging problems with dynamics, recent work in [LK04a,LK05,Lad06] and [BK07]

rely on a subdivision scheme and potential �elds to guide the tree search, respectively.

To e�ectively guide the search for a solution and overcome the limitations of

current motion planners, SyCLoP seamlessly combines high-level discrete planning

with low-level motion planning in a multi-layered approach. As mentioned in the

34

introduction in Chapter 1, in the �rst layer, planning takes place in a simpli�ed high-

level and discrete model of the motion-planning problem. In the second layer, motion

planning is based on the full model of the motion-planning problem.

The purpose of high-level planning, which draws from research in AI and logic,

is to guide low-level motion planning as it extends T in search for a solution to the

motion-planning problem. The high-level planning provides high-level plans, which

constitute solutions to the motion-planning problem under the simpli�ed model.

The rationale for high-level planning is that solutions obtained under the simpli�ed

model can be indicative of solutions under the full model of the motion-planning

problem. Moreover, from a computational perspective, it is signi�cantly more e�cient

to obtain solutions under the simpli�ed model than under the full model.

The objective of the low-level planning in the second layer is to extend T so

that it closely follows the current high-level plan. Since a high-level plan constitutes

a solution to the motion-planning problem under the simpli�ed model, by closely

following the high-level plan, the low-level motion planner might be able to obtain a

solution under the full model of the motion-planning problem.

A distinctive feature and a crucial property of SyCLoP is the synergic combina-

tion of high-level discrete planning and low-level motion planning. Note that it is

not known a priori which high-level plan would be the best in guiding the low-level

motion planner toward a solution. As the search progresses, the di�erent planning

layers in SyCLoP exchange information with one another in order to evaluate the feasi-

35

bility of current high-level plans and compute increasingly feasible high-level plans in

future iterations. Aiming to strike a balance between greedy and methodical search,

SyCLoP gives priority to highly feasible plans, but at the same time it does not ignore

other plans. This is especially relevant in the early stages of the search when more

information is needed to properly evaluate the feasibility of di�erent high-level plans.

This synergic combination of high-level discrete planning and low-level motion

planning provides SyCLoP with the
exibility to extend the search tree T along useful

directions while able to radically change direction if information from the search

suggests other highly feasible plans. As shown in later chapters of this thesis, SyCLoP

dramatically reduces the computational cost in solving challenging motion-planning

problems that incorporate robot dynamics and physics-based simulations (Chapter 5),

hybrid-systems (Chapter 6), and high-level tasks expressed in LTL (Chapter 7).

The rest of this chapter is as follows. The simpli�ed high-level and discrete model

of the motion-planning problem is described in Section 4.2. The synergic combina-

tion of the high-level discrete planning and low-level motion planning in SyCLoP is

described in Section 4.3. Descriptions of the high-level discrete planning and low-level

motion planning are provided in Sections 4.4 and 4.5, respectively.

4.2 High-Level Discrete Model of Motion-Planning Problem

The high-level planning layer in SyCLoP operates on a simpli�ed discrete model

of the motion-planning problem. Although it is possible to consider other high-

36

level models, this thesis focuses on discrete models due to their simplicity and the

computational e�ciency of planning on discrete models as compared to continuous

models. Moreover, the use of discrete models allows SyCLoP to bene�t from research

in computer logic and AI, where discrete planning plays an important role.

Discretizations of the motion-planning problem in the context of geometric mo-

tion planning appeared early in the literature. Key theoretical results were ob-

tained using discretizations based on decompositions of the collision-free con�guration

space [Lat91]. As discussed in related work in Chapter 2, the notion of a roadmap,

introduced by Canny’s algorithm [Can88a], provides a discretization of the motion-

planning problem in the form of a graph. Each vertex in the graph is associated with

a collision-free region of the con�guration space. The union of all the regions asso-

ciated with the graph vertices corresponds to the collision-free con�guration space.

An edge in the graph indicates physical adjacency of the regions associated with the

end-vertices of the edge. Similar discretizations are also obtained by exact and ap-

proximate cell-based decomposition methods, which decompose the collision-free con-

�guration space into a collection of cells (see discussions in [Lat91,CLH+05,LaV06]).

A distinctive feature of SyCLoP in contrast to decomposition methods is that

SyCLoP does not impose any strict requirements on the discrete model of the motion-

planning problem. In particular, SyCLoP does not require the discrete model to be

based on a partition of the collision-free con�guration space. This allows SyCLoP

to consider discrete models that can be computed e�ciently, as opposed to the

37

exponential-time cost required to partition the collision-free con�guration space.

In many cases, the discrete model used by the high-level planning layer of SyCLoP

is based on a simple partition of the state space S into a �nite number of regions

R = fR1;R2; : : : ;Rng; where S = R1 [R2 [� � � [Rn:

Since SyCLoP does not require that a region Ri 2 R should contain only valid states,

such partitions can be easily obtained in a variety of ways. For instance, as described

in Chapter 5, partitions used for motion-planning problems that incorporate robot

dynamics are based on grid and triangular decompositions of the workspace on which

the robot operates. In the case of motion-planning for hybrid systems, partitions are

based on the discrete logic employed by the hybrid system (see Chapter 6). When

incorporating high-level tasks expressed in LTL into motion planning, as described

in Chapter 7, partitions are based on the LTL formula specifying the high-level task.

The high-level discrete model is represented in terms of a graph GR = (VR; ER),

whose vertices are regions in the partition R and whose edges denote adjacency

between regions. Region Ri 2 R is considered adjacent to Rj 2 R if there exists a

trajectory
 : [0; T]! S that goes directly from a state in Ri to a state in Rj , i.e.,

(0) 2 Ri;
(T) 2 Rj; and 8t 2 [0; T] :
(t) 2 Ri [Rj :

Then, VR = fv(Ri) : Ri 2 Rg and

ER = f(v(Ri); v(Rj)) : (Ri;Rj 2 R) ^ (Ri is adjacent to Rj)g:

Fig. 4.1(a, b) provides an illustration. The high-level discrete model also keeps in-

formation about regions associated with the initial state and regions which contain

38

(a) (b) (c)

Fig. 4.1: (a) A grid-based partition. (b) The high-level discrete model represented as a
graph. (c) Example of a high-level plan.

states that satisfy the motion-planning goal. More speci�cally,

� Rinit = fRi : Ri 2 R ^ sinit 2 Rig and

� RGoal = fRi : Ri 2 R ^ (9s 2 Ri : Goal(s) = >)g.

Putting it all together, the high-level discrete model is a tuple

D = (R; GR;Rinit;RGoal):

A solution w.r.t to the discrete model is a connected sequence of regions [Rij
]kj=1 that

starts at a region in Rinit and ends at a region in RGoal, i.e.,

Ri1 2 Rinit; Rik
2 RGoal; and (v(Rij

); v(Rij
)) 2 ER; 8j 2 f1; 2; : : : ; k � 1g:

4.3 Interplay of Planning Layers

As discussed in Section 4.1, SyCLoP systematically takes advantage of the fact that

solutions obtained under the high-level model can be indicative of solutions under the

full model of the motion-planning problem. SyCLoP uses high-level plans to guide the

39

low-level motion planner as it extends T in search for a solution. In turn, information

gathered during the search, such as the progress made in following the high-level plan,

is fed back from the low-level to the high-level layer. In this way, high-level plans

become increasingly useful in guiding the low-level motion planner toward a solution.

Consider a high-level plan [Rij
]kj=1. Recall that [Rij

]kj=1 connects Ri1 2 Rinit to

Rik
2 RGoal (see Section 4.2 and Fig. 4.1(c)). If a solution trajectory
 : [0; T]! S

exists that reaches Ri1 ;Ri2 ; : : : ;Rik
in succession, then [Rij

]kj=1 is considered feasi-

ble. A feasible high-level plan is indicative of solutions under the full model of the

motion-planning problem. Since it is not known a priori which high-level plan is

feasible, SyCLoP maintains a running weight estimate w(
�
Rij

]
�k

j=1
) on the feasibility

of
�
Rij

�k

j=1
. A high weight indicates that SyCLoP is making signi�cant progress in

following the high-level plan, while a low weight indicates little or no progress.

The core part of SyCLoP, illustrated in Fig. 1.1 and 4.2, proceeds by repeating the

following steps until a solution is found or a maximum amount of time has elapsed:

1. Obtain a high-level plan
�
Rij

�k

j=1
by a high-level discrete planner operating on

the discrete model D = (R; GR;Rinit;RGoal) of the motion-planning problem.

2. Use low-level motion planning to extend the search tree T from one region to

its neighbor, as speci�ed by the current high-level plan
�
Rij

�k

j=1
.

3. Update the weights w(
�
Rij

�k

j=1
) on the feasibility estimates of the high-level

plans in order to compute increasingly feasible plans in future iterations.

The discrete model can provide SyCLoP with many alternative high-level plans.

40

Fig. 4.2: Interplay of high-level discrete planning and low-level motion planning in SyCLoP.
Given a high-level plan, the low-level motion planner extends the search tree T , so that
it closely follows the high-level plan. Information gathered during the search is fed back
from the low-level to the high-level layer to compute increasingly feasible high-level plans
in future iterations. Obstacles are shown in yellow. High-level plans are shown in light red.
Tree vertices are shown as blue circles, while tree edges are shown as red curves.

A central issue is which high-level plan to choose at each iteration from the com-

binatorially large number of possibilities. Since the feasibility estimates are based

on partial information, it is important not to ignore high-level plans associated with

lower weights, especially during the early stages of the search.

SyCLoP aims to strike a balance between greedy and methodical search. For this

reason, SyCLoP selects more frequently high-level plans associated with higher feasi-

bility estimates and less frequently high-level plans associated with lower feasibility

estimates. Information gathered during the search by the low-level motion planning

(such as coverage, regions Rij
that have been reached, and time spent) is used to

41

update the weights w(
�
Rij

�k

j=1
) on the feasibility of high-level plans.

As a result, a new high-level plan associated with a high weight could be selected

in the next iteration. In turn, by receiving high-level plans
�
Rij

�k

j=1
that are estimated

to be highly feasible, the low-level motion planner is able to make progress and extend

T toward Ri1 ;Ri2 ; : : : ;Rik
in succession until it successfully computes a solution.

This synergic combination of high-level discrete planning (Section 4.4) and low-

level motion planning (Section 4.5) through the weight estimates on the feasibility

of high-level plans is a crucial component of SyCLoP. This combination provides

SyCLoP with the
exibility to extend T along useful directions while able to radically

change direction if information from the search suggests other highly feasible plans,

as illustrated in Fig. 4.2. Pseudocode for SyCLoP is given in Algo. 2.

4.4 High-Level Discrete Planning: Guiding the Search

The current high-level plan � is computed at each iteration (Algo. 2:6) by searching

the graph GR = (VR; ER) of the discrete model D for a connected sequence of regions

[Rij
]kj=1 from Ri1 2 Rinit to Rik

2 RGoal. As discussed in Section 4.3, the discrete

model can provide SyCLoP with combinatorially many alternative high-level plans.

Since feasibility estimates are based on partial information, especially during early

stages of the search, it is important not to ignore high-level plans associated with low

weights. For this reason, SyCLoP aims to balance greedy and methodical search in

the computation of high-level plans at each iteration of the core loop (Algo. 2:6).

42

Algorithm 2 SyCLoP: Synergic Combination of Layers of Planning

Input: P = (S;Valid; sinit;Goal): motion-planning problem
tmax 2 R: upper bound on overall computation time

Output: A solution trajectory or ? if no solution trajectory is found

1: StartClock

2: T = (VT ; ET); VT fsinitg; ET ; }initialize search tree
3: D = (R; GR;Rinit;RGoal) DiscreteModel(P) } construct discrete model
4: InitFeasibilityEstimates(GR; w) }initialize feasibility estimates
5: while time < tmax do }core loop interplay: discrete search{motion planning

6: �
def
= [Rij

]kj=1 HighLevelPlanning(D; w) }compute high-level plan
7: �avail ; }begin motion-planning step
8: for j = k; k � 1; : : : ; 1 do }start using high-level plan
9: if States(T ;Rij

) 6= ; ^ rand(0; 1) < 1
1+j�availj2

then

10: �avail fRij
g [�avail }get directions from the high-level plan

11: for several times do
12: Rij

 SelectRegion(�avail; w) } select region from available regions
13: s SelectState(States(T ;Rij

); w) }select state for propagation
14:
valid ExtendSearchTree(T ; s) }attempt to extend search tree
15: snew last state of
valid

16: if snew 6= NULL then }was the tree extended?
17: VT VT [fsnewg; ET ET [f(s; snew)g }add state and trajectory
18: Update(�avail) }consider for selection newly reached regions
19: if Goal(snew) = > then return Traj(T ; snew) }solution
20: UpdateFeasibilityEstimates(GR; w)
21: return ?

4.4.1 Balancing Greedy and Methodical Search

An e�ective strategy that balances greedy and methodical search can be obtained

by selecting each high-level plan � with probability w(�)=
P

�0 w(�0). This selection

process is biased towards high-level plans that are estimated to be highly feasible,

since the objective of SyCLoP is to quickly compute a solution trajectory. At the same

time, since it is not known a priori which � actually leads to a solution trajectory,

the selection process guarantees that each high-level plan has a non-zero probability

of being selected. Computationally, however, such strategy is feasible only when it is

43

practical to enumerate all high-level plans. Due to the discrete model, there is usually

a combinatorial number of high-level plans, which makes enumeration impractical.

4.4.2 Estimating the Feasibility of High-Level Plans

To address the issue of selecting a high-level plan among combinatorially many

plans, SyCLoP associates a weight w(Ri) with each Ri 2 R. The weight w(Ri) is a

running estimate on the feasibility of including Ri in the current high-level plan.

The weight w(Ri) is computed based on information gathered by the low-level

motion planner during each exploration of Ri. As it can be imagined, there are

many ways that can be used to compute w(Ri). This thesis focused on simple and

e�cient computations that were shown to work well in practice for solving challeng-

ing motion-planning problems involving robot dynamics, physics-based simulations,

hybrid systems, and high-level tasks expressed in LTL.

The weight w(Ri) in this thesis is computed as

w(Ri) =
volz1(Ri) � covz2(Ri)

time(Ri)
; (4.1)

where

� vol(Ri) is the volume of Ri;

� cov(Ri) is an estimate on the coverage of Ri by the states in T .

� time(Ri) is the total time the motion planner has spent exploring Ri;

� z1, z2 are normalization constants, where usually 0 < z1 < z2 � 1.

44

The coverage cov(Ri) is computed as

cov(Ri) = Cov(Ri;States(T ;Ri));

where Cov(Ri;States(T ;Ri)) is described in Section 3.2.5 and States(T ;Ri) de-

notes the states s 2 T associated with Ri, i.e, s 2 Ri.

When cov(Ri) is high, then there are many states in Ri which SyCLoP can use to

extend T to the next region in the current high-level plan. Preference is also given to

Ri when it has a large volume, since it allows SyCLoP to extend T in di�erent direc-

tions. The term time(Ri) ensures that SyCLoP does not spend all the computation

time extending T from states associated with one particular Ri. In fact, as time(Ri)

increases, the likelihood that Ri is included in the current high-level plan decreases

rapidly, allowing SyCLoP to spend time extending T from states associated with other

regions. In this way, SyCLoP associates a high weight w(Ri) with Ri when Ri has a

large volume and has been covered well in a short amount of time.

4.4.3 Computing the High-Level Plan

The computation of a high-level plan is essentially a graph-search algorithm and

the literature on this subject is abundant (see [Zha06] for extensive references). The

combination of search strategies in this thesis aims to bias the computation toward

high-level plans associated with high weights. However, random high-level plans are

also used, although less frequently, as a way to correct for errors inherent with the esti-

mates. The use of randomness is motivated by observations made in [GO02,PBC+05],

45

where random restarts and random neighbors have been suggested as e�ective ways

to unblock the exploration when sampling-based motion planners get stuck.

With high probability, SyCLoP computes the high-level plan (Algo. 2:6) as the

shortest path by using an adaptation of Dijkstra’s shortest path algorithm, where

an edge (v(Ri); v(Rj)) 2 ER is assigned the weight 1=(w(Ri) � w(Rj)). In this way,

SyCLoP selects at each iteration a high-level plan that is estimated to be highly feasible

for advancing the search toward the goal.

With small probability, SyCLoP computes the high-level plan (Algo. 2:6) as a

random sequence of edges that connect a region in Rinit to a region in RGoal. This

computation is carried out by using depth-�rst search, where the frontier nodes are

visited in a random order.

4.5 Low-Level Motion Planning: Explore

The exploration starts by rooting a tree T at the speci�ed initial state sinit

(Algo. 2:2). The objective of the motion-planning step (Algo. 2:7{20) is to quickly

extend T from states associated with regions speci�ed by the current high-level plan

�
Rij

�k

j=1
. At each iteration a region Rij

is selected from
�
Rij

�k

j=1
and explored for

a short period of time. The exploration aims to extend T from Rij
to Rij+1

. For

this reason, several states are selected from the states associated with Rij
and are

extended toward Rij+1
.

46

4.5.1 Selecting a Region From the High-Level Plan

The objective is to select a nonempty region Rij
2

�
Rij

�k

j=1
whose exploration

causes T to grow closer to the goal. Since
�
Rij

�k

j=1
speci�es a sequence of neighboring

regions that end at a region associated with the motion-planning goal, the order in

which the regions appear in the high-level plan provides an indication of how close

each region is to the goal. For this reason, SyCLoP prefers to select regions that

appear toward the end of
�
Rij

�k

j=1
more frequently than regions that appear at the

beginning. SyCLoP maintains a set Ravail of regions that it considers for the selection

process. At the beginning of each motion-planning step, Ravail is set to ; (Algo. 2:7).

Then, the current lead
�
Rij

�k

j=1
is scanned backwards starting at j = k down to 1.

If there are states s 2 T associated with Rij
, i.e., States(T ;Rij

) 6= ;, then Rij
is

added to Ravail with probability 1=(1 + jRavailj
2) (Algo. 2:8{10). A region Rij

is then

selected from Ravail (Algo. 2:12) with probability

w(Rij
)

P

Rik
2Ravail

w(Rik
)
;

where w(Rij
), de�ned in Eqn. 4.1, estimates the feasibility of Rij

.

As noted in Section 4.4.2, the selection schemes presented in this thesis are shown

to work well on practice for challenging motion-planning problems involving robot

dynamics, physics-based simulations, hybrid systems, and high-level tasks expressed

in LTL. As it can be imagined, it is possible to develop better selection schemes

that can further improve the computational e�ciency of SyCLoP in solving new and

challenging motion-planning problems.

47

4.5.2 Selecting a State From a High-Level Region

From the states in T that are associated with Rij
, i.e. States(T ;Rij

), a state s

is selected with probability

1

nsel(s)
=

X

s02States(T ;Rij
)

1

nsel(s0)
;

where nsel(s) is the number of times s has been selected in the past. This selection

schemes follows well-established strategies in motion planning [CLH+05,LaV06,SL02,

PKV07b,PKV08a] based on probability distributions that favor those states that have

been selected less frequently.

4.5.3 Extending the Search Tree by Trajectory Sampling

Given a state s 2 T , the search tree T is extended from s by using the trajectory-

sampling strategy, SampleTraj(P; s) (see Section 3.2.2), to generate a trajectory

 : [0; T] ! S that starts at s, i.e.,
(0) = s. Then, starting from t = 0, SyCLoP

checks the validity of
 and keeps only the valid portion of
 (see Section 3.2.2).

4.5.4 Adding a New Branch to the Search Tree

Let
valid : [0; K] ! S denote the valid trajectory extended from s 2 T . Then,

snew
def
=
valid(K) and (v(s); v(snew)) are added to T (Algo. 2:17). In addition, snew is

added to the appropriate region Ri. If Ri is not in Ravail, then Ri is added to Ravail

(Algo. 2:18). Thus, when T reaches new regions, they become available for selection

during the next iteration of the motion-planning step.

48

Chapter 5

Motion Planning with Nonlinear Dynamics

Motion planning that incorporates nonlinear dynamics is greatly motivated by

the availability of new robots and the need to produce trajectories that respect the

physical constraints in the motion of these robots. This chapter demonstrates the

computational e�ciency of SyCLoP in solving challenging motion-planning problems

for robotic systems with nonlinear dynamics. Experiments on nonlinear models of

robotic vehicles show signi�cant computational speedups of one to two orders of

magnitude when compared to state-of-the-art motion planners.

5.1 Control-based Systems

Many physical systems and in particular robots are often controlled by applying

external inputs. As an example, an automatic car is driven by applying acceleration

and rotating the steering wheel. The dynamics of a system, which are often nonlinear,

describe the evolution of a system’s state. This section de�nes control-based systems

using a general formulation that allows treating the dynamics as a black box.

De�nition 5.1.1. (Control-based System). A control-based system is a triple

M = (S;U ; f), where

� S is a state space consisting of a �nite set of variables that completely describe

49

the state of the system (see Section 3.1.1);

� U is a control space consisting of a �nite set of input variables that can be applied

to the system (see Section 5.1.1);

� f : S�U�R
�0 ! S is a
ow function that simulates the system dynamics when

an input is applied to the system for a certain time duration (see Section 5.1.2).

5.1.1 Control Space

A control is an external input that can be applied to a system in order to a�ect

its behavior. Each control is represented by a collection of variable values. The set

of all controls constitutes the control space, which is denoted by U and is de�ned as

U = fu : u is a controlg:

5.1.2 Dynamics

When a system is at a state s 2 S and a control u 2 U is applied for a duration of

t 2 R
�0 units of time, the system’s state evolves according to the underlying dynamics

and at the end the system may be at a new state snew 2 S. Such behavior is captured

by a
ow function, which is de�ned as follows.

De�nition 5.1.2. (Flow Function). A
ow function f : S �U �R
�0 ! S is such

that, for each s 2 S, u 2 U , and t 2 R
�0, f(s; u; t) outputs the new state snew 2 S

obtained by applying the input u for t units of time when the system is at state s.

Consistency in the
ow function is ensured by the following requirements:

50

� (Identity Property). For each s 2 S and u 2 U ,

s = f(s; u; 0):

� (Transitive Property). For each s 2 S; u 2 U ; t1 2 R
�0; t2 2 R

�0,

f(s; u; t1 + t2) = f(f(s; u; t1); u; t2):

Di�erential Equations

In many physical systems, the dynamics of the state evolution is commonly de-

scribed by a set of di�erential equations of the form g : S �U ! _S with �rst, second,

or higher order derivatives. In such cases, closed-form solutions (if available) or state-

of-the-art numerical integrations that minimize numerical errors can be used for the

computation of the
ow function f . An example of a kinematic car is provided below.

Several examples of second-order dynamics are given in Section 5.3.2.

Example 5.1.1. (KCar: Kinematic Car).

� State Space S: The state s = (x; y; �) of a kinematic car model consists of a

position (x; y) 2 R
2 and an orientation � 2 [0; 2�).

� Control Space U : The kinematic car is controlled by setting the speed (u0) and

steering angle (u1). The speed and steering control are restricted to ju0j �

vmax = 3m=s and ju1j � max = 35�.

� Equations of Motion: _x = u0 cos(�); _y = u0 sin(�); _� = u0 tan(u1)=L, where L

is the distance between the front and rear axles.

51

Physics-based Simulations

When di�erential equations become too cumbersome to fully describe the dy-

namics, a computer program, such as physics-based simulators, can be used for the

dynamics simulation. Simulation allows modeling of complex robot dynamics, fric-

tion, gravity, and interactions of the robot with the environment, which cannot be

easily described analytically. Similar to the abstraction of collision checking in early

sampling-based approaches, physics-based simulations allow the motion planner to

access the necessary components for planning purposes, while hiding the intricacies

of the robot and its interactions with the environment. This general treatment allows

SyCLoP to handle systems with general nonlinear dynamics.

5.2 Applying SyCLoP to Motion Planning with Nonlinear Dy-

namics

The multi-layered approach SyCLoP, described in Chapter 4, can be used in the

context of motion planning for control-based systems with nonlinear dynamics. This

section describes the high-level discrete model and the trajectory-sampling strategy

that are used by SyCLoP for motion-planning problems with nonlinear dynamics.

5.2.1 High-Level Discrete Model of Motion-Planning Problem

As discussed in Section 4.2, the high-level discrete model provides a simpli�ed

high-level planning layer that is used to e�ectively guide the low-level motion planner

52

as it extends the search tree T . Recall that the discrete model is based on a partition

R = fR1;R2; : : : ;Rng

of the state space S into di�erent regions. SyCLoP computes the partition R based

on a workspace decomposition. For robots operating in 2D (resp., 3D) environments,

the workspace, denoted by W, corresponds to a region in R
2 (resp., R

3). Without

loss of generality, W is assumed to be a unit square in 2D and a unit cube in 3D.

A projection function Proj : S ! W (see Section 3.2.4) maps each state s 2 S to

a point in the workspace W, typically, by extracting the position component from s.

Then, the workspace is decomposed into di�erent regions

W1;W2; : : : ;Wn;

and the state-space partition R = fR1;R2; : : : ;Rng is computed as

Ri = fs 2 S : Proj(s) 2 Wig; for i = 1; 2; : : : ; n:

The graph GR = (VR; ER) of the discrete model is then computed as

� VR = fv(Ri) : Ri 2 Rg and

� ER = f(v(Ri); v(Rj)) :Wi is adjacent to Wjg:

The computation of workspace decompositions is an active research area in com-

putational geometry, and over the years numerous methods have been developed.

Simple workspace decompositions can be obtained by imposing a uniform grid over

W, where each cell constitutes a decomposition region Wi. Other decompositions

can be obtained by triangulations or trapezoidations. Fig. 5.1 provides an example.

53

(a) uniform grid (b) triangulation (c) trapezoidation

Fig. 5.1: Various workspace decompositions.

The impact of di�erent workspace decompositions on the computational e�ciency of

SyCLoP is studied in Section 5.4.

5.2.2 Low-Level Motion Planning

Applying SyCLoP to solve motion-planning problems with dynamics requires de�n-

ing the trajectory-sampling strategy that is used by the low-level motion-planning

layer, as described in Chapter 4. This section describes common strategies that can

be applied to all control-based robotic systems.

Trajectory Sampling by Forward Propagation

As described in Section 3.2.2, trajectory sampling provides the necessary mecha-

nism for extending the search tree T from a state s 2 T . Recall that a search tree T is

extended by creating a new branch at s, which is obtained by computing a trajectory

 : [0; T]! S that starts at s, i.e.,
(0) = s.

Forward propagation, which is based on the
ow function f , allows SyCLoP to sam-

54

ple di�erent trajectories that start at s. A common strategy for forward propagation

is to select a control u 2 U and a time duration T 2 [Tmin; Tmax] pseudo-uniformly at

random, and compute
 as the trajectory obtained by applying the control u for T

units of time when the system is at state s, as de�ned below:

De�nition 5.2.1. (Primitive Trajectory). Let M = (S;U ; f) be a control-based

system. A state s 2 S, an input u 2 U , and a time duration T 2 R
�0 de�ne a

primitive trajectory
s;u;T : [0; T]! S, such that

8t 2 [0; T] :
s;u;T (t) = f(s; u; t):

An advantage of this random-selection strategy is that it can be applied to any

system. For a car-like system, such strategy corresponds to selecting random values

for the acceleration and the turning velocity of the steering wheel. A disadvantage

is that the resulting trajectories are usually of poor quality. In order to improve the

trajectory quality, one could design propagation strategies that are system speci�c.

For the car example, propagation strategies can be designed that allow the car to move

straight, make a smooth left or right turn, reverse, and incorporate other common

driving strategies. Research in control theory [LaV06] has made signi�cant progress

in designing high-quality trajectories for di�erent robotic systems. Such strategies are

implemented by applying not just one control, but a sequence of controls for di�erent

time durations, as indicated in the following de�nition:

De�nition 5.2.2. (Extended Trajectory). Let M = (S;U ; f) be a control-based

system. A trajectory
1 : [0; T1]! S, an input u2 2 U , and a time duration T2 2 R
�0

55

de�ne an extended trajectory
 : [0; T1 +T2]! S, written

def
=
1 � (u2; T2), such that

(s; u; t) =

8

>>><

>>>:

1(t); if t 2 [0; T1];

f(
1(T1); u2; t� T1); if t 2 (T1; T1 + T2]:

(Piecewise Trajectory). A state s 2 S, a sequence of inputs [ui]
n
i=1, ui 2 U ,

and a sequence of time durations [Ti]
n
i=1, Ti 2 R

�0, de�ne a piecewise trajectory

 : [0; T1 + T2 + � � �+ Tn]! S, such that

def
=
s;u1;T1

� (u2; T2) � � � � � (un; Tn):

Di�erent propagation strategies can also be combined. In such cases, each prop-

agation strategy can be selected pseudo-uniformly at random or according to some

probability distribution that is biased toward strategies that the user deems more

appropriate for the motion-planning problem under consideration. SyCLoP can use

general or system-speci�c strategies for trajectory sampling.

5.3 Computational E�ciency

The computational e�ciency of SyCLoP is compared to several state-of-the-art

motion-planning methods. Results presented in Section 5.3.4 show signi�cant com-

putational speedups of up to two orders of magnitude and highlight the bene�ts of

synergically combining high-level discrete planning with low-level motion planning.

5.3.1 Motion-Planning Methods used in the Comparisons

SyCLoP is compared to RRT [LaV98, LK01], ADDRRT [JYLS05], and EST [HLM97,

HKLR02]. Standard implementations were followed, as suggested in the respective re-

56

(a) Benchmark \Misc" (b) Benchmark \WindingCorridors"

(c) Benchmark \RandomObstacles" (d) Benchmark \RandomSlantedWalls"

Fig. 5.2: Several benchmarks used for the experimental comparisons of SyCLoP.

search articles and motion-planning books [CLH+05,LaV06]. These implementations

utilize the Object-Oriented Programming System for Motion Planning (OOPSMP)

framework [PBK07,PK08] and are well-tested, robust, and e�cient. Every e�ort was

made to �ne-tune the performance of these motion planners for the experiments.

5.3.2 Models of Robots with Second-Order Dynamics

The robot dynamics are modeled by a set of ordinary di�erential equations. The

models consist of a smooth (second-order) car (SCar), unicycle (SUni), and di�erential

drive (SDDrive). Detailed descriptions can be found in [CLH+05,LaV06].

(SCar: Smooth Car).

� State Space S: The state s = (x; y; �; v;) consists of the position (x; y) 2 R
2,

57

orientation � 2 [0; 2�), velocity v, and steering-wheel angle .

� Control Space U : The car is controlled by setting the acceleration u0 and the

rotational velocity of the steering-wheel angle u1.

� Equations of Motion: _x = v cos(�); _y = v sin(�); _� = v tan()=L; _v =

u0; _ = u1; where L is the distance between the front and rear axles.

(SUni: Smooth Unicycle).

� State Space S: The state s = (x; y; �; v; !) consists of the position (x; y) 2 R
2,

orientation � 2 [0; 2�), translational velocity v. and rotational velocity !.

� Control Space U : The unicycle is controlled by setting the translational u0 and

rotational u1 accelerations.

� Equations of Motion: _x = v cos(�); _y = v sin(�); _� = !; _v = u0; _! = u1

(SDDrive: Smooth Di�erential Drive).

� State Space S: The state s = (x; y; �; !L; !R) consists of the position (x; y) 2 R
2,

orientation � 2 [0; 2�), and left !L and right-wheel !R rotational velocities.

� Control Space U : The di�erential drive is controlled by setting the accelerations

of the left u0 and right wheels u1.

� Equations of Motion: _x = 0:5r(!‘ + !r) cos(�); _y = 0:5r(!‘ + !r) sin(�); _� =

r(!r � !‘)=L; _!‘ = u0; _!r = u1; where L is the length of the axis connecting

the wheel centers.

58

5.3.3 Motion-Planning Benchmarks

The benchmarks used in the experiments are designed to vary in type and di�culty

and to test di�erent aspects of motion planning. Fig. 5.2 provides an illustration.

Benchmark \Misc" consists of several obstacles arranged as in Fig. 5.2(a). Random

motion-planning problems are created that place the robot in opposite corners of the

workspace. The objective is to plan a trajectory that allows the robot to move from

one position to another while avoiding collisions with the obstacles. By placing the

initial and goal positions in the opposite corners of the workspace, the robot must

wiggle its way through the various obstacles and the narrow passages in the workspace.

Benchmark \WindingCorridors" consists of long and winding corridors, as shown

in Fig. 5.2(b). Random motion-planning problems are created by placing the robot

in two di�erent corridors, either 4 and 5 or 5 and 4 (counting from left to right),

respectively. This benchmark is chosen to illustrate the e�cacy of motion planning

methods in solving problems where even though the initial and goal speci�cation place

the robot in neighboring places in the workspace, the solution trajectory is rather long

and the robot travels through a large portion of the workspace.

Benchmark \RandomObstacles" consists of a large number of obstacles (278 ob-

stacles) of varying sizes placed at random throughout the workspace, as shown in

Fig. 5.2(c). The random placement of the obstacles creates many narrow passages,

posing a challenging problem for motion-planning methods, since research [CLH+05,

LaV06] has shown that many motion planners have a tendency of getting stuck in

59

such random environments with narrow passages. Random queries place the robot in

opposite sides of the workspace.

Benchmark \RandomSlantedWalls" consists of 890 obstacles resembling slanted

walls, as illustrated in Fig. 5.2(d). Initially, a random maze is created using the

disjoint set strategy and then only 97% of the maze walls are kept. Knocking down

of the maze walls creates multiple passages in the workspace for connecting any two

points. The dimensions of the remaining walls are set uniformly at random from

the interval [1=60; 1=90] in order to create obstacles of di�erent sizes. Each of the

remaining walls is rotated by some angle chosen at random from [2�; 15�], so that the

walls are aligned at di�erent angles. This benchmark tests the e�ciency of motion-

planning methods in �nding solutions for problems with multiple passages. Random

queries place the robot in opposite sides of the workspace.

5.3.4 Experiments and Results

For each combination of benchmark (Section 5.3.3) and robot model (Section 5.3.2),

30 random motion-planning problems are generated as described in Section 5.3.3. In

each instance, the computational time required to solve the query is measured. In

each case, the workspace is decomposed using a 32� 32 uniform grid. Rice PBC and

Cray XD1 ADA clusters were used for code development. Experiments were run on

ADA, where each of the processors runs at 2.2GHz and has up to 8GB of RAM.

Fig 5.3 indicates the computational speedup obtained by SyCLoP in comparison

to the other motion-planning methods used in the experiments. Fig 5.3 shows that

60

(a) Speedup of SyCLoP vs. RRT (b) Speedup of SyCLoP vs. ADDRRT

(c) Speedup of SyCLoP vs. EST

Fig. 5.3: Speedup obtained by SyCLoP when compared to RRT, ADDRRT, and EST us-
ing various robot models (KCar, SCar, SUni, SDDrive) and motion-planning benchmarks
((A)\Misc" (B) \WindingCorridors" (C) \RandomObstacles" (D) \RandomSlantedWalls").

SyCLoP is consistently more e�cient than RRT, ADDRRT, and EST. In fact, SyCLoP is

one to two orders of magnitude faster. The next section discusses some of the reasons

for the observed computational e�ciency of SyCLoP.

5.3.5 A Closer Look at the State-Space Exploration

Experimental results presented in Fig. 5.3 indicate that SyCLoP o�ers considerable

computational advantages over state-of-the-art motion-planning methods across a va-

61

(a) Exploration of \Misc." after 2s, 4s, 8s of running time

(b) Exploration of \WindingTunnels" after 2s, 4s, 8s of running time

(c) Exploration of\RandomObstacles" after 2s, 4s, 8s of running time

(d) Exploration of \RandomSlantedWalls" after 6s, 12s, 24sof running time

Fig. 5.4: Snapshots of the tree exploration bySyCLoPwith the smooth car (SCar) as the
robot model. Red dots indicate state projections onto the workspace. The green line in
each �gure indicates the current high-level plan.

riety of challenging problems.SyCLoPcomputationally outperforms powerful motion

planners, such asRRT, ADDRRT, and ESTby an order of magnitude on easy problems

and as much as two orders of magnitude on more challenging problems.

The understanding of the main reasons for the success of a motion-planning

method is in general a challenging issue and subject of much research. This sec-

