
Stochastic Games for Interactive Manipulation Domains

Karan Muvvala∗1, Andrew M. Wells∗2, Morteza Lahijanian1, Lydia E. Kavraki2, and Moshe Y. Vardi2

Abstract— As robots become more prevalent, the complexity
of robot-robot, robot-human, and robot-environment interactions
increases. In these interactions, a robot needs to consider not
only the effects of its own actions, but also the effects of
other agents’ actions and the possible interactions between
agents. Previous works have considered reactive synthesis,
where the human/environment is modeled as a deterministic,
adversarial agent; as well as probabilistic synthesis, where the
human/environment is modeled via a Markov chain. While
they provide strong theoretical frameworks, there are still many
aspects of human-robot interaction that cannot be fully expressed
and many assumptions that must be made in each model. In
this work, we propose stochastic games as a general model for
human-robot interaction, which subsumes the expressivity of
all previous representations. In addition, it allows us to make
fewer modeling assumptions and leads to more natural and
powerful models of interaction. We introduce the semantics of
this abstraction and show how existing tools can be utilized to
synthesize strategies to achieve complex tasks with guarantees.
Further, we discuss the current computational limitations and
improve the scalability by two orders of magnitude by a new
way of constructing models for PRISM-games.

I. INTRODUCTION

Traditionally, robots have accomplished complex tasks
through planning i.e., computing a “path” from the initial
state to a goal state. As robots become more prevalent, the
complexity of robot-robot, robot-human, or robot-environment
interactions increases. In these interactions, a robot needs
to consider not only the effects of its own actions, but
also the effects of other agents’ actions as well as the
possible interactions between agents. These complexities
mean planning is often insufficient. Instead the robots should
compute a strategy, anticipating the possible effects of each
agent’s actions and reasoning in advance how it should
respond to different contingencies.

In order to ensure safety and general correctness, synthesis,
either reactive or probabilistic, has emerged as a promising
approach to creating correct-by-construction robot strategies
[1]–[3]. In reactive synthesis, the worst-case behavior of the
human/environment is considered. This is overly conservative
and lacks the power to describe many scenarios where one
possibility is known to be more likely than another. Essen-
tially, by assuming the human/environment is adversarial, the

This work was supported in part by NASA 80NSSC21K1031, NASA
80NSSC17K0162, NSF 1830549, and NSF RI 2008720. Authors would also
like to thank the authors of PRISM, especially Dr. Dave Parker for their
excellent tool and for their help in modifying it to import stochastic games.

∗Equal contribution
1Aerospace Eng. Sciences Dept. at the University of Colorado Boulder.

firstname.lastname@colorado.edu
2Computer Science Dept. at Rice University. Andrew Wells was

a student at Rice University at the time this work was conducted.
andrewmw94@gmail.com, {kavraki,vardi}@cs.rice.edu

Fig. 1: Tic-tac-toe game between a robot and a human. The
robot is unaware of the level of expertise of the human and
suffers from the “trembling hand” problem. In this case, the
robot needs to reason about the probabilities of reaching a
given state as well as the strategic responses of both agents
from that state.

robot becomes overly pessimistic, resulting in conservative
strategies that are “unfriendly” and “competetive” with the
human. It also drastically limits the scenarios, for which task-
completion guarantees can be provided. This is the reason
previous methods place unwieldy limitations on human [3],
e.g., human takes at most a fixed number of actions.

Probabilistic synthesis has been proposed as an alternative
to reactive synthesis to address this issue. Those methods
view the human/environment as a probabilistic agent [4], [5].
This can describe many types of human behaviors, not just
adversarial behavior; however, it is unrealistic as it assumes
that the human behavior is Markovian. Generally, humans
have their own objectives and take actions accordingly. Hence,
they should be treated as strategic agents. For instance, in
a tic-tac-toe game, as depicted in Fig. 1, both human and
robot aim to win. However, it is not clear if the human is
a novice player (makes imperfect moves), a master player
(makes perfect moves), or somewhere in between. Hence,
both probabilistic and strategic aspects are present, which a
purely probabilistic model cannot capture [5], [6].

To address these limitations, we present robot strategy
synthesis using stochastic games. Intuitively, stochastic games
can be considered as a generalization of Markov Decision
Processes (MDPs), where instead of one agent making de-
cisions, multiple agents make decisions. Stochastic games
subsume the expressive power of reactive and probabilistic
synthesis; giving us the most general model for robot strategy
synthesis. For instance, they allow modeling of the scenario
in Fig. 1, even for a robot with imperfect actuation, e.g., may
accidentally drop a piece in an unintended location due to a
bad grasp. The key benefit of stochastic games compared
to prior works is not that the models are more accurate
(though this can be the case), but rather modeling human-robot

1

To appear at the 2024 IEEE International Conference on Robotics and Automation (ICRA), May 2024.

ar
X

iv
:2

40
3.

04
91

0v
1

 [
cs

.R
O

]
 7

 M
ar

 2
02

4

manipulation as a stochastic game makes fewer assumptions
and is thus more robust. Because of their expressive power,
however, stochastic games bring new challenges in terms of
scalability. This paper only begins to address these challenges.

In this work, we bridge the gap between robotic ma-
nipulation domain and the expressive power of stochastic
games. We mainly focus on the abstraction construction of
the continuous manipulation domain in the presence of a
human and robot action uncertainty as a discrete two-player
stochastic game. We present conditions and semantics under
which this abstraction can be viewed as a turn-based game,
improving computation tractability. Further, we show that the
strong assumption that the human takes a pre-defined number
of actions (as in [7]) can be relaxed in our abstraction. We
also provide an implementation that enables scalability by
bypassing the built-in model construction of stochastic games
in the existing tool, namely PRISM-games [8]. Finally, we
illustrate the power of our approach on several case studies
and show scalability in a set of benchmarks.

The contributions of this work are fourfold: (i) we formalize
how to model the human-robot manipulation domain as turn-
based, two-player stochastic game and use existing tools to
synthesize optimal strategies for the robot; (ii) we relax the
assumptions on human interventions while still treating the
human as a strategic agent; (iii) we improve the scalability of
the existing tool and provide an open-source tool for efficient
synthesis for robotic manipulation scenarios (available on
Github [9]); (iv) we illustrate the efficacy of our proposed
approach on several case studies and benchmarks.

Related Work. Synthesis is the problem of automati-
cally generating a correct-by-construction plan or strategy
from a high-level description (specification) of a task. The
specifications are usually expressed in Linear Temporal Logic
(LTL) [10], and for robotic systems, LTL interpreted over finite
traces (LTLf) [11], [12] is popular due to its ability to describe
tasks that need to be completed in finite time. When an agent
interacts with the world, we are interested in synthesizing a
strategy that reacts to the environment. Reactive synthesis has
been examined as a stand-alone problem as well as in robotics
[1], [2]. Most works on reactive synthesis for robotics focus
on mobile robots [1], [13]–[15], which has a relatively simple
state space compared to manipulation. Reactive synthesis has
also been examined for manipulation [7], [16], [17] domains.
We build on these later works in this paper.

Probabilistic synthesis has been examined for general
domains [18]–[22], including robotic manipulation [5]. In the
context of learning, stochastic games with unknown transitions
have been studied for abstracted robotic systems [23]. In syn-
thesis, we assume the transitions between states are known a
priori. Existing works on stochastic synthesis for manipulation
domain use MDPs, which only allow one strategic agent. Thus,
they assume the human behaves in a mechanical fashion
and synthesize an optimal robot policy. Using stochastic
games allows us to reason about a strategic human agent.
We focus on modeling human-robot manipulation scenarios
with stochastic games where tasks are defined using formal
language, which has not been studied.

32 0
4 32 0

4

Fig. 2: Manipulation domain: (left) the locations of interest,
where the Else location (L1) contains all objects not otherwise
shown. (right) Initial state with red and yellow blocks at L2

and L3 and the blue block at L1.

II. PROBLEM SETUP

In this work, we focus on a robotic manipulator with
“trembling hands” operating in the presence of a human. Given
a high-level task for the robot and knowledge on the behaviors
of general humans, our aim is to synthesize a strategy for the
robot to maximize the probability of completing the task.

A. Probabilistic Abstraction of Manipulation Domain

We model the manipulation domain as an MDP by
abstracting configuration space C = Cr ×Co, where Cr and
Co are the robot and movable objects configuration spaces,
respectively. Intuitively, a state of this MDP captures relevant
features of C. That is, the state is a tuple of objects and
their locations. Further, using Planning Domain Definition
Language (PDDL) [24], we ground and define robot actions
along with preconditions and effects of these actions from
every state [17]. Since our actions have stochastic outcomes,
we define a probability distribution associated with the effects
of robot actions. Formally,

Definition 1 (Probabilistic Manipulation Domain Abstrac-
tion). A probabilistic manipulation domain is an MDP tuple
M = (S,A, P, s0, AP, L) where,

• S is a finite set of states,
• s0 ∈ S is the initial state,
• A is a finite set of robot actions,
• P : S × A × S → [0, 1] is the probability distribution

over the effects of the robot’s action a ∈ A and∑
s′∈S P (s, a, s′) = 1 for all state-action pairs,

• AP is the set of task-related propositions that can either
be true or false, and

• L : S → 2AP is the labeling function that maps each
state to a set of AP that are true in s ∈ S.

An execution of MDP M is a path ω = ω0
a0−→ ω1

a1−→
. . .

an−1−−−→ ωn, where ωi ∈ S, ai ∈ A, ω0 = s0, and
P (ωi, ai, ωi+1) > 0 for all 0 ≤ i ≤ n − 1. The set of
finite paths is denoted by S∗. The observation trace of
ω is ρ = L(ω0) . . . L(ωn) the sequence of sets of atomic
propositions observed along the way. We define the task of
the robot according to these observations, below. A robot
strategy π : S∗ → A is a function that chooses an a ∈ A for
the robot given the path ω ∈ S∗ executed so far.

Example 1 (MDP). Consider the continuous manipulation
domain in Fig. 2. The corresponding MDP is depicted in
Fig. 3. The robot is tasked with building an arch with blue
block (not shown) on top. The initial state is defined as

2

32 0
4

32 0
4

32 0
4

32 0
4

0.9

0.9

0.1

0.1

0.9

0.9

0.1

0.9

0.1

Fig. 3: Example abstraction of manipulation domain from
Fig. 2 with stochasticity for robot actions.

s0 := {O02, O13, O21} where Oij corresponds to object i
placed at location j. Here O0, O1, O2 are the red, yellow,
and blue blocks, respectively. From the initial state, under
the robot-grasp blue block action, there is a 10% chance of
failure and a 90% chance of success. The alternate action is
to grasp the yellow block and finally place blue on top.

B. Manipulation Tasks as LTLf formulas

As robotic tasks must be accomplished in finite time, Linear
Temporal Logic over finite traces (LTLf) [11] is an appropriate
choice for the specification language. That is because LTLf

is very expressive (same syntax as LTL) but its interpretations
are over finite behaviors.

Definition 2 (LTLf Syntax). Given a set of atomic proposi-
tions AP , an LTLf formula is defined recursively as

ϕ := ⊤ | p | ¬ϕ | ϕ1 ∧ ϕ2 | Xϕ | ϕUϕ

where p ∈ AP is an atomic proposition, ⊤ (“true”), ¬
(“negation”) and ∧ (“conjuction”) are the Boolean operators,
and X (“next”) and U (“until”) are the temporal operators.

The common temporal operators “eventually” (F) and “glob-
ally” (G) are defined as: F ϕ = ⊤U ϕ and Gϕ = ¬F ¬ϕ.

The semantics of an LTLf formula are defined over finite
traces in (2AP)∗ [25]. We say a path ω ∈ S∗ accomplishes
ϕ, denoted by ω |= ϕ, if its observation trace satisfies ϕ.

Example 2 (Example LTLf specification). The LTLf formula
for constructing an arch from Fig. 2 with any two blocks as
support and blue block on top can be written as,

ϕarch =F
(
pblock, support1 ∧ pblock, support2 ∧ pblue, top

)
∧

G
(
¬(pblock, support1 ∧ pblock, support2) → ¬pblue, top

)
where supporti ∈ {L2, L3} ∀i ∈ {1, 2} and top := L4.

C. Problem Statement

In this work, we are interested in synthesizing strategies
for the robot operating in the presence of human. In our
setting, human behavior can be abstracted as human moving
objects and the actions can be formalized as object(s) moving
from one location to another. We aim to develop a general
framework; hence, we do not assume knowledge about the
particular human, with whom the robot is interacting.

Further, we assume that humans are strategic agents who
choose actions according to some objective, which is latent

to the robot. Also, we assume general knowledge on the
likelihood of the human moving a specific block to some
location. Such general likelihoods can be inferred from
past experiences (data) on various humans. Our goal is to
synthesize a strategy for the robot to maximize the likelihood
of achieving its task.

Problem 1. Given a robotic manipulator with its MDP
abstraction and LTLf task formula ϕ in the presence of
a human with a latent objective and general likelihood of
(taking) actions,

1) Abstraction: generate a finite abstraction of the inter-
action between the robot and human through object
manipulation such that it captures the strategic and
stochastic aspects of both agents,

2) Synthesis: synthesize a strategy for the robot that
maximizes its probability of accomplishing ϕ.

There are several challenges in Problem 1. We want to
model a strategic human with imperfect decision making
capabilities. Also, we want to allow the robot to be a strategic
agent that could fail sometimes in executing its action. Hence,
the focus of our approach is the construction of an abstraction
that captures all the necessary aspects of the problem for best
decision making. Additionally, note that both the manipulation
domain and reactive synthesis are notorious for their state-
explosion problem [5], [17]. Problem 1 combines the two;
hence, computational tractability is an aspect that we want
to ensure in our approach.

III. STOCHASTIC GAME ABSTRACTION

In this section, we discuss how strategic and stochastic
elements of the human and robot are combined to form
a two-player stochastic game. Specifically, we deal with a
fully observable two-player game. Naturally, this game is
concurrent in the continuous domain, but concurrent games
are known to suffer from computational tractability [26]. Our
goal is to define semantics that allow a turn-based modeling
for the purpose of strategy synthesis such that the execution
of the strategy is seemingly concurrent at the runtime. We
first formally define a two-player, turn-based stochastic game
(simply, stochastic game) [27], and then show our abstraction
to this game.

Definition 3 (Stochastic Game). A stochastic game is a tuple
G = (S, s0, As, Ae, T, C,AP,L), where S, s0, AP and L are
as in Def. 1, and

• As and Ae are the finite set of robot & human actions,
• T : S × (As ∪ Ae) × S → [0, 1] is the probabilistic

transition relation, and
• C : S 7→ {s, e} designates which player controls the

choice of action at each state.

Here, players s (system) and e (environment) are the
robot and human, respectively. An execution of the game
G is a sequence of visited states as players take turns in
making moves. The choice of action for Player i ∈ {s, e} is
determined by the strategy πi : S

∗ → Ai that picks actions
according to the execution of the game so far.

3

For the strategic players, we follow the models of prior
work [3]. The robot player’s actions follow a standard pick-
place domain, which typically can be encoded in PDDL as
described above. The human player has the same abilities but
is assumed to move relatively quickly compared to the robot.
Additionally, unlike previous approaches, we do allow the
human to hold onto an object. Thus, we model the robot’s
gripper and the human gripper and make a fairness assumption
that the human will eventually return the object.

Game States. As in [3], we model the continuous world
by grouping locations into “regions of interest”. These include
a “end-effector” region representing the robot’s gripper and
an “Else” region representing all locations not particularly
specified. To allow the robot to react at any point, the model
should be constructed such that every valid arrangement of
objects in the real world has game states for both human and
robot turns. These states are equivalent to the robot MDP
states in Def. 1.

Game Actions. In prior works [7], [17], [28], the human
is typically assumed to move faster than the robot, leading
to multiple human moves per robot move. We follow this
assumption and examine several models of turn allocation.
We have several modeling choices and present results for
all of them. The set of robot actions As = A is the same
set of actions in Def. 1. The human actions Ae are every
possible move of the objects to the locations of interest,
“Else”, and human’s gripper. Then, the transition relation
T (s, a, s′) = P (s, a, s′) if a ∈ As; otherwise, it is obtained
from the likelihood of the human actions as discussed below.

In reactive synthesis [7], a limit k is placed on the total
number of human interventions to ensure the specification is
realizable. This limit is unintuitive and somewhat unrealistic.
For example, suppose the model assumes the human inter-
venes at most 30 times (k = 30). Then, during execution, once
the robot observes the 30th action, it will act as though the
human will no longer interfere. Unfortunately, unless there is
some external reason for this limit, the robot should arguably
assume the human is more likely to interfere because it has
observed this happen 30 times already.

We generalize this as a ratio of human and robot actions.
For example, we could allow 1 human action for every 2 robot
actions (denoted by 2 : 1). We implement this using counters
that reset every time the game changes control from one player
to another. So a player cannot “skip” turns now in order to take
more consecutive turns later. While this could be encoded as
a two-player game, the ability to express the stochasticity in
robot’s success rate (of executing actions) or/and the human’s
tendency to intervene at particular locations can not modeled
using a purely game theoretic approach.

Our other model uses a probability of handing control from
one player to another. This implies a probabilistic limit but
avoids setting a hard limit on action for either player. This is
achieved by including an action in Ae that evolves to a state
after which the human does not intervene. This is a natural
weakening of the hard limit on human intervention. Note
that this cannot be modeled using MDP where the effects
of human actions are inherently random in nature. Thus,

32 0
4

32 0
4

32 0
4

32 0
4

32 0
4

32 0
4

Fig. 4: Stochastic game variant of MDP in Fig. 3. The circle
and rectangle states belong to the robot and human player.
For this e.g. we allow human to move objects from the robot’s
gripper. The top row shows multiple human movements, while
the state on the right corresponds to no human intervention.

stochastic games allows us to reason over strategic players
while also considering stochasticity in their execution.

In addition to assigning control of game states to each
player, we need some way to turn the continuous, real-time
interaction into a turn-based game. We do this as in [7], by
assuming certain robot actions are “atomic” while giving
the human actions priority over all non-atomic actions. Here,
as in previous papers, the atomic robot actions are grasp
and place (not including the transit or transfer preceding
the opening / closing of the gripper). Once we have chosen
a way to model actions, and under our assumptions about
discrete states and atomic action executions, we can create a
turn-based stochastic game.

Example 3. A partial two-player stochastic game for our
manipulation domain is shown in Fig. 4. The actions taken in
circular states are controlled by the system and those taken
in rectangular states are controlled by the environment. The
same action could stochastically lead to different possible
states. For example, the robot’s action from initial state is
to grasp a block from the initial state and stochastically
determine whether to grasp the yellow or the blue block.

Remark 1. Winning the game translates to finishing task
ϕ, and winning strategies are strategies that guarantee task
completion. Termination of the game is typically defined as
reaching an accepting or violating finite prefix of a trace.
This could be insufficient in certain cases, e.g., a robot asked
to tidy a room will stop once the room is cleaned even if
the human is approaching some object to displace it. Our
game modeling allows the human and robot to “negotiate”
termination so that the robot only considers the task complete
when the human agrees.

IV. STRATEGY SYNTHESIS

For a given LTLf specification, synthesis reduces to solving
a stochastic game for a reachability objective, i.e., reach a
target state [8]. That game is the composition of G with the
automaton that is constructed from ϕ [11]. Solving stochastic
games with reachability objectives lies in the complexity class
NP ∩ coNP [29]. PRISM-games makes use of the model

4

(a) |O| = 3, varying |L| (b) |O| = 3, varying |L| (c) |O| = 3, varying |L|

(d) |L| = 8, varying |O| (e) |L| = 8, varying |O| (f) |L| = 8, varying |O|

Fig. 5: Benchmark results for different scenarios using our approach. (a) and (d) illustrate the model construction time using
the original PRISM-games and our implementation for the probabilistic human termination scenario. (b) and (e) illustrate
computation times for the 1:1 action ratio scenario, and (c) and (f) correspond to the probabilistic human termination scenario.

checking algorithms described in [8], that relies on Value
Iteration to compute the values for all states of the game [30].
The algorithm can be decoupled into two stages.

Precomputation Stage: During this stage, we identify
states of the game for which the probability of satisfaction
is 0 or 1, and the maximal end components of the game.
Informally, an end component is a set of states for which,
there exists a robot strategy such that it is possible to remain
forever in that set once entered. Efficiency and accuracy can
be improved by using this step. Next, numerical computation
is performed on the remaining states in the game.

Numerical computation stage: The probability of reach-
ing a target state is 1 if the state belongs to the target
end component, else we iteratively update state values until
we reach a fixed point. At every iteration, we perform
maxa(

∑
s′ T (s, a, s

′) · p(s′)) if s belongs to robot player
else we perform mina(

∑
s′ T (s, a, s

′)·p(s′)). Here T is from
Def. 3, and s, a, s′ are the current state, action, and successor
state, respectively. p(s′) denotes the value associated with the
successor state in the previous iteration. While PRISM-games
is a mature toolbox, the implementation for solving stochastic
games is less mature than tooling for MDPs, and we found
the bottleneck to be model construction rather than Value
Iteration. Below, we discuss how we mitigate this bottleneck.

V. IMPLEMENTATION AND RESULTS

Here, we present benchmarks based on experiments from
[5]. We run our tests using PRISM-games [8] and discuss
our modifications to remove a performance bottleneck when
importing models. All the experiments are run on an Intel
i5 -13th Gen 3.5 GHz CPU with 32 GB RAM. The tool is

available on GitHub [9]. The results are shown in Fig. 5.
Scalability. We test a simple pick-and-place manipulation

domain, varying the number of objects and locations. Three
locations are reserved for the robot and human gripper, and
the terminal location for each player. Only one object can be
manipulated by the robot and human, while multiple objects
can be placed at other locations. The task is to place objects
in their desired locations.

PRISM’s default configuration reads in modeling files
written in the PRISM modeling language. As PRISM is
(primarily) a symbolic engine, a structured, hierarchical
model is preferred as it exploits regularity in the abstraction.
Our model is naturally flat, and hence PRISM modeling
language suffers from scalability. Therefore, we implement
functionality to import the stochastic games models through
the direct specification of their transition matrix, state, label,
and player vectors.

We use a Python script to automate the construction of the
model files for direct specification of transition matrix and
state vectors outside PRISM and then import them in PRISM-
games. We benchmark this method of model construction as
shown in Fig. 5a and Fig. 5d. We see that while the PRISM’s
original implementation (in red) fails to scale beyond 3 objects
and 8 locations, our approach (in blue) not only scales beyond
this bottleneck but is also 2 orders of magnitude faster.

We also present benchmarks based on the modeling choices
described in Sec. III. Fig. 5b and Fig. 5e correspond to
model construction and synthesis time for 1:1 scenario
where we allow one human action for every robot action.
In this scenario, the human could potentially undo every
action the robot does and hence the robot cannot guarantee

5

Fig. 6: The game begins with (A) and (B). In state (C) the robot chooses a move that maximizes the probability of human failure
under the “trembling hand” model. In (D) the human will likely place the object in the bottom center, but has two open neighbor
cells. Under the robot strategy, the human will have three more chances to fail (video: https://youtu.be/UUBW7QEw6Ng).

TABLE I: Abstraction & Synthesis comp. times for 3 objects.

Case |L| States Transitions Model Const.(s) Synthesis (s)
Study

1:1

7 8,480 42,240 0.161 0.515
9 43,848 298,080 0.496 2.679

11 148,608 1,288,704 1.671 11.522
13 393,800 4,166,400 5.216 21.126

Prob

7 9200 63440 0.148 1.002
9 45,864 442,008 0.551 5.885

11 152,928 1,905,120 1.862 23.822
13 401,720 6,156,920 5.692 75.021

TABLE II: Abstraction & Synthesis comp. times for 5 objects.

|L| States Transitions Model Const. (s) Synthesis (s)
4 148 387 0.052 0.037
5 4,896 17,184 0.248 0.688
6 43,416 190,107 1.101 7.366
7 217,600 1,144,320 4.406 38.768
8 787,500 4,846,875 5.944 60.933
9 2,304,288 16,280,352 90.314 677.584

task completion. We see that the computation time grows
exponentially as the state space increases for fixed |O| and
varying |L| and vice versa.

We also benchmark scenarios where there is 5% chance
of human termination at every state. In contrast to [3], [7],
where a parameter k was used to constrain the number of
human interventions, this approach allows greater flexibility
and a more intuitive model while still allowing the robot to
win the game. The computation times are shown in Fig. 5c
and Fig. 5f. Similar to the previous scenario, computation
times grow exponentially as the state space increases. For
both scenarios, the model construction time, while increasing,
is relatively small compared to the synthesis time.

For all of the experiments using our modified implementa-
tion, PRISM-games required at most 8 GB of RAM. Table I
reports the size of the game and time for model construction
and strategy synthesis. Table II illustrates how the abstraction
grows for the 1:1 scenario. The Python script runs out of
memory for 5 objects and 10 locations for both scenarios.

Physical Experiment: Tic-Tac-Toe with “Trembing
Hand”. Recall the game of tic-tac-toe in Fig. 1, where
human and robot players alternate turns placing markers in
empty cells. Tic-tac-toe can be solved using min-max, but

only under the assumption that the robot does not fail to
complete an action, i.e., reactive synthesis cannot capture
stochasticity in the robot’s ability to correctly place a marker
at its desired location as per the strategy. While an MDP can
capture the stochastic outcomes, it cannot model the strategic
nature of the human. On the other hand, using the stochastic
games model, we can account for the strategic and stochastic
nature of both players. Fig. 6 illustrates a run of the game.1

In our experiment, we have stochasticity in placing the
marker for both the robot and the human. We model this
probability of marker placements (say a normal distribution
with standard deviation of 1-cell width) as the uncertainty
in the player’s action. We restrict both the robot and human
to not be able to place the marker outside the cells or in an
already occupied cell. Stochastic games allows us to reason
over possible human and robot failure. Depending on the task,
the robot can move so as to either maximize its chances of
winning the game or the chances of human failure. In both
case studies, the robot starts the game. We specify these tasks
as Pmax=?[F (“RobotWin”)] and Pmin=?[F (“HumanWin”)].
The emergent behavior for the robot under specification 1 is
to initially place its marker in the middle. This maximizes its
chances of winning while reducing the number of unoccupied
cells, which reduces the probability of failure in future robot
actions. As the game progresses, we observe that the robot
places its marker near crowded cells with fewer empty cells
around it. For the second specification, we observe that the
optimal action, initially, for the robot is to place its marker in
the middle. Next, the robot places markers to maximize its
winning probability while ensuring as many empty locations
as possible for the next optimal human action.

VI. CONCLUSION

We present a framework for robot manipulation based on
stochastic games. Stochastic games subsume the expressivity
of reactive and probabilistic synthesis proposed in previous
works. We illustrate the efficacy of our approach through
various scenarios and discuss the emergent behavior. Future
work should examine symbolic approach to scale to more
objects and locations. Additional work can examine model-
ing of uncertain observations, reasoning over other agents
strategies, concurrent games or games with varying rewards.

1Video of more runs: https://youtu.be/UUBW7QEw6Ng

6

https://youtu.be/UUBW7QEw6Ng
https://youtu.be/UUBW7QEw6Ng

REFERENCES

[1] H. Kress-Gazit, G. Fainekos, and G. J. Pappas, “Where’s waldo? sensor-
based temporal logic motion planning,” in Int. Conf. on Robotics and
Automation. Rome, Italy: IEEE, 2007, pp. 3116–3121.

[2] H. Kress-Gazit, M. Lahijanian, and V. Raman, “Synthesis for robots:
Guarantees and feedback for robot behavior,” Annual Review of Control,
Robotics, and Autonomous Systems, vol. 1, no. 1, pp. 211–236, 2018.

[3] K. He, A. M. Wells, L. E. Kavraki, and M. Y. Vardi, “Efficient symbolic
reactive synthesis for finite-horizon tasks,” in 2019 Intl. Conf. on
Robotics and Automation (ICRA). IEEE, 2019, pp. 8993–8999.

[4] S. Junges, N. Jansen, J.-P. Katoen, and U. Topcu, “Probabilistic model
checking for complex cognitive tasks–a case study in human-robot
interaction,” arXiv preprint arXiv:1610.09409, 2016.

[5] A. M. Wells, Z. Kingston, M. Lahijanian, L. E. Kavraki, and M. Y.
Vardi, “Finite horizon synthesis for probabilistic manipulation domains,”
in Intl. Conf. on Robotics and Automation. IEEE, 2021.

[6] A. Abate, J. Gutierrez, L. Hammond, P. Harrenstein, M. Kwiatkowska,
M. Najib, G. Perelli, T. Steeples, and M. Wooldridge, “Rational veri-
fication: game-theoretic verification of multi-agent systems,” Applied
Intelligence, vol. 51, pp. 6569–6584, 2021.

[7] K. He, M. Lahijanian, L. E. Kavraki, and M. Y. Vardi, “Reactive
synthesis for finite tasks under resource constraints,” in Int. Conf. on
Intelligent Robots and Systems (IROS). Vancouver, BC, Canada: IEEE,
2017, pp. 5326–5332.

[8] M. Kwiatkowska, G. Norman, D. Parker, and G. Santos, “PRISM-games
3.0: Stochastic game verification with concurrency, equilibria and time,”
in Proc. 32nd International Conference on Computer Aided Verification
(CAV’20), ser. LNCS, vol. 12225. Springer, 2020, pp. 475–487.

[9] A. M. Wells, “Stochastic games for robotics.” [Online]. Available:
https://github.com/andrewmw94/stochastic games for robotics code

[10] A. Pnueli, “The temporal logic of programs,” in Foundations of
Computer Science, 1977., 18th Annual Symposium on. IEEE, 1977,
pp. 46–57.

[11] G. De Giacomo and M. Y. Vardi, “Linear temporal logic and linear
dynamic logic on finite traces.” in Intl. Joint Conf. on Artificial
Intelligence (IJCAI), vol. 13, 2013, pp. 854–860.

[12] S. Zhu, L. M. Tabajara, J. Li, G. Pu, and M. Y. Vardi, “Symbolic
LTLf synthesis,” in Proc. of the 26th Intl. Joint Conf. on Artificial
Intelligence. AAAI Press, 2017, pp. 1362–1369.

[13] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Receding horizon
temporal logic planning,” IEEE Transactions on Automatic Control,
vol. 57, no. 11, pp. 2817–2830, 2012.

[14] C. I. Vasile and C. Belta, “Reactive sampling-based temporal logic path
planning,” in Intl. Conf. on Robotics and Automation (ICRA). IEEE,
2014, pp. 4310–4315.

[15] E. M. Wolff, U. Topcu, and R. M. Murray, “Efficient reactive controller
synthesis for a fragment of linear temporal logic,” in Intl. Conf. on
Robotics and Automation (ICRA). IEEE, 2013, pp. 5033–5040.

[16] K. He, M. Lahijanian, L. E. Kavraki, and M. Y. Vardi, “Automated
abstraction of manipulation domains for cost-based reactive synthesis,”
IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 285–292,
2018.

[17] K. Muvvala, P. Amorese, and M. Lahijanian, “Let’s collaborate: Regret-
based reactive synthesis for robotic manipulation,” in Int. Conf. on
Robotics and Automation. IEEE, 2022, pp. 4340–4346.

[18] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Verification
of probabilistic real-time systems,” in Proc. 23rd Intl. Conf. on
Computer Aided Verification (CAV’11), ser. LNCS, vol. 6806. Springer,
2011, pp. 585–591.

[19] C. Baier and J.-P. Katoen, Principles of Model Checking. The MIT
Press, 2008.

[20] F. Miao, Q. Zhu, M. Pajic, and G. J. Pappas, “A hybrid stochastic game
for secure control of cyber-physical systems,” Automatica, vol. 93, pp.
55–63, 2018.

[21] L. Feng, C. Wiltsche, L. Humphrey, and U. Topcu, “Controller syn-
thesis for autonomous systems interacting with human operators,” in
Proceedings of the ACM/IEEE Sixth International Conference on Cyber-
Physical Systems, ser. ICCPS ’15. New York, NY, USA: Association
for Computing Machinery, 2015, p. 70–79.

[22] A. M. Wells, M. Lahijanian, L. E. Kavraki, and M. Y. Vardi, “LTLf
synthesis on probabilistic systems (online version).”

[23] A. K. Bozkurt, Y. Wang, M. M. Zavlanos, and M. Pajic, “Model-free
reinforcement learning for stochastic games with linear temporal logic
objectives,” in 2021 IEEE International Conference on Robotics and
Automation (ICRA), 2021, pp. 10 649–10 655.

[24] P. Haslum, N. Lipovetzky, D. Magazzeni, C. Muise, R. Brachman,
F. Rossi, and P. Stone, An introduction to the planning domain definition
language. Springer, 2019, vol. 13.

[25] G. De Giacomo and M. Y. Vardi, “Synthesis for LTL and LDL on finite
traces,” in Intl. Joint Conf. on Artificial Intelligence (IJCAI), vol. 15,
2015, pp. 1558–1564.

[26] M. Kwiatkowska, G. Norman, D. Parker, and G. Santos, “Automatic
verification of concurrent stochastic systems,” Formal Methods in
System Design, vol. 58, no. 1-2, pp. 188–250, 2021.

[27] A. Condon, “The complexity of stochastic games,” Information and
Computation, vol. 96, no. 2, pp. 203–224, 1992.

[28] K. Muvvala and M. Lahijanian, “Efficient symbolic approaches for
quantitative reactive synthesis with finite tasks,” in 2023 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2023, pp. 8666–8672.

[29] A. Condon, “On algorithms for simple stochastic games,” in Advances
in Computational Complexity Theory, volume 13 of DIMACS Series in
Discrete Mathematics and Theoretical Computer Science. American
Mathematical Society, 1993, pp. 51–73.

[30] K. Chatterjee and T. A. Henzinger, Value Iteration. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2008, pp. 107–138.

7

https://github.com/andrewmw94/stochastic_games_for_robotics_code

	I Introduction
	II Problem Setup
	II-A Probabilistic Abstraction of Manipulation Domain
	II-B Manipulation Tasks as ltlf formulas
	II-C Problem Statement

	III Stochastic Game Abstraction
	IV Strategy Synthesis
	V Implementation and Results
	VI Conclusion
	References

