
The Capacity of Convergence-Zone 
Episodic Memory 

Mark Moll, Risto Miikkulainen, Jonathan Abbey 

Abstract- Human episodic memory pro- 
vides a seemingly unlimited storage for ev- 
eryday experiences, and a retrieval system 
that allows us to access the experiences with 
partial activation of their components. This 
paper presents a computational model of epi- 
sodic memory inspired by Damasio's idea of 
Convergence Zones. The model consists of a 
layer of perceptual feature maps and a bind- 
ing layer. A perceptual feature pattern is 
coarse coded in the binding layer, and stored 
on the weights between layers. A partial ac- 
tivation of the stored features activates the 
binding pattern which in turn reactivates the 
entire stored pattern. A worst-case analy- 
sis shows that with realistic-size layers, the 
memory capacity of the model is several times 
larger than the number of units in the model, 
and could account for the large capacity of 
human episodic memory. 

I.  INTRODUCTION 
Human episodic memory is characterized by an ex- 
tremely high capacity. New memories are formed 
every few seconds, and many of those persist in the 
memory for years, even decades (Squire 1987). An- 
other significant characteristic of human memory is 
content-addressability. Most of the memories can 
be retrieved simply by activating a partial represen- 
tation of the experience, such as a sound, a smell, 
or a visual image. 

Although several artificial neural network mod- 
els of episodic memory have been proposed (Hop- 
field 1982; Kanerva 1988; Kortge 1990; Miikkulai- 
nen 1992), they fall short of explaining the simul- 
taneous huge capacity and content-addressability of 
human memory. For example in the Hopfield model 
of N units, N/4 log N patterns can be stored with a 
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99% probability of correct retrieval when N is large 
(Hertz et al. 1991; Keeler 1988; McEliece et al. 1986) 
This means that storing and retrieving, for exam- 
ple, lo8 memories would require in the order of 10" 
nodes and loao connections. Given that the human 
brain is estimated to have about 10" neurons and 
1015 synapses (Jessell 1991), this is clearly unrealis 
tic. 

Despite vast amount of research in human mem- 
ory, no clear understanding has yet emerged on ex- 
actly where and how the memory traces are repre- 
sented in the brain. There is evidence for both local- 
ized encoding and for distributed encoding (Squire 
1987). Damasio (1989b, 1989a) proposed a general 
framework, based on observations of typical pat- 
terns of injury-related memory deficits, that can po- 
tentially account for much of the data. The main 
idea is that the memory system is organized in a 
hierarchy of associational regions, or convergence 
zones, with each region serving as a basis for higher- 
level associations. The hierarchy is grounded in the 
sensory modality regions, and becomes more ab- 
stract and general as one moves from the sensory 
cortical regions to the forebrain. The low-level and 
intermediate regions contain object representations, 
and the high-level regions contain representations 
for complete episodes, in terms of the lower-level 
entities. 

This paper presents a new episodic memory model 
loosely based on the convergence zone idea. The 
model consists of a number of perceptual maps and 
a binding layer (a convergence zone). An episodic 
experience appears as a pattern of local activations 
across the perceptual maps, and is encoded as a 
coarse-coded (Rosenfeld and Touretzky 1989; Touret- 
zky and Hinton 1988) pattern in the binding layer. 
The connections between the maps and the bind- 
ing layer store the encoding so that the complete 
perceptual pattern can later be regenerated from 
partial activation. The details of the low-level neu- 
ral implementation are left open in this paper. The 
goal is to analyze the behavior of the model at the 
functional level, and derive general results about its 
capacity and physical size. 
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A worst-case analysis of the model shows that: (1) 
with realistic-size maps and binding layer, the ca- 
pacity of the convergence-zone memory is extremely 
high, exceeding the number of units in the model 
by a factor of 5 ;  and (2) the majority of the neural 
hardware is required in the perceptual processing; 
the binding layer needs to be only a fraction of the 
size of the perceptual maps. Such results suggest 
how an extremely high capacity could be achieved 
in the human episodic memory with very little extra 
hardware beyond the perceptual maps. 

11. STORAGE AND RETRIEVAL 

The model consists of two layers of real-valued units 
(the feature map layer and the binding layer), and 
bidirectional binary connections between the layers 
(figure 1). Perceptual experiences are represented as 
vectors of feature values, such as color=red, shape= 
round, size=small. The values are encoded as units 
on the feature maps. There is a separate map for 
each feature domain, and each unit on the map r e p  
resents a particular value for that feature. For in- 
stance, on the map for the color feature, the value 
red  could be specified by turning on the unit in 
the lower-right quarter (figure 1). The feature map 
units are connected to the binding layer with bidi- 
rectional binary connections (i.e. the weight is either 
0 or 1). An activation of units in the feature map 
layer causes a number of units to become active in 
the binding layer, and vice versa. In effect, the bind- 
ing layer activation is a compressed, distributed en- 
coding of the value-unit perceptual representation. 

Initially, all connections are inactive at 0. A per- 
ceptual experience is stored in the memory through 
the feature map layer in three steps. First, those 
units that represent the appropriate feature values 
are activated at 1. Second, a subset of m binding 
units are randomly selected in the binding layer as 
the compressed encoding for the pattern, and acti- 
vated at 1. Third, the weights of all the connections 
between the active units in the feature maps and 
the active units in the binding layer are set to 1 
(figure 1). Note that only one presentation is neces 
sary to store a pattern. 

To retrieve a pattern, first all binding units are 
set to 0. The pattern to be retrieved is partially 
specified in the feature maps by activating a subset 
of its feature units. For example, in figure 2a the 
memory is cued with the two leftmost features. The 
activation propagates to the binding layer through 
all connections that have been turned on so far. 
The set of binding units that a particular feature 
unit turns on is called the binding constellation of 
that unit. All binding units in the binding encod- 
ing of the pattern to be retrieved are active at 2 
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Figure 1: Storage. The weights on the connectiom be 
tween the appropriate feature units and the binding repm 
sentation of the pattern arc wt to 1. 

because they belong to  the binding constellation of 
both retrieval cue units. A number of other units 
are also activated at 1, because each cue unit takes 
part in representing multiple patterns, and therefore 
has several other active connections as well. Only 
those units active at 2 are retained; units with less 
activation are turned off (figure 2b). 

The activation of the remaining binding units is 
then propagated back to the feature maps (figure 2c). 
A number of units are activated at various levels in 
each feature map, depending on how well their bind- 
ing constellation matches the current pattern in the 
binding layer. Chances are that the unit that be- 
longs to the same pattern than the cues has the 
largest overlap and becomes most highly activated. 
Only the most active unit in each feature map is 
retained, and as a result, a complete, unambiguous 
perceptual pattern is retrieved from the system (fig- 
ure 2d). 

111. RETRIEVAL ERRORS 

If there are n units in the binding layer and m units 
are chosen as a representation for a pattern, the 
number of possible different binding representations 
is equal to (z) .  If n is sufficiently large and m 
is relatively small compared to n, this number is 
extremely large, suggesting that the convergence- 
zone memory could have a very large capacity. 

However, due to the probabilistic nature of the 
storage and retrieval processes, there is always a 
chance that the retrieval will fail. The binding con- 
stellations of the retrieval cue units may overlap sig- 
nificantly, and several spurious units may be turned 
on at the binding layer. When the activation is 
propagated back to the feature maps, some random 
unit in a feature map may have a binding constella- 
tion that matches the spurious units very well. The 
“rogue” unit may receive more activation than the 
correct unit, and a wrong feature value may be re- 
trieved. As more patterns are stored, the binding 
constellations of feature units become larger, and 
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(a) Retrieval cues activate a binding pattern. 

(c) Binding pattern activates feature units. 

(b) The leecl active binding units are turned off. El 
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(d) The less active feature units are turned off. 

Figure 2: Retrieval. A stored pattern is retrieved by presenting a partial representation as a cue. The size of the square 
indicates activation level of the unit. 

erroneous retrieval becomes more likely. 
To determine the capacity of the convergence- 

zone memory, the chance of retrieval error must be 
computed. Below, a probabilistic formulation of the 
model is first given, and bounds for retrieval error 
are then computed. 

IV. PROBABILISTIC FORMULATION 
Let Zi be the size of the binding constellation of a 
feature unit after i patterns have been stored on it 
and let Yj be its increase after storing the ith pattern 
on it. Obviously, Yl = m. To obtain the distribu- 
tion of Yj when i > 1, note that the new active con- 
nections belong to  the intersection of a randomly 
chosen subset of m connections among all n con- 
nections of the unit, and its all remaining inactive 
connections (a set with n-z elements, where z is the 
binding constellation at the previous step). There- 
fore, Yj, i > 1 is hypergeometrically distributed with 
parameters m, n - z ,  and n: 

P(Yj = YlZi-1 = z )  = 

(";")(mly) 

The constellation size Zi is then 
i 

zi = C Y I .  
k = l  

given by 

Let I be the number of patterns stored on a par- 
ticular feature unit after p patterns have been stored 

in the entire memory. I is binomially distributed 
with parameters p and f, where f is the number of 
units in a feature map: 

(3) 
1 

I - B(P, 7). 
Let 2 be the binding constellation of a particular 

feature unit after p patterns have been stored in the 
memory. It can be shown that E(Z) = n(l  - (1 - 
$)P). The binding constellation of a feature unit, 
given that at least one pattern has been stored on 
it, is denoted by Z'; obviously E(Z') > E(Z) .  The 
variable Z' can be used to denote the binding con- 
stellation of a retrieval cue, which necessarily must 
have been used once, assuming that the retrieval 
cues are valid. Let Zi be the binding constellation 
of the j r h  retrieval cue and let Xj be the number 
of units in the intersection of the first j retrieval 
cues. Then X1 = Zi. To get Xj for j > 1, we 
remove from consideration the m units all retrieval 
cues necessarily have in common (because they be- 
long to the same stored pattern), and randomly se- 
lect z - m units from the total set of n - m units and 
see how many of them belong to the current inter- 
section of zj-l - m units. This is a hypergeometric 
distribution with parameters z - m, zj-1 - m, and 
n - m :  

P(Xj = xj + mlZj' = z,Xj-1 = xj-1) = 
zj-1 - m n - zj-1 n - m  

( z , - m ) (  z - x j  ) / ( .z-m).(4)  
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The intersection is taken over the binding constella- 
tions of all j retrieval cues. 

The number of units in common between a po- 
tential rogue unit and the j retrieval cues is denoted 
by Rj+l and is also hypergeometrically distributed, 
however with parameters Z , X ,  and n because we 
cannot assume that the rogue unit has at least m 
units in common with the cues: 

( 5 )  

The correct unit in a feature map where a retrieval 
cue was not presented will receive an activation Xj+l.  
The correct unit will be retrieved if Xj+l > Rj+l, 

2. Size of the binding constellation. Instead 
of choosing exactly m different units for the bind- 
ing representation of each pattern, let us select k 
not-necessarily-distinct units in such a way that the 
ezpected number of different units is m. This will 
make the analysis easier at the cost of larger vari- 
ance, so that the bounds derived will also be valid 
for the actual process. 

Let us assume i patterns are stored on a unit, 
which is equivalent of selecting ki units from the 
binding constellation at random. Let 2, be the ex- 
pected size of the binding constellation after v units 
have been selected. Then 

2, = 2 + (n - g ) ( l -  (1 - $ki-u), (8) 

. . . - ,  
In each feature map there are (f- 1) potential rogue 
units, so the conditional probability of successful re- 
trieval is (1 - P(Rj+l > Xj+llXj+l, Z,Xj))('-'), 
not addressing tie-breaking. Unfortunately, it is 
very difficult to compute psucces8, the unconditional 
probability of successful retrieval, because the dis- 
tribution functions of Z,Xj,  Xj+l and Rj+l are 
not known. But it is possible to derive bounds for 
psuccess and show that with reasonable values for 
n, m, f, and p ,  the memory is reliable. 

V. LOWER BOUND FOR MEMORY CAPACITY 

Memory capacity can be defined as the maximum 
number of patterns that can be stored in the mem- 
ory so that the probability of correct retrieval with 
a given number of retrieval cues is greater than a 
(a constant close to 1). In this section, worst-case 
bounds for the chance of successful retrieval will be 
derived. The analysis consists of three steps: (1) 
bounds for the number of patterns stored on a fea- 
ture unit; (2) bounds for the binding constellation 
size; and (3) bounds for the intersections of binding 
constellations. Given particular values for the sys- 
tem parameters, it is then possible to give a lower 
bound for the capacity of the model. 

1. Number of patterns stored on a feature 
unit. Since I has a binomial distribution (with pa- 
rameters p and +), Chernoff bounds can be applied: 

The formal parameter 5 determines the tradeoff be- 
tween the tightness of the bounds and the probabil- 
ity of satisfying them. 

by the first v selected units. Now, E(Z,IZ,-1) = 
2 , - 1 ,  and the sequence of variables ZO, . . . , Zki is a 
martingale. Moreover, it can be shown that 12, - 
2,,-11 5 1, and bounds for 2 can be obtained from 
Azuma's inequality (see e.g. Alon and Spencer 1992): 

(9) 

where il is the lower bound for I obtained from equa- 
tion 6, and i, the upper bound from equation 7. 
Similar bounds can be derived for 2'. 

3. Intersection of binding constellations. The 
process of forming the intersection of j binding con- 
stellations incrementally one cue at a time can  also 
be formulated as a martingale process. Let Xj de- 
note the expected number of elements in the inter- 
section of two sets, after the first j elements of the 
first set have been checked (the elements of the sec- 
ond set are assumed to be known at all times). Then 

where 3 is the number of elements in the intersec- 
tion of the second set and the set formed by the first 
j elements of the first set, and nl,  nz and n are the 
sizes of the first, second, and the superset. If nl 
and nz are both smaller than i n ,  Azuma's inequal- 
ity can be applied. Taking the intersection of the 
previous step as the first set, the binding constella- 
tion of the j t h  cue as the second set, and the binding 
layer as the common superset, this approach gives 
us the following upper bound for Xj: 
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where z: and xj-l,u are upper bounds for Z' and 
Xj-1 and are assumed to be less than in. Then Xj 
is at its upper bound, a potential rogue unit has the 
largest chance of taking over. In this case, Rj+l has 
the upper bound 

X > 0, (13) 

where zu and xj,u are upper bounds for Z and Xj. 
A lower bound for Xj+l while using an upperbound 
for Xj is then given by 

If the resultin lower bound is smaller than m, m 
can be used In5ead. 

The above analysis ignores correlations between 
binding constellations. The correlations originate 
from storing the same partial pattern multiple times 
and tend to increase the size of the intersections. 
The chance that two random patterns have more 
than one feature in common in j features is equal 
to (1 - (1 + *)( 1 - j ) j ) ,  which is negligible for 
sufficiently large values of f. 

We can now use equations 6-14 to derive a lower 
bound for the probability of successful retrieval with 
given system parameters n, m, F, j ,  f, and p. The 
retrieval is successful if r j + ~ , ~ ,  the upper bound 
for Rj+l, is lower than xj+l,u, the lower bound 
for Xj+l. Under this constraint, the probability 
that none of the variables in the analysis exceeds 
its bounds is a lower bound for successful retrieval. 

Obtaining the upper bound for Xj involves bound- 
ing 3 j  - 1 variables: I and Z' for the j cues and 
Xj for the j - 1 intersections. Computing zj+l,l 
and rj+l,,, each involve bounding 3 variables (I, Z ,  
and Xj+l ;  I, Z', and Rj+l)- There are F - j maps, 
each with one zj+l,l bound and f-1 different rj+l,u 
bounds (one for each rogue unit). The total number 
of bounds is therefore 3 j  - 1 + 3 f ( F  - j ) .  Setting 
the righthand sides of the inequalities 6-14 equal 
to a small constant ,B, a lower bound for successful 
retrieval is obtained: 

Psuccess > 1 - ( 3 j  - 1 + 3 f (  F - j)) ,B. (15) 
For example, assuming each unit in the model cor- 
responds to a vertical column in the cortex, it is 
reasonable to assume feature maps with lo6 com- 
putational units (Sejnowski and Churchland 1989). 
We can further assume that the system has 15 fea- 
ture maps, 10 of which is used to cue the memory, 
and the binding layer consists of lo5 units, with 150 
used for each binding pattern. Assuming full con- 
nectivity between the feature units and the binding 
units, there are 1.5 x 10l2 connections in the system. 

If we store 0.85 x 10' patterns in the memory, z; 
and xj-1,u are less than i n ,  the chance of partial 
overlap of more than 1 feature is less than 0.45 x 
lo-", and the analysis above is valid. Setting /3 = 
0 . 5 ~  lo-' yields bounds rj+l,u < xj+l,r with Psuccess 
> 99%. In other words, 0.85 x 10' memories can be 
stored in the memory with 99% probability of suc- 
cessful retrieval. Such a capacity is approximately 
equivalent of storing one new memory every 17 sec- 
onds for 70 years, 16 hours a day. 

VI. CONCLUSION 

Mathematical analysis shows that an extremely high 
number of episodes can be stored in the convergence- 
zone memory with reliable content-addressable re- 
trieval. Moreover, the convergence zone itself re- 
quires only a tiny fraction of the hardware required 
for perceptual representation. These results provide 
a possible explanation for why human memory ap- 
pears almost unlimited, and why memory areas ap- 
pear small compared to the areas devoted to low- 
level perceptual processing. 

The model makes use of the combinatorics and 
the clean-up properties of coarse coding in a neurally- 
inspired architecture. The storage capacity of the 
model appears to be at least two orders of magni- 
tude higher than that of the Hopfield model with 
the same number of units, while using two orders of 
magnitude fewer connections. However, direct com- 
parison is difficult because the stored patterns in 
the Hopfield model are much larger (contain more 
information), and its N/4 log N capacity result only 
indicates how many patterns are stable instead of 
estimating the probability of correct retrieval with 
a partial pattern as a cue. 

The convergence-zone episodic memory model 
could be extended to make it more accurate as a 
model of actual neural processes. For instance, lat- 
eral inhibitory connections between units within a 
feature map could be added to select the unit with 
the highest activity. A similar extension could be 
applied to the binding layer; instead of only one 
unit multiple units should stay active. A variation of 
the Hebbian learning mechanism (Hebb 1949; Miller 
and MacKay 1992) could be used to implement the 
storage mechanism. Such research could lead to a 
practical implementation of the convergence zone 
memory, and perhaps even to a hardware implemen- 
tation. Another important research direction is to 
analyze the behavior of the model as a psycholog- 
ical model, that is, to observe and characterize its 
memory interference effects and compare them with 
experimental results on human episodic memory. 
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