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Abstract— In this paper we present a new path planning tech-
nique for a flexible wire. We first introduce a new parametriza-
tion designed to represent low-energy configurations. Based on
this parametrization we can find curves that satisfy endpoint
constraints. Next, we present three different techniques for
minimizing energy within the self-motion manifold of the curve.
We introduce a local planner to find smooth minimal energy
deformations for these curves that can be used by a general
path planning algorithm. Using a simplified model for obstacles,
we can find minimal energy curves of fixed length that pass
through specified tangents at given control points. Finally, we
show that the parametrization introduced in this paper is a good
approximation of true minimal energy curves. Our work has
applications in surgical suturing and snake-like robots.

I. INTRODUCTION

The path planning problem consists of finding a collision
free path of configurations that connect a start and a goal
configuration. This problem is known to be PSPACE-hard
[1] and, hence, no efficient algorithm exists to solve it in
general. However, there are several algorithms that have been
shown to be very practical in solving path planning problems
for robots with many degrees of freedom (DOFs) [2]–[5]. In
recent years some progress has been made on path planning
for flexible robots or objects [6]–[9], which is the topic of
this paper. This problem is particularly challenging since
there are potentially infinitely many DOFs. The complexity is
further increased if we impose the geometric constraint that the
length, surface area, or volume needs to be constant. Usually
flexibility is considered a local deformation. But the length
of a curve is a global property. It is non-trivial to satisfy
this global constraint with local changes to the shape. Finally,
we would like to impose energetic constraints. In particular,
we restrict configurations to be at energy minima, so that it
becomes easier to follow a trajectory. In this paper we describe
techniques for finding minimal energy curves of constant
length and paths consisting of such curves. An important
aspect of the planning problem is the representation of the
configuration space. The representation should be powerful
enough to capture all feasible minimal-energy shapes and at
the same time be small enough that we can actually solve
planning problems.

There are many applications where we need to model
flexibility, such as robots handling sheet metal or paper, pulling
cables, and manipulating surgical sutures. Hyperredundant
snake-like robots can (for path planning purposes) also be
modeled as being flexible (see figure 1). In this paper we will

(a) A simulated surgical suture (b) A snake robot

Fig. 1. Different application domains for minimal energy curves. Images
courtesy of D. Pai and H. Choset, respectively.

focus on ‘flexible’ spatial curves of constant length. The curves
represent the shape of, e.g., a suture or a snake robot.

The outline of the rest of the paper is as follows. Section III
and IV describe a method for finding minimal energy curves
with given endpoint constraints by first solving the geometric
constraints and then the physical constraints. This method
depends on a new compact curve representation introduced
in the next section. Section V describes path planning for
minimal curves insofar as it is different from the general path
planning problem. In section VI we describe how we can
extend the results from the previous sections to more than two
control points. Section VII presents some results that indicate
our parametrization is in fact a good approximation of true
minimal energy curves (in the variational sense). Finally, we
discuss our results and outline directions for future research.

II. CURVE PARAMETRIZATION

When planning paths for, say, a suture or a snake robot we
favor configurations with minimal strain. The main reason we
focus on minimal strain curves is that plans consisting of only
such configurations do not rely on dynamics and will be easier
to execute. We assume that a straight line segment without
torsion represents the shape with zero strain. The Darboux
vector, defined in terms of the Frenet frame as D = τT +κ B,
describes the rotational strain along the curve. Here T and B
are the tangent and binormal, respectively, and τ and κ denote
the torsion and curvature. We assume there is no translational
strain: the suture or robot does not stretch. We define the
energy of a curve to be the integral of ‖D‖

2 along the curve.
In other words, the energy is the integral of the curvature



squared plus the torsion squared over the entire length of the
curve. We will first consider only curves of constant length
that satisfy constraints on the positions and tangents at the
two endpoints. This corresponds to a rope being held by
the endpoints. Finding such curves is nontrivial. Splines tend
to produce very smooth low-energy curves that can match
arbitrary endpoint constraints, but the length of the splines is
variable. A finite-element method, where we would represent
the curve by a large number of line segments would preserve
the length, but makes planning rather difficult [6] because
we need many DOFs. Finding a smooth curve that satisfies
endpoint constraints is difficult and finding minimum energy
curves using a finite element method is even more challenging.
We therefore need a novel parametrization. Below we will
introduce our parametrization step by step, starting with a
planar curve and building up towards a 10 DOF parametrization
for spatial curves.

Without loss of generality we can assume that a minimal
energy curve has length 1 and that one of the endpoints is
at the origin with its tangent along the positive x-axis. If
we parametrize a planar curve by turning angle the length
constraint is automatically satisfied:

x(σ ) =

∫ σ

0

(
cos θ(s)
sin θ(s)

)
ds, 0 ≤ σ ≤ 1,

where x is the curve parametrized by arc length and θ(·) is
some arbitrary smooth function. The energy of the curve is
then given by

V =

∫ 1

0
κ2(s)ds =

∫ 1

0

(
θ ′(s)

)2 ds.

(Note that for planar curves the torsion is always equal to 0.)
We would like to find a parametrization for θ(·) such that it is
easy to find a solution for given endpoint constraints. Also, the
parametrization should result in curves that tend to be “close”
to minimal energy curves. Below we will describe in more
detail how one can minimize the energy of a curve (sec. IV)
and how we can check the validity of a given parametrization
(sec. VII). The last issue is a subtle but very important point.
When we minimize energy of a curve, we do so with respect
to a given parametrization. It is not guaranteed that such a
curve is close to minimizing the energy in a variational sense.

Consider the following parametrization of θ(·) as a starting
point:

θ(s) = r(sin(2πs − δ) + sin δ).

The tangent at both endpoints (s = 0 and s = 1) is equal to
(1, 0)T , regardless of the values of the parameters r and δ.
The position of endpoint 0 is, by assumption, always at the
origin. The position of endpoint 1 is given by [10]:

x1 = J0(r)

(
cos(r sin δ)

sin(r sin δ)

)
,

where J0(·) is the zero-order Bessel function of the first kind
[11]. Figure 2 shows some curves resulting from random
values for r and δ. This function can only be computed
numerically. The ‘inverse kinematics’, i.e., the mapping from
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Fig. 2. Planar curves resulting from r and δ drawn from a Gaussian
distribution with zero mean and variance equal to 1.

x1 to (r, δ), is also solved for numerically. The energy is
simply given by 2π2r2.

Despite the appealing simplicity of the parametrization and
the smooth resulting curves, the above parametrization is
flawed for our purposes: it does not give us any control over
the tangent at endpoint 1. This can easily be fixed by adding
an extra term to the previous parametrization:

θ(s) = r(sin(2πs − δ) + sin δ) + αs,

where α is the desired angle of the tangent of endpoint 1.
Although this seems like a very simple change, now no
analytic solution exists for either endpoint 1 or the energy.
Ignoring the effect of r and δ, the α parameter causes the
tangent to rotate at a constant rate from the initial direction
to the final direction. In general, this will result in low energy
curves. There are, however, minimal energy curves where the
curvature is more concentrated at the endpoints. Consider the
case where the endpoints are almost at distance 1 apart. To
meet the endpoints the curve may need to make a sharp turn
at each end. To accommodate for this we introduce two new
parameters, u and v, that can be used to control how much
the curve turns at endpoint 0 and endpoint 1, respectively:

θ(s) = r (sin(2πs − δ) + sin(δ))

+
α
2

(
1 − (1 − s)e−su2

+ se(s−1)v2)
.

The term containing u is a smooth concave function, where u
controls how concave this function is. Analogously, the term
containing v is a smooth convex function. Note that if u = v =

0, the behavior is the same as before. We can now describe a
planar curve with a 5-dimensional vector q = (r, δ, u, v, α)T .
The position and tangent endpoint constraints remove three
DOFs. The remaining two DOFs can be used to minimize the
energy of the curve.

For spatial curves we can parametrize the tangent in spher-
ical coordinates using two angles:

x(σ ) =

∫ σ

0

 cos θ(s)
sin θ(s) cos φ(s)
sin θ(s) sin φ(s)

 ds, 0 ≤ σ ≤ 1,



where

θ(s) =r1 (sin(2πs − δ1) + sin(δ1))

+
α
2

(
1 − (1 − s)e−su2

1 + se(s−1)v2
1
)

φ(s) =r2 (sin(2πs − δ2) + sin(δ2))

+
β
2

(
1 − (1 − s)e−su2

2 + se(s−1)v2
2
)
.

So spatial curves can be described using a 10-dimensional
vector q = (r1, δ1, u1, v1, r2, δ2, u2, v2, α, β)T . The endpoint
constraint now removes 5 DOFs, leaving the remaining 5 DOFs
for energy minimization.

Let t(s) be the above integrand / tangent vector. The
derivative of t(s) with respect to s is given by

t ′ = θ ′

 − sin θ

cos θ cos φ

cos θ sin φ

 + φ′

 0
− sin θ sin φ

sin θ cos φ

 .

For convenience we dropped the argument s. The curvature
function of x is therefore given by

κ2(s) = t ′(s) · t ′(s) =
(
θ ′(s)

)2
+ sin2 θ(s)

(
φ′(s)

)2
.

Similarly, it can be shown that the torsion along the curve is
given by

τ(s) =

(
φ′(s) cos θ(s)

(
κ2(s) + (θ ′(s))2)

+ sin θ(s)(θ ′(s)φ′′(s) − φ′(s)θ ′′(s))
)

/κ2(s).

The energy of a curve q, denoted by V (q), is defined as∫ 1
0 κ(s)2

+ τ(s)2ds. So we have an analytic expression for
the integrand of the energy function. With a variable step
size integration method the energy can be computed fairly
efficiently, especially since the curves we are interested in tend
to be very smooth.

III. FINDING GEOMETRICALLY FEASIBLE CURVES

Before we turn to energy minimization, we first have to
describe a method for finding a curve that satisfies given
endpoint constraints. In robotics terms this means solving
the inverse kinematics. The forward kinematics are described
by a rather complicated integral for which no closed form
expression exists. Nevertheless, the curves tend to be very
smooth for a wide range of the parameters, and a variable
step numerical integration will find the endpoint with only
a small number of steps. We can immediately solve for the
tangent at endpoint 1 by setting α and β to the desired values.
We need to find values for the remaining 8 parameters to
satisfy the constraints on the endpoint position. Let the forward
kinematics of a curve be defined as f (q) = x(1; q), that is,
f returns endpoint 1 of the curve with parameters given by
q. Suppose we happen to guess a configuration q such that
the endpoint position f (q) is close to the desired position xd .
We can then repeatedly use the pseudo-inverse of the Jacobian
J = ∂ f /∂q to get closer to the desired position:

qk+1 = qk + K J †(qk)(xd − f (qk)),

Fig. 3. Finding geometrically feasible curves. The almost straight curve on
the right is the initial guess. The ‘ S’ shaped curve on the left is the final curve
that matches the desired endpoint position.

for some constant K . This approach will not work in general.
We can improve this method by introducing intermediate
target positions. By repeatedly applying the above technique
we can move the curve from the current position toward
the next one until we reach the desired final position. The
intermediate positions are chosen by linearly interpolating the
start and goal in spherical coordinates. We chose to interpolate
in spherical coordinates rather than Cartesian coordinates,
because this method tends to avoid configurations where the
curve is completely folded. Figure 3 shows an example. The
target positions are marked by dots. Note that the intermediate
configurations never quite reach these positions. The target
positions are only there to guide the search to the goal position,
but it is unnecessary (and undesirable, from a computational
point of view) to match them exactly. The path formed by the
curves is not yet a feasible path, because the curves are not
necessarily minimal energy curves.

IV. FINDING ENERGETICALLY FEASIBLE CURVES

In the previous section we presented a method for finding a
curve of fixed length that matches certain endpoint constraints.
We would like to take these curves as a starting point for
energy minimization subject to the same endpoint constraints
(otherwise the result of minimization would inevitably be
a straight line). The set of configurations that satisfy given
endpoint constraints form the so-called self-motion manifold.
There are at least three different techniques for finding a
minimal energy configuration in this set:

• Simulate the Lagrangian dynamics. The partial derivatives
of the energy can be thought of as forces pulling the curve
toward a minimal energy configuration.

• Sample random configurations in the null space of the
Jacobian and use the pseudo-inverse technique from the
previous section to satisfy endpoint constraints.

• Use a general purpose constrained optimization tech-
nique.

Below we will describe these techniques in more detail.
a) Lagrangian Dynamics: Let the Lagrangian for our

system be defined as L(q, q̇) =
1
2 q̇T q̇ − V (q). The force

acting on the curve is F(q) =
∂V
∂q . The Lagrangian dynamics

can then be written as [12]:
∂L
∂ q̇

−
∂L
∂q

+ J T λ − F = 0, λ = (J J T )−1(−J F + J̇ q̇).



Here we have dropped the argument q of J and F . This
equation simplifies to

q̈ = −F − J T λ.

By integrating this system of ordinary differential equations,
we can find a minimal energy configuration. It will be conve-
nient to add an extra damping term to the dynamics, so that
the configuration does not oscillate too much:

q̈ = −F − J T λ − k q̇.

This simple ODE is easy to solve numerically. Once both the
acceleration and the velocity are below a certain threshold, we
conclude that the curve is in a minimal energy configuration.

b) Null Space Sampling: If the energy landscape has
many local minima, then methods relying on gradient infor-
mation can easily get stuck. The null space of the Jacobian
describes the tangent space of the self-motion manifold: in-
stantaneously, configuration displacements that lie in the null
space will not change the endpoint position. By sampling
in the null space around the current configuration, we can
obtain configurations whose endpoints are close to the desired
endpoint. Each sample needs to be ‘pulled back’ to the desired
endpoint position using the pseudo-inverse of the Jacobian.

c) Constrained Optimization: With the first solution
technique the search direction is dictated by the dynamics,
but it is possible that we can find a minimum faster if we
can search in any direction. One way to solve a constrained
optimization problem is to relax the problem to an uncon-
strained problem and use penalty methods to enforce the
constraints. This approach is now considered rather inefficient.
Instead, current optimization methods focus on solving the
so-called Karush-Kuhn-Tucker (KKT) equations, which state
necessary conditions for optimality for a constrained optimiza-
tion problem [13]. Constrained quasi-Newton methods can
guarantee super-linear convergence by accumulating second
order information regarding the KKT equations using a quasi-
Newton updating procedure. These methods are often referred
to as Sequential Quadratic Programming methods, since at
each iteration a quadratic programming problem is solved.

None of the above methods is clearly superior to the others.
One difficulty in minimizing energy is that the energy is a
numerically computed integral over a very nonlinear function.
As a result the gradients of the energy function are often
rather inaccurate. Also, different parametrizations may favor
different methods. We have implemented all three methods.
In our simulations we found the last method to give the best
trade-off between efficiency and accuracy.

V. MOTION PLANNING FOR MINIMAL ENERGY CURVES

The motion planning problem for minimal energy curves of
constant length can be stated as follows: given two minimal
energy curves, does there exists a smooth deformation from
one curve to the other such that the intermediate curves are
also minimal energy curves? In this paper we will ignore the
possibility that there may be obstacles. (Collision detection is
an independent problem and can be dealt with separately.) A

straight line path in the configuration space generally does not
correspond to a set of minimal energy curves, so we need a
different way to compute a path between two configurations.
The following algorithm computes a path between two con-
figurations q0 and q1:

Algorithm 1 compute_path(q0, q1)
Input: start configuration q0, goal configuration q1
Output: a sequence of minimal energy curves connecting q0

and q1
if ‖q0 − q1‖ < ε then

return [q0, q1]

else
q2 = (1 − ε)q0 + εq1
q∗

2 = minimize_energy(q2)

if ‖q∗

2 − q1‖ > ‖q0 − q1‖ or ‖q∗

2 − q0‖ > 2ε then
return ∅

else
return [q0, compute_path(q∗

2, q1)]

end if
end if

If the distance between q0 and q1 is smaller than some small
constant ε, we assume such a path exists. Otherwise, let q2
be a configuration on the straight-line interpolation between
q0 and q1 at a distance ε away from q0. Let q∗

2 be the
configuration resulting from minimizing the energy of q2. If
the distance between q∗

2 and q1 is greater than the distance
between q0 and q1, the connection attempt fails: with each step
we would like to guarantee progress toward the goal. If q∗

2 is
more than 2ε away from q0, the connection attempt also fails.
In this case, we can no longer guarantee that a minimal energy
path exists between q0 and q∗

2. If the connection attempt did
not fail, we let q0 = q∗

2 and recurse.
A higher level motion planner (such as roadmap based

methods [2] or tree expansion algorithms [3], [4]) can treat this
technique for connecting configurations as a basic primitive for
doing local planning. The output of such planners generally
consists of a sequence of configurations that connect a start and
goal configuration. Usually these paths are not very optimal
and some postprocessing is performed. Different problems
require different optimizations. Often we want to minimize
path length, but sometimes smoothness of the path is important
as well. For a sequence of minimal energy curves we may
wish to minimize the total energy of the path, that is, the
integral of the curve energy along the path. Rather than directly
minimizing this integral, we will minimize a weighted sum that
approximates this integral. Let q1, . . . qn be a path as returned
by a planner. Let the cost of the edge connecting qi and qi+1
be defined as :

c(ei,i+1) = dc(qi , qi+1)
(
V (qi ) + V (qi+1)

)
/2,

where dc is a configuration space distance metric. A roadmap-
based method can use this function to find low-cost paths in the
roadmap and avoid high-energy configurations. After we have
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Fig. 4. The effects of shortening and smoothing a path

found a path, there are two ways we can optimize this path.
First, we can shorten the path by removing a configuration qi
if we can connect configurations qi−1 and qi+1 directly. We
repeat this step until no more configurations can be removed.
Second, we can smooth the path by following the derivative
of the path. For both procedures we need to check if applying
a certain change results in a valid path and reduces the total
cost of the path. An example of path optimization is shown in
figure 4. We implemented a PRM planner for minimal energy
curves. The path in the left plot was found using this planner.

VI. MULTIPLE CONTROL POINTS

So far we have assumed that the only control points and
tangents that a minimal energy curve needs to pass through are
at the endpoints. In practice a rope may collide with obstacles
in the environment. We would like to model the constraints
imposed by the obstacles as well. Solving for the contact
points in general such that the rope is at an energy minimum
is extremely difficult. To make the problem more tractable
we will assume that contact points are given as well as the
tangents at those points. We can think of this as a rope passing
through a number of cylinders. To find a minimal energy
configuration we solve for each curve segment between two
control points separately while maintaining the global length
constraint. Initially, we allocate to each segment a length of
the curve proportional to the work space distance between the
endpoints of the segment. The work space distance between
control point i and i + 1 is defined as

dw(i, i + 1) = ‖ pi − pi+1‖ + arccos(t i · t i+1),

where pi and t i specify the position and tangent of control
point i . If we think of tangents as points on a sphere, then
the distance between tangents corresponds to the length of
the shortest geodesic on the sphere connecting two tangents.
So the work space distance is simply the sum of the distance
between the positions and the distance between the tangents.

After we have found initial guesses for the length needed
to connect subsequent control points, we solve each minimal
energy curve segment separately. First, we find the transform
to bring the problem in ‘canonical form’: one endpoint is at the
origin with tangent along the x-axis and the curve has length
one. Next, we find the minimal energy curve for the problem
in canonical form. Finally, we apply the inverse transform to
obtain a minimal energy curve for the original problem.

Fig. 5. A curve of length 7 that passes through the following four points:
(0, 0, 0), (.5, .5, 0), (0, 1, 1), and (1, 0, 1). The tangents at these points were
specified in spherical coordinates to be equal to (1, 0), (0, .5), (−1, −1), and
(2, 1), respectively.

The energy of the whole curve is simply the sum of the en-
ergy of the curve segments. Suppose we have n curve segments
and the lengths of the segments are given by l1, . . . , ln . Then
we can further minimize the energy of the curve by varying
the initial guesses for l1, . . . , ln . We have used a general
constrained optimization technique. It will not necessarily find
a global minimum, but in our simulations it produced good
results. Figure 5 shows a minimal energy curve of fixed length
connecting four control points. The control points are drawn
as small cylinders to emphasize that the curve also needs to
match the tangents at those points.

VII. VALIDATION OF THE PARAMETRIZATION

So far we have ignored the difference between parametrized
curves that have minimal energy with respect to the
parametrization and curves that have minimal energy in a
variational sense. To make sure our parametrization is valid,
we need to check if a curve that is minimal with respect to
the parametrization is very similar to a “true” minimal energy
curve. There is no easy way to compute a true minimal energy
curve, but we can construct an approximation that can be made
arbitrarily close to it. This approximation consists simply of n
segments of piecewise constant curvature and torsion (pcct).
Applying the energy minimization to such a curve results in a
curve that gets closer to a true minimal curve as n increases.

Let q0 be a minimal energy curve using our parametrization.
We can numerically compute the curvature and torsion for n
points along the curve. From this we can construct the pcct
curve p0. This curve will have a slightly different endpoint
position and tangent, so we find a configuration q∗

0 that
matches the endpoint of p0. We then minimize the energy
of both p0 and q∗

0 and compare the resulting curves. Figure 6
shows the energy for 500 random minimal energy curves. The
curves are sorted by the energy of the pcct curves, plotted as
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Fig. 6. Comparison of the energy of our parametrization (dots) and pcct
curves (solid line).

a solid line. The dots show the energy of the corresponding
curve with our parametrization. The number of segments in the
pcct curves is equal to 10 so the curves have 20 DOFs. One
problem with energy minimization with both types of curves
is that there are many local minima. With our parametrization
we were able to find slightly lower energy curves by using not
just q0 as our initial estimate for q∗

0 but also 20 completely
random curves. The inverse kinematics solver would then
sometimes converge to a slightly different curve with lower
energy. For the pcct curves this is not practical; it would
take a very long time for a random pcct curve to untangle
and converge to any minimal energy curve, let alone one
that satisfies the desired endpoint constraints. From the plot
we learn that (1) for low-energy pcct curves, we can find a
curve using our parametrization with comparable energy, (2)
the energy minimization for pcct often diverges and returns a
high-energy curve.

VIII. DISCUSSION

In this paper we introduced a new curve parametrization
designed for minimal energy curves of constant length. Based
on this parametrization we have built a path planner for
flexible wires that tries to minimize the bending and twisting
of the wires. This has applications in simulated and automated
suturing, and hyperredunant/continuum robots.

In future work we plan to explore the following problems.
We would like to develop a more complete model for flexible
objects in contact with obstacles. The results in section VI
where we modeled contact points as being fixed in space are
a starting point, but even finding the contact points such that a
curve is at an energy minimum is very difficult. The location
depends on the geometry of the obstacle and on the contact
kinematics between the curve and the object.

The configuration space of minimal energy curves is still
poorly understood. In our simulations we noticed that solving
the inverse kinematics with random starting curves, followed
by energy minimization would sometimes result in rather
different curves. This raises the question whether the configu-
ration space of minimal energy curves has several components.
In other words, are there minimal energy curves that cannot
be connected by a path of minimal energy curves?

We are also interested in different parametrizations for
curves of constant length. We can improve the approximation
of true minimal energy curves by adding more parameters,
but this needs to be done in a systematic way. One approach
we would like to explore is a variable resolution scheme for
parametrizing the curve tangent or, alternatively, the curvature
and torsion of the curve. Wavelets have been shown to provide
a very compact representation of complex curves [14], [15].
Although we cannot apply wavelets directly to the curve itself
(the curve length would change), we can use them for a curve’s
derivatives.
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