
AN END-TO-END DEEP LEARNING FRAMEWORK FOR
TRANSLATING MASS SPECTRA TO DE-NOVO MOLECULES

Eleni E. Litsa1, Vijil Chenthamarakshan2, Payel Das2 ∗
, and Lydia E. Kavraki1

†

1Department of Computer Science, Rice University, Houston, TX
2IBM Research, IBM Thomas J. Watson Research Center, Yorktown Heights, NY

ABSTRACT

Elucidating the structure of a chemical compound is a fundamental task in chemistry with applications1

in multiple domains including drug discovery, precision medicine, and biomarker discovery. The2

common practice for elucidating the structure of a compound is to obtain a mass spectrum and3

subsequently retrieve its structure from spectral databases. However, these methods fail for novel4

molecules that are not present in the reference database. We propose Spec2Mol, a deep learning5

architecture for molecular structure recommendation given mass spectra alone. Spec2Mol is inspired6

by the Speech2Text deep learning architectures for translating audio signals into text. Our approach7

is based on an encoder-decoder architecture. The encoder learns the spectra embeddings, while the8

decoder, pre-trained on a massive dataset of chemical structures for translating between different9

molecular representations, reconstructs SMILES sequences of the recommended chemical structures.10

We have evaluated Spec2Mol by assessing the molecular similarity between the recommended11

structures and the original structure. Our analysis showed that Spec2Mol is able to identify the12

presence of key molecular substructures from its mass spectrum, and shows on par performance,13

when compared to existing fragmentation tree methods particularly when test structure information is14

not available during training or present in the reference database.15

1 Introduction16

The identification of the chemical compounds that are present in a sample of chemical matter is a fundamental task in17

chemical analysis with applications in multiple domains. The field of metabolomics, for example, seeks to identify the18

chemical molecules that are present in a biological sample. In humans, the metabolome, that is the set of all chemical19

molecules that can be found in human tissues, is a great source for biomarker discovery as it reflects changes at a20

genetic, proteomic or environmental level [1]. Additionally, mapping the human metabolome will lead to a better21

understanding of human physiology and disease etiology and pathology which is essential for the identification of22

new therapeutic targets for developing new treatments. The increasing interest in mapping the metabolome extends to23

other organisms as well, such as plants which have been a great source of bioactive compounds for multiple products24

including drugs and supplements [2]. The identification of chemical compounds is also critical in product development25

such as in the production of pharmaceuticals and agrochemicals. Structure elucidation practices are being used for26

quality control and detection of impurities, as well as in safety studies for identifying potential metabolites that can be27

formed in the human body. Finally, structure elucidation practices are being employed in forensics analysis.28

The identification of the structure of a chemical compound is perceived as one of the most time consuming and laborious29

task in chemical analysis. This is often performed through analytical techniques such as mass spectroscopy (MS) and30

nuclear magnetic resonance (NMR) [3, 4, 5] with MS being used more often due to its higher sensitivity and specificity31

[3]. In MS, the molecules that are present in a biological sample are first separated using a chromatographic technique,32

such as liquid chromatography (LC) and gas chromatography (GC), with the latter being used more commonly [1, 6].33

After the separation, the molecule is fragmented into positive or negative charged ions using an ionization source such34

as electron ionization (EI), chemical ionization (CI) and electrospray ionization source (ESI) [1, 6]. What the instrument35

records is the mass-to-charge (m/z) ratios of the generated fragment ions. The information that is collected from this36

∗daspa@us.ibm.com
†kavraki@rice.edu



process is presented in the mass spectrum which is a graph with the m/z of each recorded fragment in the horizontal37

axis and the relative abundance in the vertical axis. In order to obtain more detailed information on the query structure,38

a sequential fragmentation process is often used called tandem mass spectrometry [5]. Once the molecule has been39

fragmented into ions, a set of them, called precursor ions, is selected and further fragmented to generate MS2 (also40

called MS/MS) spectra. These second-level ions can be fragmented even further giving MS3 spectra and so on. The41

peaks and their intensity in the resulting spectrum depend not only on the structure of the chemical molecule that is42

being fragmented, but also on the experimental conditions, that is the instrument used, the collision energy, the selected43

precursor ion and the ionization mode, as it is illustrated in Figure 1.44

Once the mass spectrum is obtained, it is matched against the content of spectral databases of reference compounds45

in order to retrieve its structure. Various chemical databases provide spectra data of metabolites [7] such as Human46

Metabolome Database, METLIN, MassBank and mzCloud [7]. Certain databases are focused on the metabolites of47

specific organisms, such as the Human Metabolome Database, or on specific molecular classes, such as the LIPID48

MAPS Structure Database, while others have greater coverage such as METLIN. However, despite the intense ongoing49

efforts to map the metabolome of various organisms, existing databases cover only a small percentage of the actual50

metabolites that occur in organisms. Particularly for humans, it is estimated that less than 10% of metabolites have51

experimental reference mass spectra [8], which means that the current practice cannot identify a large percentage of the52

molecules that are found in human tissues. It is estimated that in untargeted metabolomics studies less than 2% of the53

detected spectral features are identified [8].54

An approach that has been developed to address the problem of limited amount of experimental spectra data is in silico55

fragmentation which essentially attempts to solve the inverse problem. This approach aims at enhancing the content of56

existing spectra databases with computed spectra of known molecular structures which have no available experimental57

spectra. Essentially this approach seeks to close the gap between spectral and structural databases. In silico fragmentation58

tools predict the fragmentation process either relying on fragmentation rules or using combinatorial/optimization-based59

approaches or employing machine learning methodologies [6, 9, 10]. Fragment prediction methods have been especially60

successful for predicting spectra of peptides, however, fragmentation of small molecules into ions is a more stochastic61

process that is especially challenging to predict [6].62

A more direct approach to the structure elucidation problem would be to reconstruct the underlying chemical structures63

given spectra features. Such an undertaking though is computationally challenging as it requires the generation of a64

molecular structure. Indeed, this approach is performed as a two step process to circumvent the need for generating65

molecular structures: A machine learning model is used to map the spectrum to an intermediate vector representation66

such as a molecular fingerprint. Once the fingerprint is obtained then it is matched against the content of structural67

databases in order to identify candidate molecular structures with similar fingerprints [11, 12]. This method though will68

also fail for molecules that are not present in the structural database and especially for novel molecules. A more direct69

association of spectra features with molecular structures through a rule-based approach has also been explored [13].70

More specifically, this approach extracts rules, that associate spectra features with substructures, from spectra databases71

aiming at a partial structure identification.72

An additional concept that has been introduced to facilitate the interpretation of mass spectra, and subsequently structure73

identification, is that of fragmentation trees [6, 14]. A fragmentation tree is derived computationally from tandem74

mass spectra using optimization algorithms such that its nodes correspond to fragments or precursor ions and the75

edges correspond to fragmentation reactions. Fragmentation trees have various uses such as identifying the molecular76

formula and clustering molecules by aligning fragmentation trees [15]. They have also been used for the prediction of77

molecular fingerprints that are subsequently used to search structural databases [16, 17]. The information in a mass78

spectrum is thought to be insufficient to explain the fragmentation process by itself while the fragmentation tree provides79

complementary information by elucidating the dependencies between the mass peaks [6]. However, fragmentation trees80

are expensive to compute and often approximations are preferred for practical applications.81

A more thorough review of existing methodologies for metabolite identification, including in silico fragmentation tools,82

fingerprint prediction and fragmentation trees, was recently presented by Nguyen et al. with a focus on machine learning83

(ML) approaches [6]. It should be noted here that early ML-based approaches were built on shallow ML models, such84

as Support Vector Machines (SVMs) and Random Forests (RFs), applied either on features extracted from the mass85

spectra or the fragmentation trees, and also kernel-based methods to determine similarity between either spectra or86

fragmentation trees. However, lately there is a growing interest in exploring Deep Learning (DL) architectures for the87

development of computation tools to support structure elucidation. There have been efforts to learn spectra embeddings88

that can be subsequently used to assess spectral similarity when searching in spectral databases [18, 12]. Additionally,89

there are DL-based methodologies for clustering spectra, either for identifying the compound class [19, 12] or for aiding90

medical diagnosis by differentiating between healthy and cancerous tissues [20]. Most DL-based methodologies that91

operate directly on spectra data are based on Convolutional Neural Networks (CNNs) representing the spectrum as a92
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vector that indicates the intensities of each fragment mass [20, 21, 22]. The CNN attempts to automatically identify93

spectra features replacing the need for manual featurization. Architectures that have adopted concepts from Natural94

Language Processing (NLP) have also emerged representing the mass spectrum as text and the mass peaks as words95

[18]. Due to the limited amount of mass spectra data, different workarounds have been investigated including hybrid96

approaches [19], combining statistical ML models and DL architectures, and approaches based on transfer learning97

[20].98

It should be noted that, at the same time, DL-based approaches are being investigated for identifying protein sequences99

from mass spectra in proteomics studies [23, 21, 22]. A noteworthy effort, DeepNovo, consists of an end-to-end100

DL architecture for de novo peptide sequencing from mass spectra [22], that is a direct reconstruction of the peptide101

sequence from the mass spectra data. Structure elucidation of small molecules though is perceived as a more challenging102

problem due to the stochastic nature of the fragmentation process. On top of that, the structure of small molecules has a103

graph-like representation as opposed to the linear nature of a peptide sequence. Existing approaches essentially attempt104

to retrieve molecules from structure databases that have a spectrum similar to the query spectrum. This method though,105

cannot identify novel molecules, that is molecules whose structure currently remains unknown and therefore they do106

not exist in chemical databases.107

In this paper, we present Spec2Mol, an end-to-end DL architecture for translating MS/MS spectra to molecular108

structures. Spec2Mol is intended for recommending molecular structures that can explain observed MS/MS spectra.109

We represent molecular structures as sequences using the SMILES notation [24] and MS/MS spectra as vectors of110

fragment intensities. Spec2Mol consists of an encoder, that learns an embedding for the MS/MS spectrum, and a111

decoder that generates the SMILES sequences of the recommended chemical molecules. Due to the limited amount of112

available spectra data, our approach is based on unsupervised pre-training on a large dataset of unlabeled molecules. In113

particular, we pre-trained the decoder as part of an auto-encoder (AE) architecture which is trained to reconstruct a114

molecule through its SMILES sequence. The encoder is subsequently trained such that the spectra embeddings match115

the embeddings that the AE has learnt. In the following sections, we discuss the data used to develop and evaluate the116

model, the architecture of Spec2Mol, as well as, the evaluation of the model.117

The main contributions of this work are as follows:118

• To our knowledge, this is the first approach for generating potential molecular structures from mass spectrome-119

try data that is not based solely on database retrieval.120

• Our method can facilitate database retrieval and additionally de novo molecular structure recommendation.121

• Our approach takes advantage of large datasets of unlabeled molecules using unsupervised pre-training.122

• We introduce metrics to assess the similarity of the generated molecules with the reference ones and we123

perform a comparative evaluation with a widely accepted method that makes use of additional information,124

that is fragmentation trees.125

2 Results and Discussion126

2.1 Reconstruction accuracy of the autoencoder127

As a sanity check, we evaluated the ability of the pre-trained AE to reconstruct the SMILES of the molecules in128

the testing set of the spectra dataset. This is performed by comparing the canonicalized input SMILES and the129

canonicalized output SMILES and evaluating whether there is an exact match between the two. The autoencoder is130

trained by minimizing the mean reconstruction error on a single-character level for each input sequence. Therefore,131

the reconstruction accuracy is estimated on a single-character level, by comparing the correct character in the target132

sequence with the most probable character in the decoder RNN’s output at each position. It should be noted, that the133

reconstructed SMILES, as well as neural fingerprints derived from SMILES [25, 26, 27], has been successfully used in134

similarity search and have been found to be more informative, when compared to molecular fingerprints.135

The AE was able to correctly reconstruct the SMILES sequence for about 93.3% of the NIST molecules. This is136

very close to the reconstruction rate of the AE on a held out test set which was 94.95%. This demonstrates that the137

pre-trained model has been trained on a diverse set of molecules and therefore it is able to handle the large variability of138

the molecules in the NIST dataset.139

2.2 Spec2Mol performance evaluation140

Spec2Mol generates a set of recommended molecular structures given MS/MS spectra. Our evaluation focuses on141

assessing the similarity between the generated structures and the reference molecular structure from the NIST dataset.142
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We recall here that the information in an MS/MS spectrum may not be sufficient to fully reconstruct the molecular143

structure. It is possible that more than one molecular structures may explain a given spectrum. For that reason our144

analysis has been focused on assessing whether the model has learnt to identify key features in the molecular structure145

from the mass spectra rather than identifying the exact same structure with the reference molecule from the NIST146

dataset.147

For the evaluation of the model, we first perform a coarse-level comparison taking into account physicochemical148

properties and more specifically the molecular weight and the element composition of the molecule. Next, we assess149

molecular similarity at the substructure level. In particular, we compute the fingerprint similarity as well as the150

maximum common substructure between the generated structures and the reference structure. The specifications for151

each metric are given below. We evaluate the overall performance in the entire test set as well as the performance of the152

model when not all four required spectra are available as input. Additionally, we assess the contribution of each of the153

two strategies for generating the recommended structures.154

• Physiochemical attributes: A property of special interest is the molecular weight since it is directly reflected155

in the mass spectrum. In particular, the spectra indicates the mass of the fragments and therefore the mass of156

the original, non-fragmented, molecule can be approximated more easily given the mass spectra as opposed to157

determining the composition or the structure of the molecule. We record the difference between the molecular158

weight of the generated structures and the reference structure and we report the relative average-minimum159

difference, that is, the average-minimum difference over all the predicted structures divided by the average160

molecular weight of the reference structures (DMWmin). We also report the average-average difference over161

all the predicted structures divided by the average molecular weight of the reference structures (DMWavg).162

Additionally, we also evaluate whether the model is able to identify the element composition of the molecule.163

In particular, we assess whether the atom species that are present in the reference molecule have been identified164

in the predicted structures ignoring the numbers of atoms for each atom species. More specifically, for each165

atom species we report sensitivity and specificity for detecting the presence of this species. In order to account166

for discrepancies in the number of atoms per atom species, we also report the difference between the molecular167

formulas of the predicted structures and the reference structure (DMF). We define the distance between168

two molecular formulas as the number of atoms that differ between two molecules when accounting for the169

atom species and the number of atoms for each species (without including hydrogen atoms). We report the170

minimum distance over all predictions divided by the average number of heavy atoms (DMFmin) as well as171

the average distance over all predictions divided by the average number of heavy atoms (DMFavg). The exact172

mathematical formulas for the calculation of the DMW and DMF are provided in the supplementary material173

(Supplementary Methods 3).174

• Fingerprint similarity: Fingerprints are vector representations of chemical molecules, which indicate the175

presence of certain substructures in the molecule, and are widely used as an efficient way to judge similarity176

between molecules [28]. We extracted fingerprint representations based on the Morgan algorithm [29] using the177

RDKit toolkit [30] and used the cosine coefficient to assess similarity (Fngpcosine). The Morgan fingerprints178

are computed for radius 2 and 1024 bits. We report the maximum fingerprint similarity among all model179

predictions when compared with the reference structure as well as the average similarity of all predicted180

structures.181

• Maximum common substructure (MCS): We computed the MCS between two molecular structures using the182

RDKit toolkit [30] with the following constraints: the substructure match respects the atom species, the bond183

orders, as well as the ring bonds, that is ring bonds are only matched to ring bonds. From the computed MCS we184

extracted the following three metrics: i) MCS ratio, ii) MCS Tanimoto, and iii) overlap coefficient, which are185

defined as follows, respectively: MCSratio = aMCS

ar
, MCStan = aMCS

ar+ap−aMCS
, MCSovrlp = aMCS

min(ar,ap)
, where186

aMCS denotes the number of atoms in the MCS, ar the number of atoms in the reference compound, and ap187

the number of atoms in the predicted compound. For each metric, we report the maximum value as well as the188

average value over all predictions.189

Table 1 summarizes the evaluation of the effect of missing data in the predictions. More specifically, we present the190

evaluation metrics on four different partitions of the test-set depending on the number of the available spectra. We191

recall that the input to the model consists of four different spectra obtained through different specifications. However,192

not all molecules in the dataset have all four spectra available. Our results indicate that missing only one spectrum193

does not severely impact performance, but performance starts to degrade when less than three spectra are available.194

This is expected as the number of spectral peaks that will be observed in one spectrum (or two) most likely will not be195

adequate to reconstruct the molecular structure. It should be noted though that other factors, such as the molecular196

size, are also potentially contributing to the variability observed among the different subsets of the test-set. The set of197

molecules with three available spectra for example, includes molecules that on average have smaller molecular weight198
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and shorter SMILES representation. The model appears to have the highest performance on this subset of the test-set199

since reconstructing shorter SMILES is expected to be less of a challenge for the decoder. The evaluation of the model200

on the training set is presented in the supplementary material (Supplementary Note 1, Table S3).201

Next, we evaluate the effect of the strategy that is used to generate the recommended molecules. The analysis is shown202

in Table 2. We recall that the recommended structures are obtained either directly through decoding the computed203

embeddings or indirectly by identifying the closest embeddings from the pre-trained dataset. In particular, we are204

comparing the top-20 predictions, as ranked using the molecular weight criterion, through i) only the direct strategy, ii)205

only the indirect strategy, and, iii) the two strategies combined. According to the results, the indirect approach, that206

generates molecules through decoding the closest embeddings from the pre-trained dataset appears to have a larger207

contribution on the effectiveness of the method to generate relevant structures. However, combining the two strategies208

appears to slightly improve performance.209

Overall, the results illustrate that the predicted structures have a molecular weight that is significantly close to the210

molecular weight of the reference compound. This is not surprising as the generated molecules are ranked based on211

the molecular weight. The molecular formula though seems to also be considerably close to the reference one. The212

model was able to retrieve the exact structure for a small percentage of the test cases (7%) while it identified the exact213

molecular formula for a considerably larger percentage (26%). The performance of the model was significantly better214

when at least 3 out of the 4 input spectra where available.215

Regarding the structural similarity between the predicted structures and the reference structure, the obtained values for216

the respective metrics demonstrate that the structures share common substructures. More specifically, the metrics that217

are based on the MCS between the reference and the predicted structures indicate that the common substructure is, on218

average, nearly 70% of the size of the reference structure for the closest structure and more than 50% for the average219

prediction. This result is in agreement with the high correlation between the molecular fingerprints.220

Regarding the ability of the model to identify the presence of each atom species in the molecular structure, it varies221

significantly and it correlates with the frequency of each atom species in the training dataset, as it is shown in Table 3.222

More specifically, the model has very high sensitivity for nitrogen (N) and oxygen (O) which are the most common atom223

species in the dataset (excluding carbon which is not included in this analysis as it is present in all molecules). However,224

the specificity for oxygen is significantly lower than that of nitrogen which means that there is a significant number of225

false positives for oxygen compared to nitrogen. Regarding the more rare atom species, the opposite phenomenon is226

observed: specificity is significantly high while sensitivity is low. This means that for the rare species there is a very227

small number of false positives which is expected as these atoms are under-represented in the training set. However,228

sensitivity is at least 0.5 for all atoms, which shows that the model is able to capture the presence of rare atoms quite229

well considering that some atom species are severely under-represented in the training set.230

Finally, we investigated the effect of the molecular weight as well as the presence of heteroatoms on the ability of the231

model to identify the exact structure or the exact molecular formula. More specifically, we divided the test set molecules232

into those that have molecular weight (MW) less than 300Da and those that have molecular weight greater than or equal233

to 300Da (the average molecular weight in the test set is 275Da). Furthermore, we created four categories based on234

the presence of heteroatoms: 1) molecules that have only C and O, 2) molecules in which N is present, 3) molecules235

in which S is present, and, 4) molecules in which a halogen (one of Br, Cl, F, I) is present. Table 4 summarizes this236

analysis. The model is able to identify the atom species and atom counts for almost half of the molecules (45.4%) with237

MW less than 300Da and for more than 60% of the molecules that contain only C and O (63.6%). Higher molecular238

weight as well as presence of atoms that are under-represented in the training set (S and halogens) degrades the ability239

of the model to identify the molecular structure or formula.240

Figure 3 shows a few examples of successful cases with the model correctly identifying key substructures such as rings241

and long chains, and the presence of rare atoms and functional groups. Given the vast space of possible molecular242

structures, these cases demonstrate that the model has indeed learnt to associate spectra features with molecular243

structures.244

We also identify two general scenarios where the model has a difficulty in predicting relevant structures: (1) Molecules245

with large rings and (2) Molecules that have poor quality spectra. An example of the first case is illustrated in Figure 4.246

We believe this is because molecules with large rings are significantly under-represented in the dataset that was used247

to pre-train the decoder. Also, it is hard to generate a valid SMILES sequence for molecules with very large rings.248

Regarding the second cases of poor quality input spectra, it includes cases where there is a very small number of peaks249

in the spectra and therefore not adequate information to reconstruct the SMILES sequence.250
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2.3 Comparative evaluation251

In order to perform a comparative evaluation, we have used SIRIUS 4 [31], which offers multiple functions including252

chemical formula, as well as molecular structure, identification from mass spectra . SIRIUS’ structure elucidation253

method, called CSI:FingerID, is a database retrieval method [16]. It relies on Support Vector Machines (SVMs) for254

predicting a molecular fingerprint and subsequently compares the predicted fingerprint against those of a reference255

database in order to identify candidate structures. The input to the SVM is the MS/MS spectrum along with the256

corresponding computed fragmentation tree. CSI:FingerID has shown superior performance when compared to other257

existing tools for automatic identification of molecular structures from spectra data. In particular, it was the best258

performing method in the Critical Assessment of Small Molecule Identification (CASMI) contest for 2016 and 2017259

[31]. However, the performance of this method degrades significantly for cases that are not covered in the training set260

[31]. Additionally, the dependence of CSI:FingerID on fragmentation tree data adds significantly to the running time of261

this method.262

We run SIRIUS on the same test set we developed for evaluating Spec2Mol. As input, we provided SIRIUS with263

the positive mode spectra (that is [M+H]+ at low and high energy) as they were selected for Spec2Mol. The spectra264

from negative ions were not used since a single run for SIRIUS accepts spectra from a single precursor which may265

be obtained through different energies. As 53 test cases out of the 1000 cases of the test set did not have any positive266

mode spectra and therefore the test set used for the comparison consists of 947 cases. As a side note, SIRIUS performs267

structure elucidation after identifying the molecular formula. The number of molecular formulas to be explored is one268

of the parameters of the tool which we set to 10. An additional parameter is the reference database which we set to269

PubChem, which is the largest available source offered by SIRIUS. Finally, SIRIUS allows the user to define the set of270

chemical elements to be considered when performing the search which we set to: C, H, O, N, S, Cl, F, Br, P and I. It271

should be noted that expanding the pre-defined set of atoms (C, H, N, O, P, S) to account for more rare atoms, which272

were present in the NIST dataset, significantly increased the running time.273

On the test set of 947 cases, SIRIUS found the correct formula for about 98% of the test cases while it found the correct274

structure for about 67%. For 6 cases out of 947 SIRIUS did not return any structures. It should be highlighted that the275

CSI:FingerID method from SIRIUS has been trained on the NIST dataset (NIST v17). As it is discussed in the original276

study on the SIRIUS tool, the presence of spectra for a given test structure in the training set can significantly boost277

performance even if the spectra that are used when testing are not the exact same spectra as the ones used in training278

[31].279

The comparative evaluation between SIRIUS and Spec2Mol was performed on the cases where SIRIUS failed to find280

the exact molecular structure. Since Spec2Mol is intended for recommending potential molecular structures given mass281

spectra, our intention here is to evaluate how relevant the recommendations are, when compared to a widely accepted282

and state-of-the-art method like SIRIUS. By focusing our comparison on the cases where SIRIUS did not find an exact283

match, we are essentially evaluating the relevance of the recommended structures when an exact match is not found,284

which points to the case of novel molecules. In particular, we compared SIRIUS and Spec2Mol on the 307 cases, for285

which SIRIUS failed to find an exact match, using the metrics based on fingerprint similarity and MCS. It should be286

noted here that failure to identify the exact structure includes cases where SIRIUS either did not return any structure287

as well as cases where the reference structure was not among the predicted structures. The results are summarized in288

Table 5. The comparison on the full test set (including cases where SIRIUS found the exact structure) is provided in the289

supplementary material (Supplementary Note 2, Table S4). According to our analysis, the structures recommended by290

Spec2Mol are at least as relevant as the ones recommended by SIRIUS. More specifically, Spec2Mol achieved slightly291

better cosine similarity for the closest structure, while almost all metrics based on the MCS are improved in the case of292

Spec2Mol. This outcome is especially interesting and encouraging, given that Spec2Mol is an end-to-end approach that293

does not take into account any prior knowledge. Spec2Mol generates potential molecular structures by solely looking at294

raw MS/MS spectra. On the other hand, the combination of CSI:FingerID and SIRIUS attempts to retrieve the exact295

molecular structure from a reference database taking as input the computed fragmentation tree on top of the raw mass296

spectra. It should be stressed that a direct comparison of the two methods is not possible since they differ significantly:297

CSI:FingerID uses predicted fingerprints from the MS/MS spectrum of an unknown compound to find the best match298

against a chemical structure database, while Spec2Mol aims for de-novo generation of potential molecular structures299

rather than attempting a best match retrieval from a database. Therefore, Spec2Mol is useful in situations where a300

reference database is not available or CSI-FingerID cannot find an exact match. For that reason, the comparison is301

performed on the cases where CSI-FingerID failed to identify the exact structure and the metrics used aim at evaluating302

molecular similarity rather than exact matches.303

Still the outcome of our comparative evaluation demonstrates that the molecular structures generated by Spec2Mol are304

at least as successful as the ones obtained by state-of-the-art tools when considering novel molecules despite the fact305

that Spec2Mol relies solely on raw MS/MS spectra.306
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3 Conclusions307

Elucidating the structure of chemical compounds is a fundamental, but cumbersome, task in metabolomics studies,308

as well as in chemical analysis in various domains including drug development and forensics analysis. The available309

computational tools for aiding structure elucidation are based on fragment annotation and database retrieval methods.310

This approach fails to identify molecules that are not present in the reference database which, in practice, may311

correspond to a considerably large percentage of the query spectra. We have developed Spec2Mol, an end-to-end deep312

learning architecture for directly generating molecular structures (as SMILES sequences) from the input MS/MS spectra.313

Spec2Mol is based on an encoder-decoder architecture that generates molecular SMILES sequences, given mass spectra.314

While the proposed architecture supports the retrieval of molecules from a database that best matches the input spectra,315

it can also generate new molecules that have not been seen before in any dataset. Our analysis demonstrates that316

the recommended molecules are structurally, and physiochemically, similar to the reference compounds, suggesting317

that the latent space has indeed learnt informative associations between the spectra and the structural features. When318

compared to an existing method that depends on the fragmentation tree annotation, on top of the raw spectra for319

molecule identification, Spec2Mol performed on par for the task of recommending potential molecular structures.320

Our results indicate that the proposed approach of recommending de-novo molecules directly from input MS spectra321

provides critical insights on the characteristics of the underlying molecular structure, and, can complement existing322

tools especially when the current tools fail to identify the right molecule from existing databases. We speculate that323

incorporating prior knowledge in the model, for example in the form of fragmentation trees, can further boost the324

performance of the proposed method. Further, even though the main focus of our work is on de-novo generation325

of molecules given an input spectrum, the indirect method proposed by our paper can be extended to identify the326

correct molecule from a library of a plausible set of molecules, similar to the work proposed by Lim et. al [32]. A327

substructure-constrained similarity search or a nearest neighbor search on the embeddings of the molecule library with328

the spectra embedding as a query can be used to identify the best candidates from a relevant library.329

4 Methodology330

Spec2Mol consists of an encoder that learns spectra embeddings and a pre-trained decoder, which has been trained as331

part of an autoencoder architecture. The autoencoder has been trained on a large set of molecules (molecule dataset332

discussed in section 4.1.1), while the encoder has been trained on a set of molecules for which MS/MS data are available333

(spectral dataset discussed in section 4.1.2).334

4.1 Datasets335

4.1.1 Molecule dataset336

The autoencoder, from which the Spec2Mol decoder has been derived, was pre-trained on about 135 million molecules337

which were sourced from the PubChem [33] and ZINC-12 [34] datasets. The structures of these molecules are repre-338

sented using the SMILES notation [24]. Stereochemistry information was not indicated in the SMILES representation.339

The reason for not accounting for stereochemistry is that, in the subsequent task of spectra translation, recovering340

stereochemistry information from the mass spectra is especially challenging or possibly even impossible and therefore341

it is out of the scope of this work.342

4.1.2 Spectral dataset343

The mass spectra data for training the encoder has been derived from the NIST Tandem Mass Spectral Library344

2020 which is a commercial dataset of more than 1M spectra obtained from more than 30K compounds [35, 36].345

The largest percentage of the NIST dataset (60%) corresponds to metabolites (6K human metabolites and 8K plant346

metabolites) while a significant amount of the data is drugs (20%). The rest corresponds to peptides, lipids, forensics,347

surfactants/contaminants and sugars/glycans. The dataset contains low and high resolution MS/MS spectra, obtained348

through different fragmentation techniques. Each molecule in the dataset may be associated with more than one spectra349

which may be obtained through different experimental conditions, that is, different fragmentation instrument, precursor350

ion, ionization mode, collision energy or fragmentation level (MS2, MS3 or MS4). Statistics of the dataset regarding351

common molecular properties (e.g. molecular weight, number of atoms and number of rings), as well as the atom352

species coverage, are presented in the supplementary material (Supplementary Methods 1, S1.2, Tables S1-S2).353
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4.2 Data processing and representation354

In order to minimize variations in the spectra data, due to differences in the experimental conditions, we chose to keep355

certain variables in the dataset fixed. Details on the filtering process that we followed for constructing the spectral356

dataset are provided in the supplementary material (Supplementary Methods 1, S1.1). More importantly, we used only357

the spectra that are obtained through the most common precursor ions, that is [M+H]+ and [M-H]-. For each precursor358

ion, we used two spectra, one obtained using low collision energy (35% NCE) and one with high collision energy (130%359

NCE). Therefore, each instance in the dataset we constructed is characterized by four MS/MS spectra derived from two360

different precursor ions and two energy levels. The four spectra constitute the input to the spectra encoder as described361

in paragraph 3.2. It should be highlighted though, that not all molecules in the NIST dataset have experimental data for362

the specific precursors and energy levels. However, we have allowed cases with missing data in the dataset and the363

missing spectra are represented as empty spectra, that is spectra with no peaks, in an attempt to develop a model that is364

robust to missing data. Therefore, the model is being trained and evaluated on cases that may not have available all four365

spectra.366

4.2.1 Data representation367

We represent each MS/MS spectrum as a vector in which each bit corresponds to a specific mass-over-charge (m/z)368

value, representing the m/z value of the recorded fragments, while the value of each bit corresponds to the intensity,369

or otherwise frequency, of the fragments that have been recorded with that specific mass-over-charge value. We have370

normalized the intensity values by dividing with the maximum intensity over all the vector bits of a given spectrum.371

More details on the representation of the MS/MS spectra are provided in the supplementary material (Supplementary372

Methods 1, S1.3). Regarding the molecular structures, we represent them using canonical SMILES without indicating373

stereochemistry information.374

4.2.2 Data augmentation375

The variability in the spectra for a given molecule opens up the possibility for data augmentation. In particular, although376

some spectra from the same molecule may differ significantly, as shown in Figure 1, in many cases the obtained spectra377

are closely related. One such case is when the collision energies that are being used are relatively close.378

In order to augment the dataset, for each instance in the training set we are creating an additional training instance379

by slightly perturbing the collision energy in all four spectra. In particular, each spectrum, out of the four spectra380

that are used to represent an instance in the dataset, is replaced with a spectrum that has the closest collision energy381

in the dataset while all other parameters (precursor ion, instrument) are shared. More information is provided in the382

supplementary material (Supplementary Methods 1, S1.4).383

4.2.3 Data partition384

After the data filtering process, the acquired dataset consists of 23K molecules, each one of them is associated with385

four MS/MS spectra, or more precisely, up to four MS/MS spectra given that there are cases with missing spectra.386

This dataset was partitioned into a training, a validation and a test set with the validation and test set having about 1K387

molecules each. For the test set specifically, we used fingerprint similarity, based on the Tanimoto coefficient [28], in388

order to ensure that no test molecule is either in the train or in the validation set. The validation set was used to select389

the model hyper-parameters and the test set was used to evaluate the performance of the model.390

4.3 Spec2Mol architecture391

Spec2Mol uses an encoder-decoder architecture for recommending molecular structures from MS/MS spectra. The392

Spec2Mol encoder generates spectra embeddings while the decoder reconstructs the SMILES sequence from a spectra393

embedding. The encoder and the decoder have been trained separately as it is shown in figure 2. First, the decoder is394

trained as part of an autoencoder architecture for reconstructing the SMILES sequence from a SMILES embedding. Next,395

the spectra encoder is trained such that the learnt spectra embeddings match the corresponding SMILES embeddings.396

Finally, for making inference on unseen cases, Spec2Mol uses the spectra encoder to obtain the spectra embedding397

which is subsequently used in order to decode potentially novel molecules and also to retrieve molecules from the398

pre-training dataset.399

The specifications for training each model are given in the following paragraphs while more details on the architectures400

of the models, hyperparameters and training parameters are provided in the supplementary material (Supplementary401

Methods 2).402
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4.4 Pre-training the AE on chemical structures403

The autoencoder is trained on a translation task where a randomized input SMILES is translated into its corresponding404

canonical SMILES, similar to the work of Winter et al [25]. The encoder and the decoder of the AE are both based405

on gated recurrent units (GRU) which is a variation of the standard long short term memory (LSTM) models, that are406

commonly used for learning sequence representations, with fewer parameters. The details regarding the autoencoder407

architecture are in the supplementary material (Supplementary Methods 2, S2.1).408

4.5 Training the spectra encoder409

The spectra encoder is trained in a supervised manner such that the learnt spectra embeddings are the same as the410

SMILES embeddings that the AE has learnt. More specifically, the input of the spectra encoder consists of the four411

spectra that have been pre-selected to represent each molecule. The spectra encoder is based on 1-D CNNs and in412

particular consists of two 1-D CNN layers and two fully connected layers. The four spectra are represented as 4 discrete413

vectors which are fed into the 1-D CNN as data from four different channels. Each channel corresponds to a specific414

precursor ([M+H]+ or [M-H]-) and energy level (low or high). If any of the required four spectra is not available, then415

the input to the respective channel is an all-zeros vector. The output of the spectra encoder is a 1-D vector which is the416

latent representation of the spectra in the embedding space. The model is trained such that the distance (root mean417

square error) between the latent representation that is learnt by the spectra encoder and the latent representation that is418

obtained from the pre-trained SMILES encoder is minimized. Details regarding the architecture and training of the419

spectra encoder are provided in the supplementary material (Supplementary Methods 2, S2.2).420

4.6 Recommending molecular structures for unseen spectra421

Spec2Mol provides as output molecular structures that can potentially explain the observed spectra peaks. The422

recommended molecules for unseen spectra are obtained using two strategies: a direct and an indirect molecule423

generation strategy. The direct molecule generation strategy generates molecular structures using the SMILES decoder424

from the computed MS/MS embedding. Multiple SMILES are generated for each MS/MS embedding using a pure425

sampling strategy [37], and subsequently filtered in order to retain only the valid ones, i.e., the sequences that are in426

accordance with the SMILES syntax. The indirect strategy retrieves molecular structures from the dataset that was used427

for pre-training the AE based on the distance in the embedding space. More specifically, for each MS/MS embedding428

we find the closest embeddings from the pool of molecules used to pre-train the AE and decode those embeddings into429

SMILES sequences.430

The predicted molecules obtained through these two strategies are combined and ranked based on their discrepancy431

from the expected molecular weight. The molecular weight of the underlying chemical structure is easily inferred from432

the mass spectrum and therefore in this work we consider it as known. The molecular structures that have molecular433

weight closer to the reference weight are highly ranked. The top-20 ranked predictions are returned to the user.434

5 Data availability435

The spectra dataset used for training and evaluating the model cannot be made publicly available as it is a commercial436

dataset.437

6 Code availability438

The trained models and code are available in https://github.com/KavrakiLab/Spec2Mol .439
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Figure 1: MS/MS spectra from different experimental conditions for the same molecule. MS/MS spectra obtained through
different experimental conditions from the same molecule (approximate spectra based on data obtained from the Human Metabolome
Database). (a) Precursor ion: [M+H]+, NCE: 35%, Instrument: HCD. (b) Precursor ion: [M+H]+, NCE: 130%, Instrument: HCD.
(c) Precursor ion: [M+H-Br]+, NCE: 35%, Instrument: HCD. (d) Precursor ion: [M+H+2i]+, NCE: 35%, Instrument: IT-FT.
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Figure 2: Spec2Mol architecture. The Spec2Mol model consists of a spectra encoder and a SMILES decoder which have been
trained separately but share the same embedding space. (a) The AE is pre-trained to translate from a random SMILES to the canonical
SMILES string. (b) The spectra encoder is trained to learn the same embedding as the SMILES encoder. (c) During inference, the
spectra encoder and the SMILES decoder of the pre-trained model are used to translate spectra into molecular structures.
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Figure 3: Examples of cases where Spec2Mol successfully identified key substructures. Examples of the most likely
predicted structures from Spec2Mol along with the cosine similarity values with respect to the original reference structures.
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Figure 4: A case where Spec2Mol did not identify relevant structures. An example where Spec2Mol failed to identify a
similar structure for a reference compound containing a large ring.
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Table 1: Effect of missing spectra in the model input. Evaluation metrics when considering the entire test set and the test-data
partitions that have available all 4, only 3, only 2 and only 1 spectrum. The arrows show the desired trend for each metric.

metric full dataset 4 spectra 3 spectra 2 spectra 1 spectrum
# test cases 1000 413 65 483 39
Avg. MW 275.3 287.5 242.6 267.4 300.3

Avg. SMILES length 34.5 37.0 28.5 32.5 43.6
correct molecules (↑) (%) 7.0 9.2 15.2 4.1 5.1
correct formulas (↑) (%) 39.3 45.1 46.9 34.8 20.5

DMW% (↓) min 2.3 1.6 0.5 2.4 9.5
avg 6.3 5.5 3.9 6.6 14.6

DMF% (↓) min 9.2 6.5 8.1 10.8 21.1
avg 21.7 17.8 24.5 24.0 32.9

Fngpcosine (↑) max 0.53 0.56 0.57 0.50 0.45
avg 0.36 0.39 0.38 0.34 0.31

MCSratio (↑) max 0.68 0.70 0.72 0.66 0.57
avg 0.51 0.53 0.55 0.50 0.43

MCStan (↑) max 0.55 0.58 0.60 0.53 0.44
avg 0.38 0.39 0.41 0.36 0.30

MCScoef (↑) max 0.71 0.73 0.74 0.69 0.63
avg 0.54 0.55 0.58 0.53 0.48

Table 2: Effect of the molecule generation strategy. Comparative evaluation of the top-20 predictions using the direct strategy, the
indirect strategy and the two strategies combined. The arrows show the desired trend for each metric.

metric direct indirect combined
correct molecules (↑) (%) 0.8 6.9 7.0
correct formulas (↑) (%) 26.1 28.0 39.3

DMW% (↓) min 3.1 4.4 2.3
avg 11.6 9.3 6.3

DMF% (↓) min 10.4 11.9 9.2
avg 24.2 22.4 21.7

Fngpcosine (↑) max 0.46 0.53 0.53
avg 0.33 0.36 0.36

MCSratio (↑) max 0.65 0.66 0.68
avg 0.50 0.51 0.51

MCStan (↑) max 0.50 0.55 0.55
avg 0.34 0.38 0.38

MCScoef (↑) max 0.68 0.71 0.71
avg 0.53 0.56 0.54

Table 3: Sensitivity and specificity for detecting the presence of each atom species in the entire test set, having as reference the
frequency of each species in the training spectra dataset.

O N S Cl F Br P I
Sensitivity 0.94 0.86 0.50 0.68 0.48 0.79 0.53 0.51
Specificity 0.50 0.76 0.96 0.91 0.92 0.98 0.99 0.99

Frequency (%) 85.4 71.5 18.4 15.2 11.5 7.5 2.5 1.4

Table 4: Effect of molecular weight and presence of heteroatoms.

MW<300 MW≥300 only C and O N present S present Halogen present
number of cases 668 332 184 769 199 318

exact structure (%) 8.5 3.9 9.8 6.1 5.5 5.7
exact formula (%) 45.4 27.1 63.6 34.1 23.6 25.8
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Table 5: Comparative evaluation between SIRIUS and Spec2Mol, based on structural similarity between the recommended structures
and the reference structure, on the subset of the test set where SIRIUS failed to identify an exact match.

Method Fngpcosine MCSratio MCStan MCScoef

SIRIUS max 0.49 0.65 0.54 0.66
avg 0.33 0.49 0.35 0.49

Spec2Mol max 0.49 0.66 0.53 0.69
avg 0.34 0.50 0.36 0.53
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