
1

Iterative Temporal Planning in Uncertain

Environments with Partial Satisfaction

Guarantees

Morteza Lahijanian, Member, IEEE, Matthew R. Maly, Dror Fried,

Lydia E. Kavraki, Fellow, IEEE, Hadas Kress-Gazit, Senior Member, IEEE,

and Moshe Y. Vardi, Fellow, IEEE

Abstract

This work introduces a motion-planning framework for a hybrid system with general continuous

dynamics to satisfy a temporal logic specification consisting of co-safety and safety components in a

partially unknown environment. The framework employs a multi-layered synergistic planner to generate

trajectories that satisfy the specification and adopts an iterative replanning strategy to deal with unknown

obstacles. When the discovery of an obstacle renders the specification unsatisfiable, a division between

the constraints in the specification is considered. The co-safety component of the specification is treated

as a soft constraint, whose partial satisfaction is allowed, while the safety component is viewed as a

hard constraint, whose violation is forbidden. To partially satisfy the co-safety component, inspirations

This work was supported in part by NSF Expeditions 1139011, NSF NRI 1317849, NSF CCF 1018798, the U.S. Army

Research Laboratory, and the U.S. Army Research office under grant number W911NF-09-1-0383. A subset of this paper was

presented at the 16th International Conference on Hybrid Systems: Computation and Control, Philadelphia, PA, 2013.

M. Lahijanian was with the Department of Computer Science, Rice University, Houston, TX 77005 USA at the time this

work was performed. He is now with the Department of Computer Science, University of Oxford, Oxford OX12JD UK (email:

morteza.lahijanian@cs.ox.ac.uk).

M. R. Maly was with the Department of Computer Science, Rice University, Houston, TX 77005 USA at the time this work

was performed. He is now with Google Inc., Mountain View, CA 94043 USA (email: matthew.r.maly@gmail.com).

D. Fried, L. E. Kavraki, and M. Y. Vardi are with the Department of Computer Science, Rice University, Houston, TX 77005

USA (email: {dror.fried,kavraki,vardi}@rice.edu).

H. Kress-Gazit is with the Sibley School of Mechanical and Aerospace Engineering at Cornell University (email:

hadaskg@cornell.edu).

March 17, 2016 DRAFT

To appear in the IEEE Transaction on Robotics, 2016.

2

are taken from indoor-robotic scenarios, and three types of (unexpressed) restrictions on the ordering of

sub-tasks in the specification are considered. For each type, a partial satisfaction method is introduced,

which guarantees the generation of trajectories that do not violate the safety constraints while attending

to partially satisfying the co-safety requirements with respect to the chosen restriction type. The efficacy

of the framework is illustrated through case studies on a hybrid car-like robot in an office environment.

Index Terms

motion planning, formal methods, control synthesis, temporal logic, partial satisfaction, hybrid

systems.

I. INTRODUCTION

In classical motion planning, a robotic system is asked to move from position A to position

B while avoiding obstacles. Many works have been developed in the robotics community to

solve this problem efficiently (e.g., [1]–[8]). Nevertheless, to one day have autonomous robots

operating in unstructured environments, one must go beyond this foundational step of “A to B”

motion planning and consider complex tasks and real robot dynamics. A dream would be to

have a helper robot that can robustly execute commands such as “clean all the rooms on the

second floor,” or “prepare the conference room for a meeting.” This paper takes a step towards

realizing this dream by focusing on a motion-planning framework that encodes both rich tasks

and complex dynamical systems and is capable of dealing with uncertainties in the environment.

In recent years, various computational frameworks for planning with temporal logic spec-

ifications have been developed to accommodate rich robot missions (e.g., [9]–[16]). Linear

Temporal Logic (LTL) [17] is the most popular specification language in these works due to

its expressiveness and well-studied model checking algorithms. This logic allows expressing

liveness (“something good eventually happens”) and safety (“something bad never happens”)

properties, which are natural in robotic tasks. Therefore, the employment of such a logic as

a robotic specification language enables one to formally express complex missions, such as

coverage of a set of goals (“visit A, B, and C in any order”), sequential goals (“visit A, B, and C

in this order”), and temporal conditions on target visits (“first visit A or B and then eventually

C. If D is ever reached, then always avoid B”).

March 17, 2016 DRAFT

3

p
2

p
4

p
3

p
0

p
1

p
5

Fig. 1: A schematic representation of an office building consisting of a lobby and five rooms

each with a door. In the instance captured in this figure, the doors of three rooms are open and

two are closed. The properties of interest in this environment are represented by the rectangles

labeled with p0, . . . , p5. The robot is shown as a small rectangle directly below p5 in the lobby.

Most of the existing works in motion planning with temporal logic specifications are based on

the assumptions that the environment is static, and its full map is available. These assumptions,

however, do not usually hold in real-world scenarios. For instance, consider a mobile robot in an

office building that is to perform a set of janitorial tasks daily. In this example, it is reasonable

to assume that some basic features of the environment are static (e.g., the floor plan of the office

building), but the states of the office doors may vary from time to time. In such a scenario, the

motion-planning framework needs to have the capability of dealing with unforeseen obstacles in

the environment.

Recently, several works have been developed to address cases where the environment is

partially unknown (e.g., [18]–[21]). The methods used in most of these studies are based

on reactive synthesis. The objective in the framework of reactive synthesis is to construct a

control strategy that accounts for every possible variation in the environment. In addition to

the strong requirement of the knowledge of all the possible environmental changes, the reactive

synthesis method suffers from a high computational cost [22]. Hence, when the number of

the environmental uncertainties becomes large, the reactive synthesis problem can become too

complex.

Another method to deal with partially unknown environments is iterative planning (e.g., [23],

[24]). In this approach, a new plan is computed on-the-fly every time an unexpected environ-

mental feature is observed. There are two major challenges in employing iterative approaches

in planning from complex tasks. One challenge is to compute satisfying plans fast. The other

March 17, 2016 DRAFT

4

challenge is to deal with the question of what to do when the specification becomes unsatisfiable

due to the discovery of an unexpected obstacle. Consider, for instance, the janitor robot example

above in the office building whose schematic representation is shown in Fig. 1. The office

environment consists of a lobby and five rooms, each with a door. The properties of interest in

this office are shown as regions with the labels of pi, where i ∈ {0, . . . , 5}. They could represent

office objects such as plants, a coffee machine, a blackboard, a desk, and a supply cabinet in

the rooms and a demo area in the lobby. An example of a motion specification for this robot is

as follows.

Specification 1: Do the following tasks in any order: water the plants and pick up the supply

cabinet key in region p0, turn off the coffee machine in p1, and clean the blackboard in p2. Then,

go to region p4 to pick up a duster from the supply cabinet before visiting p3 to dust the desk.

For safety reasons, always avoid the demo region p5 in the lobby and never enter the meeting

room with the blackboard (p2) if the previously executed task was watering the plants (p0).

In this example, the robot initially has no knowledge of the state of the office doors. It discovers

their status as it moves in the environment. Note that (for the instance captured in this figure)

the robot is not able to visit p0 and p4 since the doors of the corresponding rooms are closed.

Thus, there are parts of Specification 1 that cannot be satisfied. Nevertheless, in such tasks, it is

desired for the robot to continue with the mission even when the discovered obstacle prevents

the robot from meeting some objectives of the specification as long as the safety requirements

are not jeopardized.

In this paper, we consider such realistic scenarios of planning in a partially unknown workspace

for robots with complex nonlinear dynamics. We focus on hybrid systems as they reveal the

generality of our approach. Moreover, we study the meaning of partial satisfaction of a temporal

logic specification with both liveness and safety requirements. Thus, the following problem

emerges as a key challenge:

“Given a mission expressed as a temporal logic specification consisting of liveness and safety

properties for a robot in a partially unknown workspace, find a plan for the robot to satisfy the

liveness objectives as closely as possible while always respecting the safety constraints.”

In previous work [23], we solved a simpler version of this problem where specifications with

solely liveness objectives were considered. In that work, an iterative planning approach is used in

March 17, 2016 DRAFT

5

conjunction with a temporal logic planning framework with synergistic combination of discrete

and continuous planners developed in [14]–[16]. The online planning is made possible in [23]

by employing a hybrid state space abstraction method that utilizes a workspace decomposition

[15] and by treating the automaton that represents the specification as a monitor at the top level

of discrete planner. At the low level, a sampling-based planner is used (e.g., [4], [6]). Upon the

discovery of an unknown obstacle, the framework generates a new abstraction and uses a metric

over the automaton to compute a new plan that maximizes the satisfaction of the specification.

The partial satisfaction method proposed in [23] guarantees that the robot meets the maximum

number of the mission’s objectives for only certain types of specifications such as coverage.

In this work, we extend the efforts in [23] and present a comprehensive planning framework for

robots in partially unknown environments that accommodates safety specifications in addition

to liveness. In this framework, the safety conditions are treated as hard constraints, whose

full satisfaction is required, while the liveness requirements are viewed as soft constraints

whose partial satisfaction is allowed. We present three methods of partial satisfaction for the

liveness (soft) constraints to appropriately attend to user’s (unexpressed) intentions in different

types of specifications (e.g., sequential and temporal conditions on goal visits in addition to

coverage) while still satisfying the safety (hard) constraints. Furthermore, we introduce an

improved abstraction method that allows local updates to the discrete abstraction model instead

of rebuilding it from scratch every time a new obstacle is observed. This modification enables

faster replanning than the one presented in [23].

The novel contributions of this work are fourfold: (1) an iterative technique for replanning in

the presence of unforeseen obstacles in the environment, (2) an integration of safety requirements

into the planning framework for complex dynamical systems with temporal goals, (3) three

methods of partial satisfaction to attend to user’s intentions in the specification without violating

safety, and (4) a method to identify and patch only the components of the abstraction that are

affected by a newly discovered obstacle. Therefore, the proposed framework enables a complex

robot modeled as a hybrid system with nonlinear continuous dynamics to modify its plan on-

the-fly upon discovery of unknown obstacles to satisfy a temporal logic specification without

having to return to its base and replan from scratch.

We illustrate this framework through case studies on a three-gear car-like robot with nonlinear

continuous dynamics in an office environment. In the case studies, the robot was given LTL

March 17, 2016 DRAFT

6

specifications with both liveness and safety requirements and a partial map of the environment.

We considered different types of specifications and varied the accuracy of the robot’s initial map

to demonstrate the efficacy of the framework.

II. PRELIMINARIES

A. Robot Hybrid Model

In this paper, we consider a general mobile robot whose dynamics are subject to restrictions in

the regions of a partially unknown environment. We describe its motion in such an environment

by the hybrid system H = (S, s0, INV, SENSE, E, GUARD, JUMP, U , FLOW,Π, L) [15], [23], [25],

[26], where

• S = Q × X is the hybrid state space that is a product of a set of discrete modes, Q =

{q1, q2, . . . , qm} for some finite m ∈ N, by a set of continuous state spaces X = {Xq ⊆

Rnq : q ∈ Q};

• s0 ∈ S is the initial state;

• INV = {INVq : q ∈ Q}, is the set of invariants, where INVq : Xq → {>,⊥} with > and ⊥

corresponding to true and false, respectively;

• SENSE : Xq → {>,⊥}, is the sensing function that returns true if an unknown obstacle is

detected;

• E ⊆ Q×Q describes discrete transitions between modes.

• GUARD = {GUARDqi,qj : (qi, qj) ∈ E}, where GUARDqi,qj : Xqi × {>,⊥} → {>,⊥} is a

guard function that enables transitions between different modes given the continuous state

of the robot and the unknown-obstacle detector readings (i.e., output of SENSE);

• JUMP = {JUMPqi,qj : (qi, qj) ∈ E}, where JUMPqi,qj : Xqi → Xqj is the jump function.

• U = {Uq ⊂ Rmq : q ∈ Q} is the set of input spaces;

• FLOW = {FLOWq : q ∈ Q}, where FLOWq : Xq × Uq × R≥0 → Xq is the flow function that

describes the continuous dynamics of the system through a set of differential equations;

• Π is a set of atomic propositions;

• L : S → 2Π is a labeling function assigning to each hybrid state possibly several elements

of Π.

A pair s = (q, x) ∈ S denotes a hybrid state of the system. FLOWq(x, u, t) gives the continuous

state of the system when the input u is applied for t time units starting from state x. The evolution

March 17, 2016 DRAFT

7

of the robot represented by the system H is as follows. The robot starts evolving from its initial

state s(0) = s0 = (q, x0) according to the flow function FLOWq(x, u, t) with control u ∈ Uq.

Let tqq′ denote the time that the robot first hits the guard GUARDqq′ . Then, the system makes

a transition to mode q′. The robot dynamics change to FLOWq′(x, u, t) at the continuous state

x(tqq′) = JUMP(q, q′), i.e., s(tqq′) = (q′, JUMP(q, q′)). Thus, the robot now moves according to

FLOWq′ for control u ∈ Uq′ . This process goes on as long as the invariant function remains true.

As soon as the invariant becomes false, the system terminates, and the robot stops moving. See

Sec. III-B and VII for modeling of a robot with multiple modes of operation as a hybrid system.

In this work, we employ sampling-based techniques to plan for the hybrid system H . These

methods generate trajectories of H by sampling control u and its associated time duration t. A

finite trajectory obtained by such techniques can be represented as

Ξ = s0
ξ(s0,u1,t1)−−−−−−→ s1

ξ(s1,u2,t2)−−−−−−→ s2 · · ·
ξ(snξ−1,unξ ,tnξ)

−−−−−−−−−→ snξ ,

where ξ(s, u, t) denotes a trajectory segment of the hybrid system starting from s under control

u for the duration of t and nξ ∈ N. Note that ξ(s, u, t) is given by FLOW, JUMP, or a combination

of FLOW and JUMP. In addition to being collision-free, we require ξ between two states si and

si+1 to contain at most one label change. Formally,

• if L(si) = L(si+1), then L(s) = L(si) for every s ∈ ξ(si, ui+1, ti+1);

• if L(si) 6= L(si+1), then ∃t′ ∈ (0, ti+1] such that L(s ∈ ξ(si, ui+1, t)) = L(si) for every

t ∈ [0, t′), and L(s ∈ ξ(si, ui+1, t)) = L(si+1) for every t ∈ [t′, ti+1].

Note that the validity of each ξ can be checked through a simple modification to the existing

collision checking functions of sampling-based motion planners (e.g., [5]).

The (observation) trace of trajectory Ξ is, hence, given by L(s0) . . . L(snξ). To capture the

number of consecutive repetitions of the hybrid state labels, we rewrite this trace as

{L(s0)}i0{L(si0)}i1{L(si0+i1)}i2 . . . {L(si0+···+il−1
)}il ,

where {L(s)}ij indicates ij consecutive repetitions of L(s) with ij ∈ N for j ∈ {0, . . . , l}, l ∈ N,

and l ≤ nξ. We define the event-driven trace of trajectory Ξ as

σ̄ = L(s0)L(si0)L(si0+i1) . . . L(si0+···+il−1
).

Note that the event-driven trace of a trajectory captures only the change in the labels of the

hybrid states and ignores the consecutive repetitions of the same label, i.e., L(sIj) 6= L(sIj−1
),

March 17, 2016 DRAFT

8

where Ij =
∑j

k=0 ik. Intuitively, this trace is the discrete observation of the trajectory Ξ and can

be thought of as the task that the robot performs by executing Ξ. For the remainder of the paper,

we refer to the event-driven trace of the hybrid system trajectory as the trace or word obtained

by the robot.

B. Syntactically Co-safe and Safe LTL

We use syntactically co-safe and syntactically safe LTL to write the specifications of robotic

tasks. Co-safe LTL is used to encode tasks for the robot to achieve (liveness) [14]–[16], [23],

and safe LTL is used to encode behaviors for the robot to avoid. Their syntax and semantics are

defined below.

Definition 1 (Co-safe Syntax): Let Π = {p1, . . . , pk} be a set of boolean atomic propositions.

A syntactically co-safe LTL formula over Π is inductively defined as follows:

ϕ := p | ¬p |ϕ ∨ ϕ |ϕ ∧ ϕ | Xϕ |ϕUϕ | Fϕ

where p ∈ Π, ¬ (negation), ∨ (disjunction), and ∧ (conjunction) are boolean operators, and X

(“next”), U (“until”), and F (“eventually”) are temporal operators.

Definition 2 (Safe Syntax): A syntactically safe LTL formula over Π is inductively defined as

follows:

ϕ := p | ¬p |ϕ ∨ ϕ |ϕ ∧ ϕ | Xϕ | Gϕ

where p ∈ Π, ¬ (negation), ∨ (disjunction), and ∧ (conjunction) are boolean operators, and X

(“next”) and G (“always”) are temporal operators.

Definition 3 (Semantics): The semantics of syntactically co-safe and safe LTL formulas are

defined over infinite words over 2Π. Let σ = {τi}∞i=0 be an infinite word with letters τi ∈ 2Π,

and define σi = τ0, τ1, . . . , τi−1 and σi = τi, τi+1, Then σi is a prefix of the word σ, and

σi is a suffix of σ. The notation σ |= ϕ indicates that σ satisfies formula ϕ and is inductively

defined as follows.

• σ |= p if p ∈ τ0;

• σ |= ¬p if p /∈ τ0;

• σ |= ϕ1 ∨ ϕ2 if σ |= ϕ1 or σ |= ϕ2;

• σ |= ϕ1 ∧ ϕ2 if σ |= ϕ1 and σ |= ϕ2;

March 17, 2016 DRAFT

9

• σ |= Xϕ if σ1 |= ϕ;

• σ |= ϕ1Uϕ2 if ∃k ≥ 0, s.t. σk |= ϕ2, and ∀i ∈ [0, k), σi |= ϕ1;

• σ |= Fϕ if ∃k ≥ 0, s.t. σk |= ϕ.

• σ |= Gϕ if ∀k ≥ 0, σk |= ϕ.

An important property of syntactically co-safe LTL formulas is that, even though they have

infinite-time semantics, finite words are sufficient to satisfy them. Similarly, finite words are

sufficient to violate syntactically safe LTL formulas. Hence, we can capture desired robot behavior

as a pair of co-safe and safe LTL specifications, where the co-safe component describes tasks

for the robot to complete in finite time, and the safe component describes behaviors to avoid.

We then say that a robot trajectory satisfies the pair of specifications if its corresponding word

(event-driven trace) satisfies the co-safe component and does not violate the safe component.

This combination of co-safe and safe LTL formulas allows us to describe many rich types of

robotic tasks which can be realized in a finite time horizon in a safe manner (e.g., Specification

1 in Sec. I).

To evaluate robotic trajectories against LTL formulas, we use deterministic finite automata

(DFA) [27]. A DFA is given by a tuple (Z,Σ, δ, z0, F), where

• Z is a finite set of states,

• Σ = 2Π is the input alphabet, where each input letter is a truth assignment to the propositions

in Π,

• δ : Z × Σ→ Z is the transition function,

• z0 ∈ Z is the initial state, and

• F ⊆ Z is the set of accepting states.

A run of a DFA A is a sequence of states γ = γ0γ1 . . . γn, where γ0 = z0 and γi ∈ A.Z for

i = 1, . . . , n. A run γ is called an accepting run if γn ∈ A.F .

From a co-safe LTL formula ϕcosafe, a DFA Aϕcosafe that accepts precisely all of the formula’s

satisfying finite words can be constructed [28]. Each input letter to Aϕcosafe is a set τ ∈ 2Π of

propositions that are currently true in the system. To simplify notations, we refer to Aϕcosafe as

Acosafe. We assume Acosafe is minimized, i.e., has the minimal number of states [29].

Similarly, from a safe LTL formula ϕsafe, a DFA A¬ϕsafe that accepts precisely all of the

formula’s violating finite words can be constructed [28]. To accept precisely all of the finite

words that do not violate ϕsafe, we flip the acceptance condition of this DFA to obtain ¬A¬ϕsafe ,

March 17, 2016 DRAFT

10

0

!p0

1
p0

!p1
2

p1

true

(a) A¬ϕ1
safe

0

!p0

1
p0

!p1
2

p1

true

(b) ¬A¬ϕ1
safe

0

!p0

1
p0

!p1

(c) A1
safe

Fig. 2: The conversion from the DFA corresponding to ϕ1
safe to the minimal DFA A1

safe. The start

state is 0.

which we minimize [27] and refer to simply as Asafe. Specifically, given A¬ϕsafe = (Z,Σ, δ, z0, F),

we define

Asafe = (Z,Σ, δ, z0, Z \ F)

and then minimize Asafe. Note that all the accepting states of A¬ϕsafe have only self-transitions

[28]. Therefore, Asafe includes only accepting states after the minimization step. The DFA Asafe

accepts a finite word σ̄ if and only if there exists an infinite word extension to σ̄ that satisfies

ϕsafe; that is, the language of Asafe is given by

L (Asafe) = {σ̄ ∈ Σ∗ | ∃σ ∈ Σω such that σ̄.σ |= ϕsafe} .

Here Σω denotes the set of all infinite words over the alphabet Σ. Throughout this paper, we

loosely say that a finite word σ̄ “satisfies the safety formula ϕsafe” to mean that σ̄ has an infinite

word extension that satisfies ϕsafe, or equivalently, that σ̄ does not violate ϕsafe.

For example, consider the safety formula

ϕ1
safe = G(p0 → X¬p1).

The words that includes the sequence of p0p1 violates ϕ1
safe. The DFA that accepts all of the

violating finite words of ϕ1
safe is A¬ϕ1

safe
which is shown in Fig. 2a. By flipping the accepting

condition, we obtain ¬A¬ϕ1
safe

in Fig. 2b which accepts all the finite words that do not include

p0p1. In other words, ¬A¬ϕ1
safe

accepts all of the prefixes of the infinite words that satisfy ϕ1
safe.

We attain A1
safe shown in Fig. 2c by minimizing ¬A¬ϕ1

safe
. Note that all of the states of A1

safe are

accepting. This DFA generates only the words that do not include the sequence of p0p1, i.e.,

non-violating words.

March 17, 2016 DRAFT

11

III. PROBLEM DESCRIPTION AND OVERALL APPROACH

A. Problem Description

In this work, we consider a mobile robot with complex and possibly nonlinear hybrid dynamics

moving in an environment to accomplish a high-level task. We assume that the environment

consists of polytopic regions of interests, each of which holds a set of properties (propositions).

Let Π denote the set of all environmental propositions. The robot task is expressed as a temporal

logic statement ϕ defined over Π in the form of a conjunction of syntactically co-safe and safe

LTL formulas:

ϕ = ϕcosafe ∧ ϕsafe. (1)

An example of such a task is Specification 1 in Sec. I. Setting Π = {p0, . . . , p5}, the co-safe

component of this specification becomes “first visit p0, p1, and p2 in any order and then visit

p4 and p3 in that order,” and the safe component becomes “always avoid p5 and never go to p2

if the previously visited propositional region is p0.” These statements can be translated to the

following LTL formulas:

ϕcosafe = (¬(p3 ∨ p4)Up0) ∧ (¬(p3 ∨ p4)Up1) ∧

(¬(p3 ∨ p4)Up2) ∧ (¬p3 U(p4 ∧ XFp3)) (2)

ϕsafe = G¬p5 ∧ G(p0 → XX¬p2). (3)

We are interested in finding a motion plan for the robot to achieve ϕ.

We assume that the motion of the robot in the environment is described by hybrid system H

defined in Sec. II-A. An example of such a system is a robot that is capable of switching between

different modes of operation (e.g., vacuuming and mopping) in an office environment. Let the first

ne ∈ N+ components of the continuous states of the hybrid system in mode q refer to the position

of the robot in a ne-dimensional environment. Also, let PROJ(A) denote projection of a Euclidean

set A onto Rne . We define the workspace of the robot as W = {(q,Wq) : Wq = PROJ(Xq), q ∈

Q}. In words, the first ne elements of the continuous component of a hybrid state in each mode

correspond to a point in the workspace of the robot (in this study we assume ne = 2). We

establish the relationship between the hybrid state of the robot s = (q, x) and its workspace by

function hH : S → W . Similarly, given w ∈ W , we define h−1
H (w) = {s ∈ S : hH(s) = w}.

March 17, 2016 DRAFT

12

Thus, all the environmental propositions Π can be assigned to the states of the hybrid system

according to their location in the workspace. This means that achieving ϕ in the environment is

equivalent to satisfying ϕ in the robot’s hybrid state space. Therefore, the challenge is to design

a motion plan for H that satisfies ϕ.

Furthermore, we assume that while the robot has full information of the propositional regions

and their locations in the environment, it has only partial a priori knowledge of the obstacles of

the environment. Thus, for each mode q of the hybrid system, Wq,obs = W k
q,obs ∪W u

q,obs where

W k
q,obs and W u

q,obs refer to the sets of known and unknown obstacles, respectively. We also assume

that the robot can detect an unknown obstacle when it comes within some proximity of it. This

is represented by SENSE in the hybrid model H in Sec. II-A. In practice, SENSE can be viewed

as a range sensor with a fixed radius ρ, as is commonly seen in related work [30].

Lastly, we assume that specification ϕ is satisfiable in the initial map. Due to possible

unknown obstacles in the environment, however, the satisfaction of ϕ cannot be guaranteed.

At the same time, we do not want the robot to abort the mission if it realizes that fragments of

the specification cannot be met. Instead, we require the robot to satisfy the co-safe component

(ϕcosafe) of the specification as closely as possible while never violating safety (ϕsafe). We envision

many scenarios where this can be an advantageous approach (e.g., the janitor robot example).

Note that formulas in the form of (1) constitute a fragment of general LTL, and the decomposition

of the specification into safety and co-safety may not be unique. It is up to the user to define

which requirements to be safety (ϕsafe - hard constraints) and which ones to be co-safety (ϕcosafe-

soft constraints). We define and discuss the definition of satisfying a specification as closely as

possible below and in Sec. V. We now focus on the following problem.

PROBLEM: Given a robot hybrid model H with a partially unknown workspace W and a

task specification ϕ expressed as a conjunction of a syntactically co-safe LTL formula ϕcosafe and

a syntactically safe LTL formula ϕsafe over Π, find a motion plan that does not violate ϕsafe and

satisfies ϕcosafe as closely as possible.

B. Overall Approach

We employ a multi-layered synergistic framework [14]–[16], [25], [26] to solve the above

motion planning problem by using the initial knowledge of the workspace. The framework

March 17, 2016 DRAFT

13

Guides

(Leads)

Exploration

Information

High-Level Planner

Low-Level Planner

(Sampling-Based

Motion Planner)

Synergy Layer

Specification
LTL to DFA

Abstraction

Continuous

Trajectory
Execution

Obstacle

Discovered

Choice of

Partial Sat.

Method

Hybrid System

Fig. 3: Multi-layered synergistic motion-planning framework.

consists of three main layers: a high-level search layer, a low-level search layer, and a synergy

layer that facilitates the interaction between the high-level and the low-level search layers (see

Fig. 3). The high-level planner uses an abstraction of the hybrid system [15] and the specification

ϕ to suggest high level plans. The low-level planner uses the dynamics of the hybrid system and

the suggested high-level plans to explore the state space for feasible solutions. In our work, the

low-level layer is a sampling-based planner and does not assume the existence of a controller

[8].

To satisfy a specification in a partially undiscovered environment, an iterative high-level

planner is employed. Every time an unknown obstacle is encountered, the high-level planner

modifies the coarse high-level plan online by accounting for the geometry of the discovered

obstacle, the path traveled to that point, and the remaining segment of the specification that

is yet to be satisfied. This replanning is achieved in three steps. (1) A “braking” operation is

applied to prevent the robot from colliding with the newly discovered obstacle. We assume that

the robot’s sensing radius is sufficiently large to ensure that the robot does not collide with

the obstacle (the braking operation can be avoided if a contingency maneuver is used - see

below). (2) The abstraction model is “patched” to reflect the new changes to the environment.

All feasibility estimates and data collected by the synergistic framework are preserved for the

unaffected portion of the abstraction. (3) The path traveled by the robot so far is mapped onto

the modified abstraction model, and a new satisfying plan is generated as a continuation of the

explored portion of the old plan. Thus, the robot does not need to return to its starting point

March 17, 2016 DRAFT

14

every time it encounters an unknown environmental feature. Moreover, the robot’s progress in

satisfying the specification is preserved. A high-level diagram of this iterative motion-planning

framework appears in Fig. 3.

We note that, in general, a contingency maneuver can be used instead of a “braking” operation

when an unknown obstacle is discovered. For the simplicity of the presentation, we assume that

the robot is capable of stopping, but by no means our framework is limited to this maneuver.

The exploration for the “best” contingency plan is not the focus of this paper, and we refer the

reader to [30], [31] for the description of general contingency plans.

To design a satisfying high-level plan, we use the automata representing the specification.

Recall that from ϕ in (1), a pair of DFAs, Acosafe and Asafe, can be constructed that accept all of

the satisfying finite words for ϕcosafe and ϕsafe, respectively (Sec. II-B) [25], [28]. In cases that

ϕcosafe is found unsatisfiable, we consider the intended restrictions on the specification to define a

suitable partial satisfaction metric. For instance, consider the co-safe component of Specification

1 above and Specifications 2 and 3 below for the janitor robot example shown in Fig. 1.

Specification 2: Water the plans and pick the supply cabinet key in region p0, turn off the

coffee machine at p1, and clean the blackboard in p2 in any order. Then, go to p4 to pick up a

duster from the supply cabinet before visiting p3 to dust and organize the desk.

Specification 3: Pick up trash from the bins in regions p0, p1, and p2 in any order, and then

take the collected trash to the chute in p4. Next, organize the desk in p3.

Note that all three specifications have the same requirements with respect to Π (see Sec. III-A)

and translate to the same co-safe LTL formula (ϕcosafe in (2)), but the importance of the regional

visits clearly varies when it comes to partial satisfaction. Given that regions p0 and p4 are

unaccessible due to the closed doors, it is still desired for the robot to turn off the coffee

machine in p1 and clean the blackboard in p2 in Specification 1. However, visiting p3, even

though accessible, is pointless since the robot cannot dust the desk without having picked up

the duster from p4. In Specification 2, though, it is desired for the robot to visit p3 in addition to

p1 and p2 since organizing the desk can be performed without the duster. On the contrary, only

organizing the desk in p3 is the obvious thing to do in Specification 3 since there is no need to

collect trash when the trash chute is blocked.

To address each of the above scenarios, we introduce three methods of partial satisfaction.

March 17, 2016 DRAFT

15

These methods are developed for specifications with the form in (1) and utilize Acosafe to measure

the “distance-to-satisfaction” of the specification. These measures are used to produce a high-

level plan that completely satisfies ϕsafe (i.e., does not violate ϕsafe) and satisfies ϕcosafe as closely

as possible. The definition of these metrics are described in Sec. V.

It is important to note that our method of generating a new high-level plan is fast. This is

for the following two reasons: (1) we are not recomputing the two DFAs, which do not need

to change since the specification does not change following the discovery of an obstacle, and

(2) we generate the abstraction of the hybrid system by decomposing the workspace through

triangulation, which has been shown to be computationally inexpensive [16] (in fact we verify

in our experimental results in Sec. VII). Our method to locally patch the changed region of the

workspace essentially boils down to a retriangulation of the smaller portion. For instance, the

computation time for regenerating the abstraction for the janitor robot example is on the order

of a hundredth of a second on a modern PC.

IV. PLANNING FRAMEWORK

In this section, we describe our iterative planning framework. This planner is detailed in

Alg. IV.1. It builds on top of the motion-planning framework developed in [14]–[16], [23]. Sec.

IV-A, IV-B, and IV-C present modifications to the previous works to allow for hybrid dynamics

and to enable planning with safety in addition to co-safety specifications. Sec. IV-D and V

detail the replanning and partial satisfaction methods that are designed to handle environment

uncertainties.

A. Abstraction

To produce a high-level plan, we first abstract the hybrid system H to a discrete model

M = (D, d0,→D,Π, LD), where D is a set of discrete states, d0 ∈ D is the initial state,

→D⊆ D×D is the transition relation, and LD : D → 2Π is a labeling function. We refer to the

model M as the abstraction of the hybrid system. Our method of constructing M is adapted

from the ones detailed in [15], [16] and modified for hybrid systems.

To construct M, we first partition each workspace Wq (for each discrete mode q) into a set

of regions (i.e., Wq =
⋃Nq

r

i=1 r
q
i). Specifically, we use a geometry-based conforming Delaunay

triangulation of Wq that respects the propositional regions and the boundaries of the obstacles.

March 17, 2016 DRAFT

16

Recall from Sec. III that Wq = PROJ(Xq), where Xq is the domain of the continuous states of

the hybrid system in mode q. Thus, the decomposition of Wq induces a partition in the hybrid

state space. Let Sqi denote the set of all hybrid states that correspond to the region rqi in Wq

(i.e., Sqi = {(q, x) ∈ S | x ∈ PROJ−1(rqi), r
q
i ⊆ Wq, q ∈ Q}). Then,

S =
⋃
q∈Q

Nq
r⋃

i=1

Sqi .

We associate a unique discrete state d ∈ D to each Sqi . We model this correspondence with a

family of maps {Υq : Sq → D | Sq = q×Xq, q ∈ Q}; then the previous sentence can be written

as Υq(S
q
i) = d. Moreover, D can be written as D = ∪q∈Q{Υq(S

q
i) | 1 ≤ i ≤ N q

r }.

We construct the transition relation →D to include geometric adjacencies between regions of

a given workspace as well as adjacencies between discrete modes enabled by GUARD functions

of the hybrid system. Specifically, for each pair of geometrically adjacent regions rqj and rqk in

Wq, we add the transition
(
Υq(S

q
j),Υq(S

q
k)
)

to →D; furthermore for each pair of sets Sql and

Sq
′
m between which a discrete jump is possible, we add the transition (Υq(S

q
l),Υq(S

q′
m)) to →D.

All the hybrid states in Sqi have the same labels since the triangulation of each workspace Wq

respects the propositional regions. Hence, the labeling function LD corresponds to the labeling

function L from the definition of H; that is, LD(Υq(S
q
i)) = L(s) for every s ∈ Sqi . For further

details, we refer the reader to our previous work [15].

It should be noted that the initial construction of M is based on the initial knowledge

of the environment map. As the robot discovers unknown obstacles, the map is updated and

M is patched to reflect the new workspace information. Given that this method is based on

a triangulation of a two-dimensional space, patching the abstraction is fast. Furthermore, we

initially assume transitions between all adjacent partitions of the workspace are realizable even

though the dynamics of the robot may prevent some transitions. This does not create a problem

in our planning framework because the synergistic framework biases its discrete search against

unrealizable transitions. In fact, one of the advantages of our planning framework is that it does

not require a bisimilar abstraction and therefore allows for inexpensive and fast construction of

an approximate abstraction model.

March 17, 2016 DRAFT

17

B. Initializing the Product Automaton

The structure we use to guide the motion tree of system trajectories is a product automaton,

which is computed as

P =M×Acosafe ×Asafe.

In lines 2-3 of Alg. IV.1, we compute the minimal DFAs Acosafe and Asafe corresponding to the

formulas ϕcosafe and ϕsafe, respectively, as defined in Sec. II-B [28], [32]. Though each translation

can require time doubly exponential with respect to the number of propositions in the formula,

we only compute each DFA once, and so the translations can be seen as an offline step. Then, in

line 4 of Alg. IV.1, we compute the product automaton P . We refer to elements of the product

automaton P as high-level states. The product automaton P is a directed graph in which there

exists an edge from high-level state (di, z
c
i , z

s
i) to (dj, z

c
j , z

s
j) if and only if

• di and dj are adjacent in M,

• Acosafe.δ (zci ,M.LD(dj)) = zcj ,

• Asafe.δ (zsi ,M.LD(dj)) = zsj ,

where Acosafe.δ and Asafe.δ are the deterministic transition functions for Acosafe and Asafe, re-

spectively. We call a high-level state (d, zc, zs) ∈ P an accepting state (or a goal state) if zc

is an accepting state in Acosafe and zs is an accepting state in Asafe. Since all zss are accepting

(see Sec. II-B), the high-level state (d, zc, zs) is accepting if zc is accepting. As a result of this

construction, all of the paths on P are non-violating with respect to ϕsafe, and the paths that end

in an accepting state of P are ϕcosafe-satisfying.

For each high-level state (d, zc, zs) ∈ P , the synergy layer assigns a weight defined by

w(d, zc, zs) =
(COV(d, zc, zs) + 1) · VOL(d)

DISTTOACC(zc) · (NUMSEL(d, zc, zs) + 1)2
, (4)

where COV(d, zc, zs) is the number of tree vertices associated with (d, zc, zs) (an estimate of

coverage by the low-level planner), VOL(d) is the area of the workspace corresponding to the

abstraction state d, and NUMSEL(d, zc, zs) is the number of times (d, zc, zs) has been selected for

tree expansion in line 2 of Alg. IV.3. DISTTOACC(zc) is the minimum distance from automaton

state zc to an accepting state in Acosafe.

Finally, to each directed edge e = (hi, hj) between high-level states hi, hj ∈ P , we assign the

weight

w(e) =
1

w(hi) · w(hj)
. (5)

March 17, 2016 DRAFT

18

Algorithm IV.1 Framework for planning for a robotic system with an LTL specification in a

partially unknown environment
Input: Robot model H = (S, s0, INV, SENSE, E, GUARD, JUMP, U , FLOW,Π, L), a bounded workspace W ⊂ R2,

a set of initially known obstacles O ⊂ W , LTL formula ϕ = ϕcosafe ∧ ϕsafe, a method of partial satisfaction

MPS, and a time bound tmax.

Output: Returns true if successful in moving the robot through the workspace to satisfy ϕsafe and satisfy ϕcosafe

as closely as possible; returns false otherwise.

1: M← COMPUTEABSTRACTION(W,O,H.Π, H.L)

2: Acosafe ← COMPUTEMINDFA(ϕcosafe,W,H.L)

3: Asafe ← COMPUTEMINDFA(ϕsafe,W,H.L)

4: P ← COMPUTEPRODUCT(M,Acosafe,Asafe, H.Π, H.L)

5: {si}i≥0 ← PLAN(H,W,O,P, tmax,MPS)

6: tplan ← time spent by PLAN in line 5

7: tmax ← tmax − tplan

8: j ← 1

9: while j < |{si}| do

10: Move robot from state sj−1 to state sj

11: if H.SENSE(sj .x) = > then

12: Apply braking operation to reach stopped robot state s′

13: H.s0 ← s′

14: Add discovered obstacle onew to O

15: P ← PATCHPRODUCT(P, H.S,W, onew, H.Π, H.L)

16: {si}i≥0 ← PLAN(H,W,O,H.Π, H.L,P, tmax)

17: if PLAN was unsuccessful then

18: return false

19: tplan ← time spent by PLAN in line 16

20: tmax ← tmax − tplan

21: j ← 1

22: j ← j + 1

23: return true

The estimates in (4) and (5) have been shown to work well in previous work [14]. In general, a

weighing scheme that incorporates more than just number-of-edge distance is useful to promote

expansion in unexplored areas (i.e., where COV and NUMSEL are both small) and to discourage

March 17, 2016 DRAFT

19

expansion in areas where attempts at exploration have repeatedly failed (i.e., where NUMSEL �

COV).

C. Planning

Once the product automaton has been computed, line 5 of Alg. IV.1 computes a trajectory

for the system that completely satisfies the safe formula ϕsafe and satisfies the co-safe formula

ϕcosafe as “closely as possible”. The details of this approach are given in Alg. IV.2. The core

loop of the planning algorithm is shown in lines 3, 4, and 5 of Alg. IV.2.

The subroutine COMPUTELEAD generates a lead, which is a path of high-level states over

P that satisfies ϕcosafe as closely as possible, fully satisfies ϕsafe, and minimizes the sum of the

edge weights defined in (5). When ϕ is fully satisfiable, the returned lead is a path that ends in

an accepting state of P . If such a path does not exist (i.e., an accepting state is not reachable), ϕ

becomes unsatisfiable. This situation takes place when the discovered obstacle blocks all of the

satisfying trajectories of the system. We introduce three methods of generating leads to partially

satisfy ϕ in such situations. These methods of partial satisfaction are described in Sec. V. Once

a lead is obtained, it is then suggested to EXPLORE which attempts to guide the motion tree in

the direction of the lead.

1) Guiding The Low-Level Tree Planner: The subroutine COMPUTEAVAILABLECELLS in

line 4 of Alg. IV.2 creates a set of high-level states from the current lead that are nonempty (i.e.,

there exist vertices in the tree of motions that are annotated with these high-level states). To

promote progress, we favor high-level states that are closest to the accepting state of the lead.

Specifically, moving backwards along the lead, for each nonempty high-level state (d, zc, zs) we

encounter, we add (d, zc, zs) to the set C of available high-level states and then quit early with

probability 0.5. By quitting the process early with probability 0.5, we are biasing expansion

toward the areas of the tree that have made the most progress along the lead, and therefore have

made the most progress completing the task specification.

The subroutine EXPLORE, given in Alg. IV.3, corresponds to the low-level search layer of the

framework. This function promotes tree expansion in high-level states from the set C. In line 2

of EXPLORE, a high-level state (d, zc, zs) is sampled with probability

w(d, zc, zs)∑
(d′,zc′,zs′)∈C w(d′, zc′, zs′)

.

March 17, 2016 DRAFT

20

Algorithm IV.2 PLAN: Temporal planning algorithm
Input: Robot model H = (S, s0, INV, SENSE, E, GUARD, JUMP, U , FLOW,Π, L), a bounded workspace W ⊂ R2,

a set of initially known obstacles O ⊂W , a product automaton P , a time bound tmax, and a method of partial

satisfaction MPS.

Output: Returns a sequence of triplets, each containing a robot system state, control, and corresponding high-level

state, representing a system trajectory that satisfies the specification. Reports an error and aborts if no such

trajectory could be found within time tmax.

1: T ← INITIALIZETREE(s0)

2: while TIME ELAPSED < tmax do

3: K ← COMPUTELEADMPS

4: C ← COMPUTEAVAILABLECELLS(K)

5: (v,P)← EXPLORE(H,W,O, T , C,K,P,∆t)

6: if v 6= NULL then

7: Follow v.parent to construct trajectory {si}i
8: return {si}i
9: Report unsuccessful and exit

Then, in line 3, a low-level tree planner attempts to create a new tree vertex corresponding to

both a robot state s that maps to abstraction state d and a trajectory from the tree root that

maps to automaton states zc and zs in Acosafe and Asafe, respectively. To do this, the planner first

extends s by a trajectory segment ξ through sampling a control and using H.FLOW, H.GUARD,

and H.JUMP as explained in Sec. II-A. Then, the validity of ξ is checked by using H.INV and

H.L. Any tree-based motion planner can be used in this step. Our implementation uses an EST-

like approach [5]. We note that the trajectories of hybrid systems are not always computationally

nice objects; therefore, we employ numerical methods for the generation of ξ.

If zc is an accepting state in Acosafe, then v is returned as the endpoint of a solution trajectory,

which is constructed by line 7 of PLAN (zc can just be as close as possible to an accepting

state if ϕcosafe is unsatisfiable). Otherwise, if the new vertex v corresponds to a newly reached

high-level state that is in the current lead, then the high-level state is added to the set of available

cells in line 8 of EXPLORE to be considered in future iterations. In line 9, the weights of the

high-level states in C are updated according to (4) with the new exploration information. These

new weights are considered in the computation of a new lead in PLAN. We make no attempt in

March 17, 2016 DRAFT

21

Algorithm IV.3 EXPLORE: Tree-exploration subroutine
Input: Robot model H = (S, s0, INV, SENSE, E, GUARD, JUMP, U, FLOW,Π, L), a bounded workspace W ⊂ R2, a

set of known obstacles O ⊂W , a tree of motions T , a set of available high-level states C, a lead K, a product

automaton P , and an exploration time ∆t.

Output: Returns a tree vertex that reaches a goal high-level state if such a vertex was found; returns NULL

otherwise. Also updates the weights of the high-level states of P .

1: while TIME ELAPSED(∆t) do

2: (d, zc, zs)← C.sample()

3: v ← SELECTANDEXTEND(T , H, (d, zc, zs), O,P)

4: if v.zc 6= ∅ and v.zs 6= ∅ then

5: if v.zc.isAccepting() and v.zs.isAccepting() then

6: return (v,P)

7: if (v.d, v.zc, v.zs) ∈ K \ C then

8: C ← C ∪ {(v.d, v.zc, v.zs)}

9: Update P with the new weights of the states in C according to (4).

10: return (NULL,P)

PLAN to smooth or shorten the continuous solution trajectory. Shortening a trajectory to satisfy

both differential constraints and a logical specification remains a topic of future work.

D. Discovering an Obstacle and Replanning

Once a system trajectory that satisfies ϕ is computed, we begin moving the robot along the

trajectory. At each state in the trajectory, we query the robot’s range sensor in line 11 of Alg. IV.1.

We assume that the robot’s range sensor checks for obstacles within radius ρ of the center of the

robot and reports a polygonal model of any previously unknown obstacle that it finds. If no new

obstacles are discovered along the trajectory, then the robot reaches the final state of the planned

trajectory and stops, having completed its mission. If an obstacle is discovered by the range sensor

from some state s along the trajectory, then we apply a braking operation to the robot to reach

some stopped state s′ in line 12 of Alg. IV.1. The braking operation respects the dynamics of the

system. In the general case, the robot should perform a contingency maneuver to avoid the newly

discovered obstacle [31], [33]. The radius ρ of the range sensor is assumed to be large enough

for the braking or contingency maneuver to be safely performed. Once the braking maneuver

is complete, we patch the portion of the discrete abstraction M that intersects the new obstacle

March 17, 2016 DRAFT

22

Algorithm IV.4 PATCHPRODUCT: Subroutine to locally patch product automaton given a newly

discovered obstacle
Input: A product automaton P , robot model H , workspace W , a newly discovered obstacle

onew.

Output: Returns a patched version of P that respects the newly discovered obstacle.
1: R← GETINTERSECTINGREGIONS(P .M, onew)

2: (V,E)← COMPUTEBOUNDARY(R)

3: N ← DECOMPOSEPORTION(V,E,H.S,H.Π, H.L)

4: P ← PATCHABSTRACTION(P , R,N)

5: return P

by calling the subroutine PATCHPRODUCT (Alg. IV.4), and we obtain an updated instance of

M that respects all known obstacles. After patching the discrete abstraction, PATCHPRODUCT

patches the corresponding elements of P . The PATCHPRODUCT routine operates in four steps.

(1) Compute R, the set of triangles in the workspace that intersect with the newly discovered

obstacle. (2) Compute the exterior boundary of the set R as a planar straight-line graph (V,E).

(3) Compute a new triangulation N of the section of the workspace enclosed by (V,E). (4)

Insert the new triangulation N into the abstraction M and propagate the changes to the product

automaton P .

After the product automaton has been patched, we replan a trajectory from s′ in line 16 of

Alg. IV.1, following the same planning approach described in Sec. IV-C. Once a new trajectory

is found by the planner, we resume moving the robot from s′ along the new trajectory. It is

important to note that only the high-level states of P that intersect with the new obstacle are

replaced, and their incident edge weights are lost and recomputed in the next planning iteration.

All other high-level states and edge weights in P are retained.

V. METHODS FOR PARTIAL SATISFACTION

After the discovery of an unknown obstacle, ϕ becomes unsatisfiable if no accepting state

is reachable in the newly patched P . This is generally due to two reasons: (1) the discovered

obstacle blocks all the possible paths to at least one of the propositional regions required by

the task (e.g., closed office doors in the above janitor robot example), and (2) even though the

March 17, 2016 DRAFT

23

discovered obstacle does not completely block a propositional region, the dynamics of the robot

do not allow a continuous trajectory to the propositional region. In this paper, we focus on the

former case, which is detectable by a decomposition of the workspace. In the latter case, the

feasibility of satisfying the specification can be estimated by using the weights defined in (4) and

(5). One can declare the specification unsatisfiable due to dynamics of the robotic system with

a high probability by imposing a threshold on these weights. The question of how to determine

a reasonable threshold is interesting and left for future work.

In this section, we introduce three methods to generate leads that partially satisfy ϕcosafe and

fully satisfy ϕsafe once ϕ is determined to be unsatisfiable. Each method results in a unique robot

behavior, and it is up to the user to choose the method that reflects the most desired outcome.

The first method renders a robot behavior that is “conservative” with respect to the specification.

In that, the robot only executes the portion of the specification that is satisfiable without violating

the specified temporal ordering of the tasks (e.g., this method is suitable for Specification 1).

The second method, “aggressive,” is designed for the type of specifications that, if not fully

satisfiable, only the execution of the last segment of the ordered tasks is preferred. Specification

3 is an example of such a specification type. The last method, called “moderate,” results in a

robot behavior that performs all the feasible tasks while respecting their temporal ordering. For

instance, this method is suitable for Specification 2.

A. Conservative Method

Algorithm V.1 COMPUTELEADCON: Subroutine to compute conservative high-level guides
Input: A product automaton P and a starting high-level state (d0, z

c
0, z

s
0) ∈ P .

Output: Returns a lead, which is a sequence of high-level states beginning with the given start (d0, z
c
0, z

s
0) and

ending with a state that is accepting in Asafe and a minimal distance to an accepting state in Acosafe.

1: S ← {(d, zc, zs) ∈ P | (d, zc, zs) is reachable from (d0, z
c
0, z

s
0)}

2: F ← arg min(d,zc,zs)∈S (DISTTOACC(zc))

3: Run Dijkstra’s all-pairs shortest-path algorithm on P with source (d0, z
c
0, z

s
0); store parent map parent and

weight map weight

4: (dg, z
c
g, z

s
g)← arg min(d,zc,zs)∈F {weight[(d, zc, zs)]}

5: Construct lead K = ((d0, z
c
0, z

s
0), . . . , (dg, z

c
g, z

s
g)) using parent map

6: return K

March 17, 2016 DRAFT

24

We define a measure of satisfiability that uses the graph-based distance to an accepting state

in the DFA Acosafe. Let DISTTOACC(zc) be the number of edges in the minimal length path

in Acosafe from the state zc to an accepting state. Each high-level state (d, zc, zs) is labeled

with DISTTOACC(zc) corresponding to the automaton state zc ∈ Acosafe.Z. In this method, we

design COMPUTELEADCON to compute paths that end in a high-level state (dg, z
c
g, z

s
g) such that

DISTTOACC(zcg) is minimum among all reachable states. The pseudocode of this algorithm is

shown in Alg. V.1. In many cases, there are multiple candidate high-level states that tie under the

DISTTOACC definition over the co-safe automaton states. To break ties, we choose the high-level

state with minimal edge-weight distance from the starting high-level state, using the edge-weight

function defined in (5).

The function DISTTOACC is an intuitive metric on the co-safe automaton. This measure,

particularly, translates to a unique meaning for the cases that the propositional regions in the

environment are not intersecting. In such cases, function DISTTOACC is the measure of the

smallest number of remaining propositions to visit to fully satisfy ϕcosafe. Formally, let zc ∈

Acosafe.Z be the state that is reached by the input word u ∈ (2Π)∗ in Acosafe. The function

DISTTOACC(zc) returns the length of the shortest suffix v that is needed to extend u to an

accepting word of Acosafe, i.e., u.v = σ̄ ∈ L(Acosafe). Therefore, the output word of a trajectory of

P from the initial state to (dg, z
c
g, z

s
g) that minimizes DISTTOACC(zcg) is a prefix of an accepting

word of Acosafe, whose shortest suffix has minimum length among all other suffixes of the

achievable prefixes given the safety and environment constraints. Note that this trajectory visits

as many propositions as possible without violating ϕcosafe. Furthermore, if ϕcosafe is satisfiable in

the environment, DISTTOACC(zcg) = 0, i.e., (dg, z
c
g, z

s
g) is an accepting state.

In each call of the COMPUTELEADCON (Alg. V.1), the returned lead is optimal in the following

sense. Let ū be the word that the robot achieves in the environment before discovering an

unknown obstacle. Let u be the output word of the lead that is computed by COMPUTELEADCON

(Alg. V.1) at this point. Then, ū.u is a prefix of an accepting word σ̄ = ū.u.v of Acosafe, where v

has the minimum length given the environment and safety constraints. This optimality property

is valid for every call of the algorithm (replanning instance). For the overall robot word, which

is achieved by multiple calls of the algorithm, however, no optimal guarantees can be given.

Nevertheless, we can state the following lemma for the overall word.

Lemma 1: Let γP = (d0, z
c
0, z

s
0) · · · (dn, zcn, zsn) be the overall high-level path achieved by

March 17, 2016 DRAFT

25

using the conservative method’s COMPUTELEADCON, and let u denote the obtained word from

γP . Then, (1) u is a prefix of a word in L(Acosafe), and (2) u is in L(Asafe).

Proof: (1) The word u is achieved by the run γAcosafe = zc0 · · · zcn in Acosafe, where zc0 is the

initial state. As ϕcosafe is valid (logically satisfiable), we have that 0 ≤ DISTTOACC(zcn) < ∞,

which means that γAcosafe can be extended to an accepting run of Acosafe. Therefore, u is a prefix

of a word in L(Acosafe). (2) The word u is achieved by the run γAsafe = zs0 · · · zsn in Asafe, where

zs0 is the initial state. Since all the states in Asafe are accepting (see Sec. II), γAsafe is accepting.

Therefore, u ∈ L(Asafe). �

The plans produced by the conservative method are best for the kind of specifications in

which the specified order of the tasks are strict. For Specification 1, for example, this method

can generate a trajectory that takes the robot to the regions p1 and p2 after discovery of the

closed door of the room containing p0. Given that p0 is unreachable, this trajectory does not

extend to any other propositional regions because it is a violation of the specified order.

The conservative method, although intuitive, has its own limitations. There are many specifi-

cations in which minimizing DISTTOACC does not necessarily yield the most enticing partially

satisfying plans. Specification 2, in which the specified order of tasks is not strict but rather a

preference, is an example of such specifications. Specifically, for any mission in which the tasks

are favored, but not necessarily enforced, to be performed in a particular order, the conservative

method does not necessarily generate the most desirable plans. In these situations, a more

reasonable behavior for the robot is to “skip” those tasks that cannot be completed and continue

with the remaining tasks in the same designated order. In the next two sections, we present

algorithms that emit such plans.

B. Aggressive Method

Motivated by Specification 3, we introduce a method of computing a lead that partially satisfies

ϕcosafe by planning for the achievable tasks that appear at the bottom of the ordered list of tasks.

This method employs the concept of skipping which allows the robot to make progress by

ignoring the tasks that cannot be completed. In this method, some tasks that can be completed

may also be ignored, hence the name aggressive.

We define skipping letter τ ∈ 2Π as assuming that τ is satisfied only with respect to ϕcosafe.

That is, we assume that the robot has observed the propositions in τ only from the (logical)

March 17, 2016 DRAFT

26

Algorithm V.2 COMPUTELEADAGG: Subroutine to compute aggressive high-level guides
Input: A product automaton P , a starting high-level state (d0, z

c
0, z

s
0) ∈ P , a satisfying finite word σ̄ = τ0 · · · τn,

and index j of the last satisfied letter.

Output: Returns a lead, which is a sequence of high-level states that is accepting by Asafe and is a suffix of an

accepting run by Acosafe.

1: K ← ∅

2: F ← accepting states of P

3: while K = ∅ do

4: Run Dijkstra’s all-pairs shortest-path algorithm on P with source (d0,Acosafe.δ(z
c
0, τj), z

s
0); store parent map

parent and weight map weight

5: (dg, z
c
g, z

s
g)← arg min(d,zc,zs)∈F {weight[(d, zc, zs)]}

6: Construct lead K = ((d0,Acosafe.δ(z
c
0, τj), z

s
0), . . . , (dg, z

c
g, z

s
g)
)

using parent map

7: j ← j + 1

8: return K

liveness perspective even though, in reality, the robot has not. Thus, the edge with label τ is

traversed in Acosafe but not in Asafe. This is reflected in product automaton P by transitioning

from the current high-level state hi = (d, zc, zs) to hj = (d,Acosafe.δ(z
c, τ), zs). Note that this

transition may not be valid since there is not necessarily a directed edge between hi to hj .

However, this is purely a logical violation of ϕcosafe which is acceptable in the context of partial

satisfaction. Meanwhile, the dynamics of the system and the safety requirements are respected

by maintaining the current abstraction state d and safety automaton state zs.

The aggressive method uses skipping to compute leads that achieve partial satisfaction of

ϕcosafe. The pseudocode of COMPUTELEADAGG for this method is shown in Alg. V.2. Recall that

COMPUTELEADAGG is called upon the discovery of an obstacle that makes ϕ unsatisfiable. Let

the word obtained from the satisfying trajectory that the robot was initially set to follow be

denoted by σ̄ = τ0 · · · τn, where τi ∈ 2Π. Let j ∈ {0, . . . , n− 1} be the index of the letter in σ̄

that the robot satisfied right before discovering the obstacle. The aggressive method generates

a new lead in the newly patched P by skipping τj (i.e., first setting the current high-level state

to (d,Acosafe.δ(z
c, τj), z

s) from (d, zc, zs) and then computing a path to an accepting state). If a

path to an accepting state does not exist in P from the new current high-level state, the algorithm

keeps skipping letters along σ̄ until either a path to an accepting state is found or τn is skipped.

March 17, 2016 DRAFT

27

The lead that is constructed by the aggressive algorithm always results in a word that is a

suffix of an accepting word σ̄. Consider the case that, after satisfying τj , the robot discovers an

obstacle that makes proposition(s) in τj+m for some m ∈ {0, . . . , n− j} unreachable. Then, the

aggressive method computes a lead to an accepting state by skipping τj, · · · , τj+m. Thus, every

time the aggressive method is called, a robot trajectory is obtained that satisfies the last segment

of the ordered tasks in ϕcosafe. Furthermore, the word obtained from the actual execution of the

trajectory that is computed by multiple calls of COMPUTELEADAGG is a substring of a satisfying

word of ϕcosafe. Nevertheless, this method does not guarantee the execution of all achievable tasks

in ϕcosafe. The janitor robot example with Specification 3 is a scenario in which the aggressive

method emits a desirable outcome. This method computes a plan for the robot to go to p3 as

soon as the closed door to p5 is observed.

The properties of the overall trajectory produced by multiple calls to COMPUTELEADAGG is

formally stated in Lemma 2.

Lemma 2: Let γP = (d0, z
c
0, z

s
0) · · · (dn, zcn, zsn) be the overall high-level path achieved by using

the aggressive method’s COMPUTELEADAGG, and let u denote the obtained word from γP . Then,

(1) u is a substring of a word in L(Acosafe), and (2) u is in L(Asafe).

Proof: (1) The projection of γP onto Acosafe is the sequence of states γAcosafe = zc0 · · · zcn, where

zc0 is the initial state, and zcn is an accepting state of Acosafe. The path γAcosafe is not necessarily

a valid path on Acosafe due to skipping. By the definition of skipping, however, it is guaranteed

that every zci ∈ γAcosafe is reachable from zci−1 ∈ γAcosafe for every i ∈ (0, n]. Hence, by inserting

the intermediate states, γAcosafe can be expanded to an accepting run of Acosafe. Let σ̄ denote the

corresponding finite accepting word. Since u is the sequence of the labels (letters) over only the

valid transitions along γAcosafe , u is a substring of σ̄ ∈ Acosafe. (2) From the definition of skipping,

it is trivial that u is a valid word in Asafe and gives rise to the valid run of γAsafe = zs0 · · · zsn.

Since every state in Asafe is accepting (see Sec. II), and γAsafe is a valid run, γAsafe is an accepting

run. Hence, u ∈ L(Asafe). �

C. Moderate Method

The moderate method is designed for the types of missions that require completing all of the

achievable tasks. In other words, the trajectory generated by this method ignores only the tasks

that are impossible to perform due to the discovered obstacles. Specification 2 for the janitor

March 17, 2016 DRAFT

28

robot example is a scenario that the moderate method produces an appealing plan.

The moderate algorithm, called COMPUTELEADMOD, combines the conservative method with

the concept of skipping. In this algorithm, the conservative COMPUTELEADCON is used at

every instance of replanning. If no further leads can be computed by the conservative method,

the algorithm skips an unreachable letter and calls COMPUTELEADMOD recursively. Since an

accepting state of P is bound to be reached, this process eventually terminates.

Recall that the conservative method generates a plan that makes the most possible progress

towards satisfying ϕcosafe without violating it. The resulting word of the execution of this plan is

the a prefix of the accepting words of Acosafe, whose suffix cannot be achieved in the environment.

Therefore, the first letter in the corresponding suffix must be unsatisfiable in the environment. In

order for the robot to advance to the remaining portion of the specification, a violation of ϕcosafe

is needed. The moderate method performs this violation by skipping the unsatisfiable letter.

The algorithm finds this letter by first mapping the current high-level state hc = (dc, z
c, zs)

on to the initial product automaton Pinit, which is constructed from the first initial map of

the environment. Let hinit = (dinit, z
c, zs) ∈ Pinit be the corresponding high-level state. Then,

an accepting path over Pinit from hinit is computed. The word resulting from this path is an

accepting suffix of the executed word. The first element of this suffix is the unsatisfiable letter

and is chosen to be skipped by the algorithm. Thus, by employing the moderate method, the

robot achieves a word that satisfies ϕsafe and is a substring of an accepting word of Acosafe, where

the missing letters are those that are unsatisfiable in the environment. The pseudocode of the

moderate method is shown in Alg. V.3.

It should be noted that, to find the unsatisfiable letters, Acosafe could also be used. We prefer

Pinit because it incorporates both the safety requirements and the environment map in addition to

co-safety tasks. Moreover, Pinit is guaranteed to include satisfying trajectories by the assumption

that the specification is fully satisfiable in the robot’s initial map.

The properties of the overall trajectory computed by the moderate method is stated in the

following lemma, whose proof is identical to the one of Lemma 2.

Lemma 3: Let γP = (d0, z
c
0, z

s
0) · · · (dn, zcn, zsn) be the final high-level path obtained by using

the moderate method’s COMPUTELEADMOD, and let u denote the obtained word from γP . Then,

(1) u is a substring of a word in L(Acosafe), and (2) u is in L(Asafe).

Proof: The proof is identical to that of Lemma 2. �

March 17, 2016 DRAFT

29

Algorithm V.3 COMPUTELEADMOD: Subroutine to compute moderate high-level guides
Input: A product automaton P , a starting high-level state (d0, z

c
0, z

s
0) ∈ P , and initial product automaton Pinit.

Output: Returns a lead, which is a sequence of high-level states, that is fully accepting by Asafe and is a substring

of an accepting run on Acosafe with the minimum number of greedy deletions.

1: K ← COMPUTELEADCON(P, (d0, zc0, zs0))

2: if K = ∅ then

3: (dinit, z
c
0, z

s
0)← map (d0, z

c
0, z

s
0) on to Pinit

4: K ′ ← COMPUTELEADCON(Pinit, (dinit, z
c
0, z

s
0))

5: τ0 ← the first letter of the word corresponding to K ′

6: K ← COMPUTELEADMOD(P, (d0,Acosafe.δ(z
c
0, τ0), zs0))

7: return K

VI. CORRECTNESS AND COMPLETENESS

The proposed LTL planning framework is correct in that the robot never violates ϕsafe at every

point of the plan and achieves ϕcosafe with the property of the chosen partial satisfaction method.

The overall trajectory is produced by the low-level sampling-based planner guided by high-level

plans. The high-level plans are correct by construction. By the assumption that the trajectory

segments between sampled states are valid, i.e., collision-free with at most one label change (see

Sec. II-A), the produced trajectories by the low-level planner accurately follow high-level plans.

In other words, by this assumption, the event-driven trace of the trajectory accurately captures

the trace that the robot obtains by executing the generated plan. Since the event-driven trace is

identical to the one from the high-level plan, the final robot trajectory is correct.

Furthermore, the proposed framework is probabilistically complete for fully known environ-

ments [14]–[16]. That is, if there exists a continuous robot trajectory that satisfies the LTL

specification, the probability of failing to find it goes to zero as the planning time increases.

This is because the planning layers work in a synergistic manner. By assigning weights to the

product automaton edges according to the exploration data, the high-level planner eventually

considers all satisfying leads on P infinitely often. These high-level leads are assigned to the

low-level planner, which is probabilistically complete, infinitely often. Such a guarantee, however,

cannot be generally given for partially known environments due to the nature of iterative planning

strategy. For instance, consider a robotic system, whose dynamics do not allow a reverse motion,

and an environment consisting of two narrow corridors, one of which is blocked by an initially

March 17, 2016 DRAFT

30

unknown obstacle. By executing an initially satisfying trajectory that passes through the corridor

with the obstacle, the robot fails to complete the task since the robot becomes stuck in the

narrow passage upon the discovery of the obstacle. Instead, if the robot takes an initial trajectory

that passes through the other corridor, the robot completes the task fully. Since the knowledge

of the obstacle is not known a priori, the framework cannot guarantee that the robot can

complete the mission with the computed satisfying trajectory. Nevertheless, for partially unknown

environments, the framework is probabilistically complete at every (re)planning instance given the

current state of the robot, the executed trajectory, and the current knowledge of the environment

map. In the case that the LTL specification becomes unsatisfiable, the probabilistic completeness

holds for the property of the chosen partial satisfaction method explained in Sec. V.

We note that the correctness of the partial satisfaction methods introduced above are invariant

to the DFA representation, but the solution obtained by each method might change depending

on the DFA representation.

VII. CASE STUDIES

To evaluate our planning framework, we chose a model system that is simple but illustrates

the power of the approach. The simulation experiments were performed on a 3-gear car-like

robot in the office environment shown in Fig. 1. The geometry of the robot was modeled as a

rectangle with length of l = 0.2 and width of 0.1. The continuous dynamics of the robot were:

ẋ = v cos θ , ẏ = v sin θ , θ̇ = v
l

tanψ,

v̇ = u1 , ψ̇ = u2,

where x ∈ [0, 10] and y ∈ [0, 5] indicate the location of the robot, v ∈ [−1
6
, 1] is the linear

velocity, θ ∈ [−π, π] is the heading angle, and ψ ∈ [−π
6
, π

6
] is the steering angle. Let g ∈ {1, 2, 3}

denote the current gear of the robot. The robot switches to gear g+1 from gears 1 and 2 as soon

as its velocity exceeds g
6
. When in gear 2 or 3, it switches to gear g − 1 as soon as its velocity

drops below g−1
6

. In each gear, the control inputs were acceleration u1 and steering angle velocity

u2, and their values were bounded by u1 ∈ [−1
6
, g

6
] and u2 ∈ [− π

18
, π

18
], respectively. While the

robot could move in the lobby in any gear, its velocity was limited in the rooms. To enter rooms

with propositions p0, p1, and p2, the robot had to be in gear g ≤ 2, and it could only move in

the rooms containing p3 and p4 in g = 1. Furthermore, the robot was equipped with a range

March 17, 2016 DRAFT

31

p
0

p
1

p
2p

3

p
4

p
5

(a) 0 unknown

p
0

p
1

p
2p

3

p
4

p
5

(b) 2 unknowns

p
0

p
1

p
2p

3

p
4

p
5

(c) 4 unknowns

p
0

p
1

p
2p

3

p
4

p
5

(d) 6 unknowns

Fig. 4: Initial triangulation of environments with 0, 2, 4, and 6 unknown obstacles.

sensor that detects the unknown obstacles that are within 1.5 unit length from its center. The

braking operation was performed by setting u1 = −1
6

until the robot came to complete stop.

We modeled the motion of the robot in this environment as a hybrid system. Each gear was

represented by a discrete mode of the hybrid system. The guards were the gear switching rules,

and the jump function was the identity. To capture the room restrictions on the robot’s velocity

(gear) in the hybrid system, only the lobby was included in gear-3 mode. Moreover, all the

rooms and the lobby were mapped to gear-1 mode, and gear-2 mode included the rooms with

propositions p0, p1, and p2 and the lobby.

We considered Specifications 1, 2, and 3 in Sec. I and III as the robot’s tasks in our ex-

periments. As explained in Sec. III, one LTL formula represents all three specifications (i.e.,

ϕ = ϕcosafe ∧ ϕsafe, where ϕcosafe and ϕsafe are given in (2) and (3), respectively). To capture

the differences between the specifications and find the closest satisfying motion plans, we

employed our planning framework and used the partial satisfaction methods of conservative,

moderate, and aggressive for Specifications 1, 2, and 3, respectively. In general, the choice of

the partial satisfaction method is made based on simple intuitive criteria and the intentions of

the specification that are not captured by the LTL formula. The implementation of the algorithms

were in C++ using OMPL [34], and all of the experiments were conducted on an AMD FX-4100

Quad-Core machine with 16 GB RAM.

In these experiments, the robot was given a partial map of the environment with 2 initially

March 17, 2016 DRAFT

32

p
2

p
4

p
3

p
0

p
1

p
5

(a) Conservative

p
2

p
4

p
3

p
0

p
1

p
5

(b) Moderate

p
2

p
4

p
3

p
0

p
1

p
5

(c) Aggressive

Fig. 5: Sample trajectories of the robot satisfying Specifications 1, 2, and 3 using conservative,

moderate, and aggressive methods of partial satisfaction, respectively, in the office envrionment

with 2 unkown obstacles.

unknown obstacles which is shown in Fig. 4b. The actual map is shown in Fig. 4a. It is clear

that the full satisfaction of the specifications was not possible in this environment, and the

robot needed to partially satisfy them. Samples of the computed motion plans for all three

specifications are shown in Fig. 5. As illustrated in these figures, all the produced plans by

the partial satisfaction methods respect ϕsafe and partially satisfy ϕcosafe according to different

measures.

We chose the conservative method for Specification 1 because it requires the type of partial

satisfaction that respects the specified temporal ordering of the propositions. For the sample

path shown in Fig. 5a, the robot’s initial plan was a fully satisfying one since the robot planned

according to the given initial map. However, on its way to p0, the robot discovered the closed

door that made p0 inaccessible. At that point, the specification became unsatisfiable, and the

robot used the conservative method of replanning. It resulted in a path that visited p1 and p2.

For Specification 2, we used the moderate method of partial satisfaction which finds a plan

that visits all the accessible propositions. Fig. 5b shows a sample path of this method. Following

the initial plan, the robot first visited p2, and on its way to p0, it observed the closed door. It

March 17, 2016 DRAFT

33

0

20

40

60

80

100

120

140

160

180

P
la

nn
in

g
T

im
e

(s
)

ag
gr

es
siv

e

co
ns

er
va

tiv
e

m
od

er
at

e

ag
gr

es
siv

e

co
ns

er
va

tiv
e

m
od

er
at

e

ag
gr

es
siv

e

co
ns

er
va

tiv
e

m
od

er
at

e

ag
gr

es
siv

e

co
ns

er
va

tiv
e

m
od

er
at

e

0 unknown 2 unknowns 4 unknowns 6 unknowns

Fig. 6: Box plots of the total planning times for the robot to satisfy Specifications 1, 2, and 3

in the environments with 0, 2, 4, and 6 unknown obstacles (see Fig. 4) over 50 runs.

then replanned using the moderate method to visit p1, p4, and p3. After visiting p1 and moving

towards p4, it discovered that the door to p4 is also closed. At that point, it replanned again to

find a path to p3.

Lastly, we used the aggressive method of partial satisfaction for Specification 3. A sample

path of it is shown in Fig. 5c. In this run, the initial plan of the robot was to visit p2 first.

However, on its way to p2, it discovered the closed door to p4 which made the specification

unsatisfiable. The robot then replanned according to aggressive method, which finds a suffix of

a satisfying run. Since the specification required the sequential visit of any oder of p0, p1, and

p2, then p4, and then p3, the computed plan directed the robot to p3.

To show the robustness of the framework, we varied the number of unknown obstacles in the

initial map of the robot from 0 to 6. The initial triangulation of these maps are shown in Fig. 4.

For each map and each specification, we computed motion plans 50 times. The box plots of the

planning and abstraction times are shown in Fig. 6 and Fig. 7, respectively. The abstraction times

include the times spent to calculate the initial abstraction in addition to the updates of it upon

the discovery of an unknown obstacle. Similarly, the planning times include the computation

time of the initial plan plus the replanning times needed for each run.

As illustrated in Fig. 6, the total planning time increased as the number of unknown obstacles

March 17, 2016 DRAFT

34

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
bs

tr
ac

tio
n

T
im

e
(s

)

ag
gr

es
siv

e

co
ns

er
va

tiv
e

m
od

er
at

e

ag
gr

es
siv

e

co
ns

er
va

tiv
e

m
od

er
at

e

ag
gr

es
siv

e

co
ns

er
va

tiv
e

m
od

er
at

e

ag
gr

es
siv

e

co
ns

er
va

tiv
e

m
od

er
at

e

0 unknown 2 unknowns 4 unknowns 6 unknowns

Fig. 7: Average abstraction times of the plans in Fig. 6.

increased for all three methods of partial satisfaction. For each initial map, the moderate method

took the longest in planning since it needs to compute a path that visits all the accessible

propositions, while the other two methods require the visits of only some of the accessible

propositions. The aggressive and conservative methods took similar computation times for the

initial maps with 2 and 4 unknown obstacles. However, in the 6-unknown-obstacle case, the

aggressive method took less planning time than the conservative method. That is because as soon

as the robot discovers the wall and door to p4, the aggressive method directs it to p3. As a result,

the other unknown obstacles may remain undiscovered. In other words, the minimum number

of unknown-obstacle discovery in the aggressive method is 2, while it is 4 for the conservative

method (see Fig. 4d). Hence, the average number of replanning incidences was lower for the

aggressive method than the conservative method. Moreover, on average, each replanning instance

for aggressive, conservative, and moderate method took 6.17s, 7.87s, and 10.31s, respectively.

With the observation that the planning times scale with the number of unknowns in the initial

map, one can conclude that the iterative planning framework is best suitable for the cases where

the number of unknown features in the map is small.

Abstraction times follow a similar trend as shown in Fig. 7. That is because the total abstraction

time is directly related to the number of discovered obstacles. For all the variations of the initial

map, the moderate method discovered all the unknown obstacles, while the other two methods

March 17, 2016 DRAFT

35

only found some of the unknown obstacles. Hence, the abstraction times for the moderate

method is the highest. However, all the computed abstraction times are small which illustrate

the efficiency of our method. For instance, the largest total abstraction time in the experiments

(moderate method with 6 unknown-obstacle map) is less than a second on average over 50 trials.

Note that no data is presented for aggressive and moderate methods for the fully known

map (0 unknown obstacle). That is because the algorithms for these methods assume that the

specification is initially fully satisfiable. This is clearly not the case for the 0-unknown-obstacle

map. The conservative method, however, does not hold such an assumption.

VIII. DISCUSSION AND RELATED WORK

The problem of planning for robotic systems to satisfy high-level temporal logic specifications

has been the topic of many recent studies. There are generally two approaches to this problem:

automaton based and reactive synthesis based. Both methods employ the idea of a finite discrete

abstraction of the motion of the continuous robotic system in its environment. In the automaton-

based approach, the abstraction is used in conjunction with the automaton that represents the

specification to compute a satisfying trajectory for the robot (e.g., [9], [11], [14]–[16]). In the

reactive synthesis-based approach, the abstraction model along with the assumptions on the

environment is used to construct a two-player game. Then, a strategy is synthesized as a state

machine (hybrid controller) that encodes the necessary robot actions in response to its sensor

readings to satisfy the specification (e.g., [10], [13], [22], [35]). The synthesis of the hybrid

controller, however, is computationally expensive and requires time and space polynomial in the

size of the reachable state space of the system [22]. To mitigate this problem, receding horizon

techniques are suggested [13].

For both automaton-based and synthesis-based approaches, a (bi)simulation relation between

the discrete abstraction model and the continuous system is required to guarantee correctness

and completeness. Construction of such an abstraction, however, is only possible for simple

dynamical systems. To allow temporal logic planning for systems with hybrid and/or complex

dynamics, sampling-based motion planners are augmented to the automaton-based approaches

[14]–[16], [25], [26], [36]. These works relax the (bi)simulation relation requirement and provide

probabilistic completeness guarantees (i.e., if a satisfying trajectory exists, the probability of

finding it grows to one over time). Recent work [37] attempts reactive synthesis for nonlinear

March 17, 2016 DRAFT

36

systems, but constructing controllers that retain the bisimilar relationship remains computationally

difficult.

The results of the existing works (e.g., [18]–[21], [38]–[41]) show that robot motion planning

given a high-level specification under environment uncertainty is a challenging task. In reactive

synthesis-based approaches, if the geometry of the environment changes, whether due to an

unknown region becoming reachable [21] or a known region becoming unreachable [19], [20],

then the hybrid controller must be updated to incorporate the change. As global resynthesis of the

hybrid controller is expensive, there exist approaches to locally patch the controller to incorporate

the changes in less time; still, initial works in this area have shown that patching the hybrid

controller can require significant time to complete [19], [20]. In automaton-based approaches,

incremental planning algorithms are usually used to handle environment uncertainties, e.g., [23],

[24], [41]. The main challenge with these methods also lies in the replanning time. That is because

the computations of the automaton from the specification and a bisimilar discrete abstraction

for the continuous system are very expensive. The work in [41] partially addresses this problem

and achieves low replanning times by using the specification automaton as a monitor to ensure

that the reconstruction of the automaton is not needed. That work, however, does not consider

continuous dynamics for the robot and assumes that a bisimilar discrete abstraction is already

available.

Our work in this paper is most closely related to [14]–[16], [24]–[26], [41], in that we are taking

an automaton-based approach with iterative replanning strategy to deal with partially unknown

environments. A trajectory is first computed based on the known state of the environment.

During execution of the trajectory, if an unforeseen problem is faced, a new trajectory is quickly

generated from the current state. This approach is inspired by replanning scenarios in robotics

[30], [33].

A key question in iterative planning approaches is what to do when a specification is deter-

mined to be unsatisfiable. Many recent LTL planning studies focus on this question (e.g., [39],

[40], [42]–[46]). The work in [42] is one of the first studies that tries to address this problem. That

work presents an algorithm to report a reason as to why an LTL specification in the framework

of reactive synthesis is unrealizable. The automaton-based works [39], [40] introduce methods

of changing an unsatisfiable nondeterministic Büchi automaton into the “closest” satisfiable one,

where all actions of the robot are represented using a finite state machine. To specialize the notion

March 17, 2016 DRAFT

37

of “closeness” for different tasks, the work in [43] proposes three metrics (based on simulation

games), each for a type of specification. Then, based on the user’s choice of the metric, a

new automaton is constructed for verification/planning purposes. The LTL planner introduced

in [44] allows for a temporary violation of the specification in the case that the specification

is unsatisfiable. That method decomposes the specification into fragments and asks the user

to prioritize them. Then, the user-defined priority list is used to synthesize the least-violating

strategy. Similarly, the work in [45] employs user-defined costs to define a distance to satisfaction

of co-safe LTL specifications. The costs in that work, however, are over propositions, and the

authors introduce a method of constructing a weighted automoton and generating a robot plan

with the least distance to satisfaction.

The work in [46] decomposes the specification into soft and hard constraints and produces

a least-violating plan through the construction of a weighted product Büchi automaton. This

automaton is composed of the automata representing the hard and soft constraints along with

a weight function that defines the cost of violation to the soft specification. Our approach to

unsatisfiable specifications differs in that we do not change/reconstruct the specification automata.

Instead, we provide a metric to define “closeness” to a specification and complement it with

three methods of temporary modifications to the product automaton. This combination results in

three partial satisfaction techniques, each of which suitable for a set of scenarios, while allowing

for online (re)planning.

IX. CONCLUSION AND FUTURE WORK

In this paper, we have presented an iterative motion-planning framework for a hybrid robotic

system with general dynamics in a partially unknown environment given a temporal logic

specification consisting of co-safe and safe formulas. We have also introduced three methods

of partial satisfaction in cases where obstacles in the environment prevent full satisfaction of

the co-safe component of the specification. In such cases, the robotic system satisfies the co-

safe specification as closely as possible according to the designer’s choice of the method of

partial satisfaction, while still guaranteeing that the robotic system does not violate the safe

specification.

One strength of our framework lies in the ability to consider obstacles being discovered in

any part of the environment. As shown in the case studies, our solution times, however, scale

March 17, 2016 DRAFT

38

with the number of obstacles that are discovered by the robot, and therefore, our framework

performs best when a few obstacles are missing from the robot’s initial map of the environment.

Additionally, our approach is novel in how we deal with a newly discovered obstacle. Our hybrid

system abstraction is geometric and solely depends on the workspace decomposition. Therefore,

re-abstraction is fast upon discovery of a new obstacle. Moreover, our product automaton, the

high-level structure we use for planning, keeps the task specification and the hybrid system

abstraction separate. Hence, reworking the product automaton to incorporate the new obstacle

does not require recomputing the specification automata, which is the most time-intensive task.

This work can be extended in at least two directions. The presented framework may benefit

from a “greedy” temporal motion planning approach that begins executing a partial trajectory

along a lead in the product automaton. This is to prevent the framework from generating an

entire solution trajectory for a large specification, only to discover an obstacle early in that

trajectory, stop, and recompute another solution trajectory. Another possible extension of this

work is to add support for obstacles to disappear from the robot’s initial map. One could assume a

probabilistic distribution on where and when obstacles might appear and then generate trajectories

that maximize probability of successful satisfaction of the task.

ACKNOWLEDGMENT

The authors would like to thank Ryan Luna and Mark Moll of Rice University for their helpful

feedback and suggestions.

REFERENCES

[1] H. Choset, K. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E. Kavraki, and S. Thrun, Principles of Robot Motion

Theory, Algorithms, and Implementation. Cambridge: MIT Press, 2005.

[2] L. E. Kavraki, P. Švestka, J.-C. Latombe, and M. Overmars, “Probabilistic roadmaps for path planning in high-dimensional

configuration spaces,” IEEE Transactions on Robotics and Automation, vol. 12, no. 4, pp. 566–580, Aug 1996.

[3] S. M. Lavalle, “Rapidly-exploring random trees: A new tool for path planning,” Department of Computer Science, Iowa

State University, Ames, IA, Tech. Rep. 98-11, 1998.

[4] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,” International Journal of Robotics and Research,

vol. 20, no. 5, pp. 378–400, 2001.

[5] D. Hsu, J.-C. Latombe, and R. Motwani, “Path planning in expansive configuration spaces,” Intl. J. of Computational

Geometry and Applications, vol. 9, no. 4-5, pp. 495–512, 1999.

[6] D. Hsu, R. Kindel, J.-C. Latombe, and S. Rock, “Randomized kinodynamic motion planning with moving obstacles,” The

International Journal of Robotics Research, vol. 21, no. 3, pp. 233–255, 2002.

March 17, 2016 DRAFT

39

[7] I. A. Şucan and L. E. Kavraki, “A sampling-based tree planner for systems with complex dynamics,” IEEE Transactions

on Robotics, vol. 28, no. 1, pp. 116–131, 2012.

[8] E. Plaku, L. E. Kavraki, and M. Y. Vardi, “Motion planning with dynamics by a synergistic combination of layers of

planning,” IEEE Transactions on Robotics, vol. 26, no. 3, pp. 469–482, 2010.

[9] G. E. Fainekos, H. Kress-Gazit, and G. J. Pappas, “Temporal logic motion planning for mobile robots,” in Int. Conf. on

Robotics and Automation. Barcelona, Spain: IEEE, 2005, pp. 2020–2025.

[10] H. Kress-Gazit, G. Fainekos, and G. J. Pappas, “Where’s waldo? sensor-based temporal logic motion planning,” in Int.

Conf. on Robotics and Automation. Rome, Italy: IEEE, 2007, pp. 3116–3121.

[11] M. Kloetzer and C. Belta, “A fully automated framework for control of linear systems from temporal logic specifications,”

IEEE Transactions on Automatic Control, vol. 53, no. 1, pp. 287–297, 2008.

[12] G. E. Fainekos, A. Girard, H. Kress-Gazit, and G. J. Pappas, “Temporal logic motion planning for dynamic robots,”

Automatica, vol. 45, no. 2, pp. 343–352, 2009.

[13] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Receding horizon control for temporal logic specifications,” in Int. Conf.

on Hybrid Systems: Computation and Control, 2010, pp. 101–110.

[14] A. Bhatia, L. E. Kavraki, and M. Y. Vardi, “Sampling-based motion planning with temporal goals,” in Int. Conf. on Robotics

and Automation. IEEE, May 2010, pp. 2689–2696.

[15] ——, “Motion planning with hybrid dynamics and temporal goals,” in IEEE Conf. on Decision and Control, 2010, pp.

1108–1115.

[16] A. Bhatia, M. Maly, L. E. Kavraki, and M. Y. Vardi, “Motion planning with complex goals,” Robotics Automation Magazine,

IEEE, vol. 18, no. 3, pp. 55–64, Sep. 2011.

[17] E. M. Clarke, O. Grumberg, and D. Peled, Model checking. MIT Press, 1999.

[18] Y. Chen, J. Tumová, and C. Belta, “LTL robot motion control based on automata learning of environmental dynamics,” in

Int. Conf. on Robotics and Automation. IEEE, 2012, pp. 5177–5182.

[19] S. C. Livingston, R. M. Murray, and J. W. Burdick, “Backtracking temporal logic synthesis for uncertain environments,”

in Int. Conf. Robotics and Automation. IEEE, 2012, pp. 5163–5170.

[20] S. C. Livingston, P. Prabhakar, A. B. Jose, and R. M. Murray, “Patching task-level robot controllers based on a local

µ-calculus formula,” in Int. Conf. on Robotics and Automation. IEEE, 2013, pp. 4588–4595.

[21] S. Sarid, B. Xu, and H. Kress-Gazit, “Guaranteeing high-level behaviors while exploring partially known maps,” Robotics,

pp. 377–384, 2013.

[22] H. Kress-Gazit, T. Wongpiromsarn, and U. Topcu, “Correct, reactive robot control from abstraction and temporal logic

specifications,” IEEE Robotics and Automation Magazine, vol. 18, no. 3, pp. 65–74, 2011.

[23] M. R. Maly, M. Lahijanian, L. E. Kavraki, H. Kress-Gazit, and M. Y. Vardi, “Iterative temporal motion planning for hybrid

systems in partially unknown environments,” in Int. Conf. on Hybrid Systems: Computation and Control. Philadelphia,

PA, USA: ACM, Apr. 2013, pp. 353–362.

[24] M. Guo, K. H. Johansson, and D. V. Dimarogonas, “Revising motion planning under linear temporal logic specifications

in partially known workspaces,” in Int. Conf. on Robotics and Automation (ICRA). IEEE, 2013, pp. 5025–5032.

[25] E. Plaku, L. E. Kavraki, and M. Y. Vardi, “Falsification of LTL safety properties in hybrid systems,” in Int. Conf. on Tools

and Algorithms for the Construction and Analysis of Systems, ser. ETAPS’09/TACAS’09, 2009, pp. 368–382.

[26] ——, “Falsification of LTL safety properties in hybrid systems,” Int. J. on Software Tools for Technology Transfer (STTT),

vol. 15, no. 4, pp. 305–320, 2013.

March 17, 2016 DRAFT

40

[27] J. E. Hopcroft, Introduction to automata theory, languages, and computation. Pearson Addison Wesley, 2007.

[28] O. Kupferman and M. Y. Vardi, “Model checking of safety properties,” Formal Methods in System Design, vol. 19, pp.

291–314, 2001.

[29] J. E. Hopcroft, Introduction to automata theory, languages, and computation. Pearson Education India, 1979.

[30] K. E. Bekris and L. E. Kavraki, “Greedy but safe replanning under kinodynamic constraints,” in Int. Conf. on Robotics

and Automation. IEEE, 2007, pp. 704–710.

[31] T. Fraichard, “A short paper about motion safety,” in Int. Conf. on Robotics and Automation. IEEE, 2007, pp. 1140–1145.

[32] T. Latvala, “Efficient model checking of safety properties,” in Model Checking Software. Springer, 2003, pp. 74–88.

[33] K. E. Bekris, D. K. Grady, M. Moll, and L. E. Kavraki, “Safe distributed motion coordination for second-order systems

with different planning cycles,” The International Journal of Robotics Research, vol. 31, no. 2, pp. 129–150, 2012.

[34] I. A. Şucan, M. Moll, and L. E. Kavraki, “The Open Motion Planning Library,” IEEE Robotics & Automation Magazine,

vol. 19, no. 4, pp. 72–82, December 2012, http://ompl.kavrakilab.org.

[35] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Temporal-logic-based reactive mission and motion planning,” Robotics,

IEEE Transactions on, vol. 25, no. 6, pp. 1370–1381, 2009.

[36] C. Vasile and C. Belta, “Sampling-based temporal logic path planning,” in Int. Conf. on Intelligent Robots and Systems.

IEEE, Nov 2013, pp. 4817–4822.

[37] J. A. DeCastro and H. Kress-Gazit, “Guaranteeing reactive high-level behaviors for robots with complex dynamics,” in

Int. Conf. on Intelligent Robots and Systems. IEEE, 2013, pp. 749–756.

[38] R. Bloem, K. Greimel, T. A. Henzinger, and B. Jobstmann, “Synthesizing robust systems,” in Formal Methods in Computer-

Aided Design. IEEE, 2009, pp. 85–92.

[39] K. Kim and G. Fainekos, “Approximate solutions for the minimal revision problem of specification automata,” in Int. Conf.

on Intelligent Robots and Systems. IEEE, 2012, pp. 265–271.

[40] ——, “Revision of specification automata under quantitative preferences,” in Int. Conf. on Robotics and Automation. IEEE,

2014, pp. 5339–5344.

[41] A. Ayala, S. Andersson, and C. Belta, “Temporal logic motion planning in unknown environments,” in Int. Conf. on

Intelligent Robots and Systems, Nov 2013, pp. 5279–5284.

[42] V. Raman and H. Kress-Gazit, “Analyzing unsynthesizable specifications for high-level robot behavior using LTLMoP,” in

Computer Aided Verification. Springer, 2011, pp. 663–668.

[43] P. Černỳ, T. A. Henzinger, and A. Radhakrishna, “Simulation distances,” Theoretical Computer Science, vol. 413, no. 1,

pp. 21–35, 2012.

[44] J. Tumova, G. C. Hall, S. Karaman, E. Frazzoli, and D. Rus, “Least-violating control strategy synthesis with safety rules,”

in Int. Conf. on Hybrid systems: computation and control. ACM, 2013, pp. 1–10.

[45] M. Lahijanian, S. Almagor, D. Fried, L. E. Kavraki, and M. Y. Vardi, “This time the robot settles for a cost: A

quantitative approach to temporal logic planning with partial satisfaction,” in The Twenty-Ninth AAAI Conference on

Artificial Intelligence, AAAI. Austin, TX: AAAI, Jan. 2015, pp. 3664–3671.

[46] M. Guo and D. Dimarogonas, “Distributed plan reconfiguration via knowledge transfer in multi-agent systems under local

ltl specifications,” in Int. Conf. on Robotics and Automation (ICRA). IEEE, May 2014, pp. 4304–4309.

March 17, 2016 DRAFT

