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Abstract

A key subproblem in the construction of location-aware systems
is the determination of the position of a mobile device. This pa-
per describes the design, implementation and analysis of a system
for determining position inside a building from measured RF sig-
nal strengths of packets on an IEEE 802.11b wireless Ethernet net-
work. Previous approaches to location-awareness with RF signals
have been severely hampered by non-linearity, noise and complex
correlations due to multi-path effects, interference and absorption.
The design of our system begins with the observation that deter-
mining position from complex, noisy and non-linear signals is a
well-studied problem in the field of robotics. Using only off-the-
shelf hardware, we achieve robust position estimation to within a
meter in our experimental context and after adequate training of
our system. We can also coarsely determine our orientation and
can track our position as we move. By applying recent advances
in probabilistic inference of position and sensor fusion from noisy
signals, we show that the RF emissions from base stations as mea-
sured by off-the-shelf wireless Ethernet cards are sufficiently rich
in information to permit a mobile device to reliably track its loca-
tion.

Categories and Subject Descriptors

C.2.1 [Computer Systems Organization]: Network Architec-
ture and Design—Wireless communication; G.3 [Mathematics
of Computing]: Probability and Statistics—Markov pro-
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1. Introduction

There has been great progress in wireless communications over the
last decade, causing the available mobile tools and the emerging
mobile applications to become more sophisticated. At the same
time, wireless networking is becoming a critical component of
networking infrastructure. Wireless technology enables mobility
which, in turn, creates a need for location-aware applications. The
recent interest in location sensing for network applications and the
growing need for large-scale commercial deployment of such sys-
tems has brought network researchers up against a fundamental
and well-studied problem in the field of robotics: determination
of physical position using uncertain sensors (localization).

Many mobile devices and many buildings, both commercial and
residential, are already equipped with off-the-shelf IEEE 802.11b
wireless Ethernet, a popular and inexpensive technology. Fur-
thermore, most wireless Ethernet devices already measure signal
strength of received packets as part of their standard operation and
the signal strength varies noticeably as the distance and obstacles
between wireless nodes change. If a reliable localization system
could be developed using only this technology, then many existing
systems could be retrofitted in software and new systems could be
deployed using readily available parts.

The development of efficient and accurate location-support sys-
tems for indoor environments, which would also have the potential
of being widely available, is a challenging task. The limitations
usually stem from the harsh nature of the signal and the sensors
one has to work with. Indoor environments affect the propagation
of wave signals in non-trivial ways, causing severe multi-path ef-
fects, dead-spots, noise and interference [5]. These effects make
it infeasible to construct a simple and accurate model of the sig-
nal’s propagation in the space. A location support system has to
overcome the high uncertainty due to the behavior of the indoor
wireless channels but at the same time it should keep the cost and
the complexity of large-scale deployment as small as possible.

1.1 Motivation

Location-Awareness. In the wireless world many desirable ap-
plications require context-awareness. The context of an application
refers to the information that is part of the application’s operating
environment. Typically this includes information such as location,
activity of people, and the state of other devices [18]. Algorithms
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and techniques that allow an application to be aware of the location
of a device on a map of the environment are a prerequisite for many
of these applications.

The growing need for location support systems underscores the
importance of addressing location-awareness problem. For exam-
ple, government initiatives require that cellular phone providers
should develop a way to locate any phone that makes an emergency
call [12]. In outdoor settings, GPS [29] has been used in many com-
mercial applications, as in the case of locating automobiles. De-
spite the extraordinary advances in GPS technology, though, many
indoor spaces cannot reliably receive GPS signals.

An indoor system must use different sensors, such as infrared
(IR), sonar, vision, or radio (RF), to infer position of a mobile de-
vice. Location-aware applications based on these sensors could en-
able users to discover resources in their physical proximity, such
as active maps of their surroundings and adaptive interfaces to the
user’s location [18]. Specific applications of such a system vary
from tracking a guard’s position in a penitentiary institution [7]
to hospitals where equipment and people must be efficiently lo-
cated [40]. These applications can also be useful in large office
environments, where the loss of valuable equipment such as laptop
computers has become a serious problem and locating resources
such as printers takes time and disrupts other activities.

Wireless Security. We are also interested in the utility of a lo-
cation support system over an existing wireless network related to
security applications. A principal difference between wired net-
works and wireless networks is that physical security is no longer
sufficient to ensure the security of the network. In addition, in a
wireless network, the location of an intruder is considerably more
difficult to determine versus a traditional wired network where ca-
bles can be traced to their source. Notably, a mobile device which
is transmitting on a wireless Ethernet network is leaking its po-
sition. This information can be used to locate the intruders who
make no deliberate effort to decorrelate their signal from their po-
sition. Although this can already be achieved using expensive di-
rectional antennas, off-the-shelf hardware is less conspicuous and
more readily-available.

Mobile Robotics. Many mobile robot platforms make exten-
sive use of wireless networking to communicate with off-line com-
puting resources, other robots, and various user-interface devices.
Since the advent of inexpensive wireless networking, many mo-
bile robots have been equipped with 802.11b wireless Ethernet. In
many applications, a sensor from which position can be inferred
directly without the computational overhead of image processing
or the material expense of laser range-finders is of great use. Many
robotics applications would benefit from being able to use wireless
Ethernet for both sensing and communication. For example, explo-
ration, map-building and navigation with low-cost wheeled robots
could be readily achieved using wireless Ethernet and sonar.

1.2 Our Approach

In this paper, we describe a system that achieves robust indoor lo-
calization using only RF signal strength as measured by an IEEE
802.11b wireless Ethernet card communicating with standard base
stations. Since the required equipment for a wireless Ethernet net-
work is usually already present in the workspace, serving commu-
nication purposes, this reduces the cost of providing localization
services in an indoor environment. This also reduces the complex-
ity for the user of a mobile device who wishes to take advantage
of this localization service. To achieve our goal, we have adapted
standard approaches from robotics-based localization, notably the

explicit manipulation of noise distributions and the modeling of po-
sition as a probability distribution.

Our method for localizing a mobile station is divided in two
phases. Initially, there is a training phase, where a sensor map of
the environment is built by sampling the space and gathering data
at various predefined checkpoints of the indoor environment. Later,
the operator of a mobile computer walks in the same workspace and
the system locates and tracks the operator’s position. Our system
currently assumes that the environment remains consistent from
training to localization. In particular, we assume that people are
minimally present when we attempt to localize.

Section 2 presents the algorithms and methodology for our lo-
calization system. The results of our experiments are reported in
Section 3 and a discussion of our work is presented in Section 4. In
Section 5, we discuss related work in the fields of location-aware
computing and robot localization.

2. Methodology

In this Section, we discuss our methodology for determining a
user’s location using wireless network signal strength. We begin by
discussing the platform and environment we considered. We then
discuss RF signal propagation and describe some problems with
devising a signal attenuation model for wireless Ethernet. Finally,
we discuss our algorithms for determining the user’s location.

2.1 Experimental Setup

Hardware. Our experiments were conducted by a human opera-
tor carrying a HP OmniBook 6000 laptop with a PCMCIA LinkSys
wireless Ethernet card. This particular card uses the Intersil Prism2
chipset. We modified the standard Linux kernel driver for this card
to support a number of new functionalities, including the scanning
and recording of hardware MAC addresses and signal strengths of
packets, using promiscuous mode, and the automatic scanning of
base stations.

We needed a constant source of signal from all base stations for
optimum results. Unfortunately, this meant we could not simply be
a passive observer. While we could simply put the network inter-
face adapter into promiscuous mode and listen to all packets being
transmitted by base stations, this can only guarantee a stream of
packets from one base station: the one that the card is currently
associated with. While base stations do send out beacon packets
several times a second, we could not get access to this signal using
our hardware.

Instead, we were forced to use the base station probe facility of
802.11 [23]. Client nodes can broadcast a probe request packet on
a wireless network. Base stations that receive such a request re-
spond with a probe response packet. The client then collects these
packets and, judging by the strengths of the incoming signals, can
determine the closest base station to connect to. We analyze these
signal strengths to determine our location relative to the base sta-
tions.

A given base station can appear anywhere between zero and four
times in the packets the firmware returned to us. For each packet,
we get an eight-bit reading representing the signal strength. This
value is computed by the network card, and we have no way of
determining or affecting how it is calculated. Unless the sender
is very close to the receiver, signals in the top half of this range
rarely occur. Certain other signal strengths simply never occur. The
lowest order bit tends to be very noisy. When compared to other
sensors, such as sonar, this signal is very thin: at most 5 usable bits
of signal per packet.



Figure 1: Map of the region of the Duncan Hall where we conducted our tests. Base stations are indicated by circles on the map.
Note that additional base stations outside of this region (including on other floors) were used in our experiments.

Building Geometry. We operated on the third floor of Duncan
Hall at Rice University, in the four hallways shown in Figure 1.
The two longer hallways (hallways 1 and 2) measure

����� �
meters,

and the two shorter hallways (hallways 3 and 4) measure ��� me-
ters. Hallway 1 has a base station near one end, and hallway 2 has
a base station really close to the middle. Hallways 3 and 4 are no-
table in that they are open above and either partially (in the case of
hallway 4) or totally (in the case of hallway 3) open on the sides.

There were nine base stations distributed on this floor. Those
within the area described by the map in Figure 1 are marked with
circles. The base stations were Apple AirPort base stations and
were mounted between two and three meters off the ground. We
had a fairly precise map of the building that we had processed to
mark off free space and obstacles. The pixel resolution was roughly
six centimeters in this map.

2.2 RF Signal Propagation in Wireless Ethernet

The IEEE 802.11b High-Rate standard use radio frequencies in the
2.4 GHz band, which is attractive as it is license-free in most places
around the world. The available adapters are based on spread spec-
trum radio technology, where the information signal is spread over
several frequencies [9], so interference on a single frequency does
not block the signal.

The main problem with this sensor is that an accurate predic-
tion of the signal’s strength in every position of the environment
is a very complex and difficult task because the signal propagates
in many unpredictable ways [31]. The received signal is further
corrupted by unwanted random effects such as noise, interference
from other sources and interference between channels.

As waves propagate through an environment, the environment
scatters the waves in a variety of different ways. Reflection, ab-

sorption, and diffraction occur when the waves encounter opaque
obstacles; refraction occurs when the waves encounter translucent
obstacles. Scattered waves can either decrease or increase the sig-
nal strength at the reception point. Changes in atmospheric condi-
tions like air temperature can also affect the propagation of waves
and the resulting signal strengths. Unfortunately, 2.4 GHz is a
resonant frequency of water, so people absorb radio waves in the
2.4 GHz frequency band that we are using.

Interference occurs when another radio frequency source gener-
ates a signal at the same frequency that is of comparable or higher
strength than the transmitted signal, as measured by the recipient.
The interfering device does not need to be a radio based transmis-
sion device [9]. In the 2.4 GHz frequency band, microwave ovens,
BlueTooth devices, 2.4 GHz cordless phones and welding equip-
ment can be sources of interference.

Due to reflection, refraction, diffraction, and absorption of radio
waves by structures and people inside a building, the transmitted
signal often reaches the receiver by more than one path, resulting in
a phenomenon known as multi-path fading [20]. The signal compo-
nents arriving from indirect paths and the direct path, if this exists,
combine and produce a distorted version of the transmitted signal.

These difficulties are particularly acute when operating indoors.
Since there is rarely a line of sight between the transmitter and the
receiver, the received signal is a sum of components that are often
caused by some combination of the previously described phenom-
ena.

The received signal varies with respect to time and especially
with respect to the relative position of the receiver and the trans-
mitter. However, signal profiles corresponding to spatial coupled
locations are expected to be roughly similar as the various external
variables remain approximately the same over short distances [20].
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Figure 2: Samples of signal strength taken at the same positions facing opposite directions
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Figure 3: Examples of signal strength distributions of two different base stations, measured simultaneously from one location

The local average of the signal varies slowly with the displacement.
These slow fluctuations depend mostly on environmental character-
istics and are known as long-term fading.

While much effort has been made to model radio signal propa-
gation and attenuation in indoor environments, no single consistent
model is available. During our initial experiments we took numer-
ous measurements at various positions in our environment. Our
objective was to try to see if the variables in the system could be
captured with a simple theoretical model to minimize the training
phase. We observed a number of interesting properties of RF sig-
nals in our environment.

Orientation Matters. The authors of RADAR established a cor-
relation between orientation and measured signal strength [3, 2].
We also observed this. The laptop and the operator affect the signal
in a measurable way. It is interesting to note that the presence of
the operator affects signal strength and gives the omnidirectional
signals some weakly directional properties. Typically the mean
signal strength varies less than the statistical distribution of sig-
nal strengths. In Figure 2, we give an example of two distributions
sampled at the same points while facing in opposite directions.

Noise Distribution Non-Gaussian. The noise distributions at a
fixed position were very heterogeneous as we varied the pose and
base station that we sampled. In Figure 3, we show two typical
examples of the signal strength at different base stations measured
simultaneously at the same physical position. Several hundred sam-
ples were taken in about forty five seconds for these particular his-
tograms. Notice that the first-order properties of these distributions
differ greatly from each other. In general, we have observed that
distributions were asymmetric and had multiple modes. There is
usually a dominant mode which often differs from the mean. We

concluded that distributions were essentially non-Gaussian. Since
the noise behavior is an extremely complex physical phenomenon
and explicit histograms are fairly compact, we decided that it would
be better to work directly with these distributions rather than reduce
the data to average values.

We found it useful to postprocess the sampled distributions by
applying a small window smoothing convolution, adding a very
small uniform baseline distribution and then normalizing. This
is done to try to artificially compensate for sampling errors and
allow for a small probability of unexpected measurements in the
Bayesian inference calculations that follow. These corrections pro-
duced minor but noticeable improvements in the precision of the
calculations.

2.3 A Bayesian Inference Algorithm

We model the world as a finite space ���������
	 � � � 	��
��
 of states
with a finite observation space �����
� � 	 � � � 	�����
 . The sensor
model is some learned or predicted model of the conditional prob-
abilities of seeing some observation ��� at state �
� , in other words����� � � � � �"! . A state vector # is a probability vector (distribution)
over the various states.

Position is represented as a probability distribution over the
states. The inference calculation consists of conditioning on the
observations and then selecting a representative point from the re-
sulting distribution.

Given a prior estimate of our state, # , we can construct a new
estimate of our state, #%$ , after observing ��� by calculating the in-
dividual conditional probabilities # $� for each �'&)(*&)+ using
Bayes’ rule,

# $� � #,�%- ���.� �/� � �
� !0 ��21 � #,�3- ���.� �/� � �
� ! .



This is a simple principal on which probabilistic inference schemes
are built. Of course, the devil is in the details. To implement our
system we made several design decisions. We first chose appro-
priate state and observation spaces. This involved deciding on a
sampling granularity for both spaces. We then learned the condi-
tional probability distributions for plugging into the formula above.

2.3.1 Our Model

Our initial experiments and literature search indicated that a priori
models of RF signal propagation would be difficult to set up with-
out some on-site training. After verifying that simple assumptions
such as fitting analytic curves and surfaces to the means and Gaus-
sians or other simple distributions to the variances provide poor fits
to sampled data, we opted for the simpler, more robust scheme of
sampling the conditional probabilities directly. The reasoning for
this is discussed further in Section 2.1.

We began by defining our state space. We chose a set of points on
the map, each tuple

��� 	��,	�� ! a location and orientation on the floor
of Duncan Hall where our experiments took place. There is no in-
dication that adding an additional parameter for three-dimensional
localization would be any harder, although we did no experiments
to verify this. Our state space � consisted of a set of + points

� � � � � � ��� � 	�� � 	�� � ! 	 � � � 	 � � � ��� � 	�� � 	�� � ! 
 .

Each observation in our observation space consisted of the mea-
surements that occurred in a single scan from our base station scan-
ner. Each base station scan returned a set of � base station signal
strength measurements. Each base station could appear in the scan
up to four times. We represent each observation as a vector

� �	�
�,	�� � 	 � � � 	���
�	 ��� � 	�� � ! 	 � � � 	 ����� 	�� � !��
where � is the total number of base station signal strength measure-
ments, � is the total number of unique base stations represented,� � is the frequency count for the ( th base station,

� � represents the
base station in the � th measurement and � � is the signal strength of
that measurement.

In the training phase, at each point � � , we take an observation.
For each base station we build two histograms for that point. The
first is the distribution of frequency counts over the sampled obser-
vations. The second is a distribution of observed signal strengths.
Based on this training, we can calculate two conditional probabili-
ties.

���.� � � ��� � �
� ! is the probability that the frequency count for
the � th base station is � when we are at state � � . ���.� � � � � � 	 � � ! is
the probability that base station

� � has signal strength � � at state
�
� . By multiplying these conditional probabilities we obtain the
conditional probability of receiving a particular observation. For
� �	���,	�� � 	 � � � 	�� � 	 ��� � 	�� � ! 	 � � � 	 ��� � 	�� � !�� , we compute

����� � � � � ! �
� 
�
��1 �

����� � ��� � � !�� -
� ��
��1 �

���.� � � � � � 	 � � !�� .

We note that one observation is typically enough information to
decide on one’s position. However, errors in the training phase can
lead to inaccuracy during localization. Significant causes of such
error are subsampling and time-dependent phenomena. Subsam-
pling can create a posteriori model of the noise as measured at that
point. Certain measurements that occur rarely may never occur in
the subsample. When the measurement occurs online, the hypoth-
esis can be rejected entirely based on a conditional probability of
zero for that position. We describe heuristics compensating for this
difficulty in Section 4.

After trying several possible schemes, we decided to solve a
global localization problem for each observation rather than keep a

running estimate because each observation usually contains enough
information to get a good guess of our position. The resulting
stream of guesses can be combined in a post-processing step to
create a more refined estimate of position. One such mechanism is
described in Section 2.4.

The exact calculation proceeds as follows: before each observa-
tion we choose our prior state distribution # as the uniform distri-
bution. This is a common Bayesian assumption; we assume we are
lost so every position is equally likely. This provides a conserva-
tive estimate of our location; any attempt to bias this initial esti-
mate may inhibit accurate localization right from the start. When
we make the observation, we simply use Bayes’ rule to compute
# $ , the probability distribution over the states. Then it is simply a
matter of choosing appropriate candidate locations.

2.4 Sensor Fusion

We used a post-processing technique called sensor fusion to refine
our initial location estimate. Sensor fusion is the process of com-
bining multiple independent observations to obtain a more robust
and precise estimate of the measured variables. We implemented
a filter which takes the output of the inference engine as a stream
of timed observations and tries to stabilize the distribution by not-
ing that a person carrying a laptop typically does not move very
quickly. It also takes into account some probability of error on the
part of the inference engine.

We model a moving operator trying to track her position as a
hidden Markov model (HMM). We use a more finely discretized
state space than the Bayesian inference engine and try to interpolate
our position out of the stream of measurements coming from the
inference engine. This design decision was made after noticing that
naı̈ve averaging of the inference engine’s output produced results
with twice the precision we expected for points where we had not
taken any training samples.

For our purposes, an HMM is a set of states � � �����
	 � � � 	 � � 
 ,
a set of observations � � � � � 	 � � � 	�����
 , a conditional probability
function �! �#" �%$'& (�	 �*) , and a transition probability matrix + .
Each state and each observation is a point

��� 	��3	�� ! .
The transition probability matrix semantics describe how the sys-

tem being modeled evolves with time. In this case, it describes how
a person travels through the state space. If # is a probability dis-
tribution over � , then # $ �,+ # is the probability distribution after
some discrete time step. The idea is that the random state change
occurs “hidden” from the observer. We generate the transitional
probability matrix + using a relatively simple heuristic, that people
don’t travel too fast or change directions too frequently.

The observation function � has semantics identical to observa-
tion in the Bayesian inference of position. � � ��	 � ! � ����� � � � ! ,
the probability of observing � while at � . The conditional proba-
bility function � is also defined using a relatively simple heuristic;
smaller distances from an observation to a given state lead to higher
probabilities of making that observation at that state. As each ob-
servation arrives, � is used to update the probability of being in a
given state in � , and then + is used to transition states. If � accu-
rately models the behavior of the inference engine and + accurately
models the behavior of a person transitioning from state to state,
the sensor fusion will have superior results to Bayesian inference
alone.

3. Results

In this Section we describe several experiments which try to ob-
jectively measure the precision and reliability of our system. We
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Figure 4: Bulk cumulative error distribution for 1307 packets
over 22 poses in a hallway localized using the position of max-
imum probability as calculated by direct application of Bayes’
rule.
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Figure 5: Bulk cumulative error distribution for 1465 packets
over 22 poses in a hallway localized using the position of maxi-
mum probability as calculated by merging distributions over a
one second window.

first present the results for static localization. We then describe the
results for user tracking using sensor fusion.

Our system was trained by taking samples at various points in
the world, as discussed in Section 2.3.1. The amount of data taken
at each point is varied adaptively according to a simple heuristic
which measures the rate of convergence to a stable distribution.
Once the sampled distribution at each visible base station had con-
verged beyond a threshold, we halt the process. This allowed us to
adaptively determine how much sampling is necessary as a func-
tion of variation in the signal. In our case, usual sampling times
ranged from ten seconds to about a minute.

3.1 Static Localization in a Hallway

This subsection describes experiments executed in hallway 1 of our
test area (see Figure 1), which was sampled in two different orien-
tations at every 5 feet. The purpose of this was to test the precision
of the Bayesian inference localizer. Timed tests occurred at various

positions and at both orientations in the hallway and bulk statistics
were calculated.

The training data was taken by two different operators, with each
operator training the localizer in one of the two directions. All
experiments were executed by a third operator. The purpose of this
was to demonstrate a degree of operator-independence.

Basic Bayesian Inference. Using the algorithm described in
Section 2.3, we measured a total of 1307 packets over both orienta-
tions on 11 different positions. The positions were spread every 10
feet to be exhaustive. The algorithm reported positions back dis-
cretized to 5 feet. In Figure 4, we show the cumulative probability
of obtaining error less than a given distance. We have observed that
error is within � � � meters with probability ( � ��� .

Simple Averaging Improves Results. In the second experi-
ment, we post-processed the probability distributions computed
by Bayesian inference with the following simplistic sensor fusion
transform: for each � &'( &'+ , where + is the number of states,

# $� � � # ����� � ! - ��� �������
! .

# is the prior distribution on position, #%$ is the revised distribu-
tion,

�
is the probability distribution computed with the algorithm

of Section 2.3 and � �
	 �	� are small constants representing artifi-
cial uniform distributions. The resulting distribution # $ needs to be
normalized after this calculation.

This simple calculation improved our results significantly and is
usable as a tracker. Our results are summarized in Figure 5. The
measured error was within 1.5 meters with probability ( � 
 � . This is
an



percent improvement over the raw filter. As a tracker, we ob-
served that it lagged behind the actual position and we attempted to
improve our results by using more sophisticated methods described
in the next section.

Operator Bias. The above results, with training and experiment-
ing done by different people, tend to suggest that operator bias
tends to be less significant than sampling error and time dependent
effects. In particular, operator bias is not so significant as to cause
the results to be unstable.

3.2 Experiments with Tracking

We attempted to improve these results by implementing a more so-
phisticated sensor fusion based on a hidden Markov model (HMM),
as described in Section 2.4. We then walked round-trips of the four
hallways in our test area, shown on the map in Figure 1, tracking
our current position and recording the output of both the static lo-
calization as described in Section 3.1 and the sensor fusion. The
results are shown in Figures 6 through 9.

For hallways 1 and 2, sensor fusion increased by ����
 and � (�
 ,
respectively, the probability of error less than one meter. The traces
show that while static localization is good at tracking, sensor fusion
improves the results by effectively ignoring outliers. See Figures 6
and 7 for the results on these hallways.

The results for hallway 4 was somewhat more disappointing.
The probability of error less that one meter was increased by a scant


%. Sensor fusion loosely tracked actual movement, but the signal
from the static localizer was too noisy to allow for the level of ac-
curacy achieved on hallways 1 and 2. We attributed this noise to
the fact that this hallway was open. See Figure 8 for the results on
this hallway.

The worst result was on hallway 3, which is entirely open on
one side. The probability of error less than one meter actually went
down by ��( %. As seen in Figure 9, the static localizer for the most
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Figure 6: Tracking a round-trip walk of hallway 1 in our test area (see Figure 1 the building map). Measured error for the track,
shown on the right graph, is within one meter with probability ( � � � , an improvement of � � 
 over static localization. This improve-
ment is illustrated in the actual tracking performance, shown in the left graph. Position in the left graph is measured in pixels on our
map; 50 pixels is approximately equal to 3 meters.
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Figure 7: Tracking a round-trip walk of hallway 2 in our test area (see Figure 1 the building map). Measured error for the track,
shown on the right graph, is within one meter with probability ( � � , an improvement of � (�
 over static localization. This improvement
is illustrated in the actual tracking performance, shown in the left graph. Position in the left graph is measured in pixels on our map;
50 pixels is approximately equal to 3 meters.

part tended to choose either an endpoint or one of two particular
points in the middle of the hallway. This was caused in part by the
fact that this hallway is exposed to a large open area, diluting the
signal. In addition, all base stations are some distance off to a side,
which means our distance (and thus the signal strength) to these
base stations does not vary much as we walk the hallway.

Note that the conditional probability function and transition
probability matrix we used to initialize the hidden Markov model
were generated based on Gaussian distributions. While these were
good fits for hallways 1 and 2, they failed to model the noisiness
of the static localizer on hallways 3 and 4. A conditional probabil-
ity function trained to the actual points would likely provide better
results.

4. Discussion
The probabilistic robotics-based location-support method with RF-
signals that has been described in this paper efficiently reports and
tracks the two dimensional position and orientation of a mobile
wireless device in an indoor environment. While this is not the
first application of probabilistic techniques to the field of location-
aware computing, it is one of the first application of such techniques
for wireless computing in an indoor environment with commodity
hardware. This and the rigorous application of state-of-the-art tech-
niques borrowed from robot localization are the main contributions
of this paper. Our work provides a strong indication that localiza-
tion can be achieved with widely available and inexpensive 802.11b
wireless Ethernet hardware. This section will discuss some advan-
tages and disadvantages of our techniques.
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Figure 8: Tracking a round-trip walk of hallway 4 in our test area (see Figure 1 the building map). While sensor fusion provided some
improvement, it was not significant. As shown in the left graph, when static localization was significantly off, so was sensor fusion,
but when static localization appears to track actual movement, sensor fusion is surprisingly accurate despite the noise. Position in
the left graph is measured in pixels on our map; 50 pixels is approximately equal to 3 meters.
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Figure 9: Tracking a round-trip walk of hallway 3 in our test area (see Figure 1 the building map). Sensor fusion did not provide
a significant improvement in error, and at times increased error, as shown in the right graph. However, as shown in the left graph,
the raw data was already extremely noisy in this case. Position in the left graph is measured in pixels on our map; 50 pixels is
approximately equal to 3 meters.

4.1 Advantages

Accuracy. The accuracy of RF based localization is substantially
improved in our experimental setup over the reported resolution
and accuracy of similar previous efforts. RADAR [3, 2] exhibited a
median resolution in the range of 2 to 3 meters. Our results indicate
that we can get a resolution of less than � � � meters with an accuracy
 �

% given suitable base station layout. At a coarse resolution, we
are very reliable. This is because noise texture varies significantly
over relatively large distances, especially when there are interven-
ing obstacles. Inside a room, there are ambiguities in sensing that
lead to error. In all of our experiments, we never observed coarse
granularity errors except at corners and doorways where the opera-
tor is transitioning from one area to another. Our sensor fusion can

improve precision while tracking a moving object by interpolating
between sampled points and taking advantage of spatial continuity
assumptions to probabilistically reject outliers.

Orientation. Our method explicitly tries to solve for orientation.
This is necessary since as we and others [3, 2] have observed ori-
entation is a factor in observed signal strength. In fact, our exper-
iments show that orientation can be coarsely determined by signal
strength variations which shows the correlation is often highly non-
trivial. By explicitly modeling position and direction, we greatly
improve static localization and sensor fusion although orientation
determination tended to be much noisier than position. This allows
us to overcome difficulties that weakened the applicability of the
results of RADAR. On the other hand, we strongly believe the vari-



ations in signal due to orientation are not sufficiently large to ever
obtain more than a coarse estimate of direction without employing
differential methods with a moving observer.

Cost and Complexity. The advantage of using wireless Ethernet
RF signals for localization is that the sensor doubles as a commu-
nication device. The infrastructure for such networks already ex-
ists in many real-world environments and consequently, for many
mobile devices, this sort of localization can be implemented as a
software-only solution. This is an attractive option for a number of
real-world applications.

Extensibility and Scalability. The methods we use are very gen-
eral and experiments with a variety of robot localization applica-
tions have proven the approach very adaptable. In particular, the
framework can be used with other sensors. For example, by using
ultrasound sensors such as those used in Cricket [32], we estimate
that we could increase our precision to the order of twenty cen-
timeters. This increase in precision is alluded to by the authors
of Cricket as a point of future work when they suggest employing
Kalman filters [32, 33].

We believe that localization with wireless Ethernet signal
strengths scales well into much larger arenas than our experimental
test-bed with the caveat that the layout of base stations should be
non-pathological. Our evidence for this comes from robot local-
ization and the experimental observation that, at room granularity,
signal strength distributions differ greatly.

The particular algorithms we present do not scale if used ver-
batim. The computational cost of localization in the algorithms
we present grows as a linear (Bayesian) or quadratic (sensor fu-
sion) function of the number of possible poses. The vectors and
matrices involved however are almost always very sparse. The typ-
ical approach in larger cases is to proceed by Monte Carlo (MC)
integration of the conditional probability distributions [37]. The
computational efficiency of MC is validated by the successful im-
plementation of these algorithms for mobile robots with severely
restricted computational power such as the Sony AIBO robot [30].

Privacy and Security. It has been claimed in previous works,
such as Cricket [32, 33], that a location support system can be im-
plemented in such a way as to localize a user only if she is willing
to be localized. This assertion, though, breaks down if the mobile
device is not passive, for example if it is using an active localiza-
tion scheme or is using wireless networking to communicate. This
raises issues of anonymity, privacy, and security. Third-party ob-
servers using conventional hardware could conceivably determine
the position of a mobile device broadcasting on a wireless Ethernet
network without the device’s knowledge or permission. Likewise,
a network administrator could use the network to track users by
having the base stations monitor observed signal strengths.

4.2 Disadvantages

Environment Dependence. Every localization system is ham-
pered by a dependence on the environment it is executed in. In
our case, we noticed that some of the areas we tested, notably hall-
way 3, provided lower accuracy than other areas. The placement of
the base stations, the materials in the building, and the building’s
geometry can affect the difficulty of localizing at a given point. A
more worrisome challenge is the variation induced by people ab-
sorbing RF signals and other dynamic effects. When working with
2.4 GHz RF signals both static and dynamic environmental condi-
tions can be difficult to predict and have complex behaviors. We
believe that continued research on heuristics for coping with these

problems either by judicious placement of base stations or by im-
provements in the localization algorithm can produce usable results
for many applications even in the face of such environmental flux.

Training. The complexity of indoor RF signal propagation is
avoided by building a sensor map. The time spent training these
maps is a limitation of all localization approaches using a sampling
technique for generating maps. As it is, maps were built by mark-
ing the workspace and taking measurements at each point. Fur-
ther automation might be necessary to facilitate deployment of an
approach in this spirit. In mobile robotics, map building and ex-
ploration for such localization approaches is an important area of
research. By augmenting the operator with some extra sensors, for
example an accelerometer and magnetic compass to use for dead
reckoning, a walk around the building could be used together with
a mapping algorithm [36] to automate training further.

4.3 Future Work

This work can be extended in a number of different directions.
Most directly, we could expand the experimental area, possibly
considering multiple floors and significant amounts of area within
rooms. There are also a number of algorithmic aspects of mobile
node location tracking that could be explored.

Compensating for dynamic occlusion in robotics localization is
a studied problem but is also quite difficult. Many approaches try
to predict some variables describing dynamic state. For example, a
tour-guide museum robot needs to model the motion of people in
the museum to avoid collisions [4]. Multi-robot, collaborative lo-
calization is another branch of localization research [14]. Much of
the work in this area is relevant to collaborative localization in an ad
hoc wireless network. This is a fascinating problem which mixes
issues in protocol design and communication with uncertainty and
localization. Relative and differential techniques may be of use in
combating variations that occur due to environmental effects. For
example, landmark based navigation operates using only the angle
of deflection to the base station [1]. Pursuit-evasion robotics stud-
ies the problem of capturing an active evader under various sensing
and environmental constraints. In location-aware security for wire-
less networks, studying how to intercept a moving intruder under
various assumptions about sensing could be an interesting and chal-
lenging problem.

5. Related Work

5.1 Location Aware Computing

Many other systems have been built to support indoor localization.
These systems vary in many parameters, such as the sensors, the
cost, the required hardware, the infrastructure and the resolution in
time and space [21].

The AT&T Cambridge Laboratory’s Active Badge location sys-
tem [38] and the more recent Active Bat system [39] are two of
the first systems in the field. Active Badge uses diffuse IR technol-
ogy while Active Bat uses an ultrasound time-of-flight technique
to provide accurate physical positioning. Users and objects have
to carry Active Bat tags, emitting an ultrasonic pulse to a grid of
ceiling-mounted receivers and a simultaneous “reset” signal over
a radio link. Each ceiling sensor measures the time interval from
reset to ultrasonic pulse arrival and computes its distance from the
Bat.

The Cricket Location Support System [32, 33] also uses ultra-
sound emitters and embeds low-cost receivers in the object being
located. Cricket uses additional radio frequency signals to synchro-
nize time measurements and to distinguish ultrasound signals that



are a result of multi-path effects. The main localization techniques
that are employed in Cricket are based on triangulation relative to
the beacons. Cricket trades accuracy for simpler hardware and in-
frastructure. It does not require a grid of ceiling sensors with fixed
locations as in the Active Bat system but returns an estimation of
the user’s position with a possible error of a four foot by four foot
region, while the Active Bat has an accuracy of nine centimeters.
Both of these systems provide excellent localization primitives by
employing specialized hardware.

Computer vision has also been used in location support systems.
Microsoft Research’s Easy Living uses stereo-vision cameras to
measure three-dimensional position in a home environment [25].
Camera-based approaches are expensive in terms of hardware in-
frastructure due to the cost of the camera and the computational
overhead of image processing.

RF-Based Systems. The RADAR system [3, 2] uses only a wire-
less networking signal, employing nearest neighbor heuristics and
other pattern recognition techniques for localization. The authors
report localization accuracy of about 3 meters of their actual po-
sition with about fifty percent probability. They also discuss the
problems of localizing in the face of multiple floors and chang-
ing environmental conditions, as well as tracking of moving users.
While our work has similar design goals to RADAR, we take a very
different algorithmic approach, using a probabilistic technique pop-
ular in many robotics applications.

The PinPoint location system [40] is similar to RADAR, but uses
expensive, proprietary base station and tag hardware to measure
radio time of flight. PinPoint’s accuracy is roughly 1 to 3 meters.

In the SpotOn system [22], special tags use radio signal atten-
uation to estimate distance between tags. The aim in SpotOn is
to localize wireless devices relative to one another, rather than to
fixed base stations, allowing for ad-hoc localization. The proba-
bilistic framework we are proposing could also be applied in the
case of ad-hoc location sensing.

A number of systems have been built using probabilistic tech-
niques to determine location based on RF signal strength for cellu-
lar telephone systems. Liu et al. [28] use Markov modeling and
Kalman filtering to predict when a mobile node will cross cell
boundaries. Yamamoto et al. [41] use Bayesian analysis to deter-
mine the absolute location of a mobile node.

RF Signal Attenuation. Much effort has been made to model
radio signal propagation in an indoor environment [17, 31]. Dif-
ferent experiments in the literature have arrived at different distri-
butions. Although each result may be justifiable for a certain set
of conditions that govern a certain set of measurements, a consis-
tent model that would give a signal strength distribution under a
diversified set of conditions is unavailable. However, experiments
with 12000 impulse response profiles in two office buildings have
shown good log-normal fit [19]. A general empirical model [17]
for indoor propagation of radio signals can be expressed as
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where

��� ��� ! is the path loss in dB at distance
�

,
��� ����� ! is the

known path loss at the reference distance
� �

, + denotes the expo-
nent depending on the propagation environment and ��� is the vari-
able representing uncertainty of the model. We note that decibels
are a log-scale.

Based on this general formulation, many empirical models have
been derived in the field of indoor propagation modeling in the

wireless community. Parameter + is very sensitive to the propa-
gation environment, like the type of the construction material and
type of the interior [31], limiting the value of these models.

5.2 Robot Localization

Robot localization is a well-studied problem in robotics. Robot lo-
calization is the process of maintaining an ongoing estimate of a
robot’s location with respect to its environment, given a representa-
tion of this environment and some sensing ability within the envi-
ronment. The importance of this problem in the context of building
reliable robot systems cannot be overstated; determining the pose
(position and orientation) of the robot from physical sensors is of-
ten referred to as “the most fundamental problem to providing a
mobile robot with autonomous capabilities” [8]. In our case, we
can consider any wireless device as a mobile robot.

If there is no a priori estimate of the robot’s location, the prob-
lem is referred as global localization, which is a particularly chal-
lenging case of localization. This is the type of problem we dis-
cussed. We have no information where the wireless device is before
it starts communicating with the network’s base stations. Further-
more, there is the need to refine the estimate of the device’s pose
continuously. This task is known as pose maintenance.

Sensor based localization is based on the premise that we use
sensor data in conjunction with the representation of the environ-
ment to produce a refined position estimate, such that this estimate
is more likely to predict the true positions. By sensor, we mean
any device which can measure attributes of the environment in a
way that can be correlated to position. Typical sensors that are de-
ployed in robotics are IR transmitters, ultrasound or laser proximity
sensors and camera images.

Sensor fusion is another important notion in robot localization.
A broad definition of sensor fusion is the combination of multiple
independent observations to obtain a more robust and precise esti-
mate of the measured variables. This can be implemented in terms
of integrating sensor readings over time or in the synthesis of mea-
surements from multiple sensors. Most of the recent work in robot
localization has been in improving and implementing sensor fusion
for many systems.

Much progress has been made in developing localization tech-
niques since the problem first appeared in the literature. Dead
reckoning can be used for pose maintenance, but requires some
initial knowledge of location. Some of the simplest methods for
global localization include landmark-based localization and trian-
gulation. Probabilistic techniques, such as Kalman filtering, and
later, Bayesian analysis, were developed to address flaws in these
systems. Finally, for when a grid-based map is inappropriate to
the application or environment, topological approaches have been
developed.

Dead Reckoning. Perhaps the simplest approach to the pose
maintenance task is to keep track of how far the robot moves in
each direction and then to sum these motions to produce a net dis-
placement that can be added to an initial position estimate. Keep-
ing track of how much one moves by observing internal parameters
without reference to the external world is known as dead reckoning
and is usually implemented with an odometer. If only dead reck-
oning is used for position estimation, these errors are added to the
absolute pose estimate and errors are accumulated. Long-term lo-
calization must make reference to the external world for position
correction. This involves the use of sensory data for recalibrating
a robot’s sense of its own location with the environment. In some
circumstances, such as the case of a wireless device that a person is
moving around in space, we have no analogue of odometry.



Triangulation. Distance to known landmarks is frequently used
to determine pose as this can be computed with cameras, laser
range-finders, IR transmitters, sonar and other commonly used sen-
sors. A naı̈ve approach is to take three distance measurements
and triangulate position. This works when the sensors are reliable
and relatively noise-free but leaves several problems unaddressed.
When the sensors are noisy, the calculations for triangulation be-
come unstable for many positions and landmark arrangements and
lead to significant loss of precision. Typically, multiple measure-
ments are merged over time to try to compensate for this, however
some care must be taken in choosing the method of merging or
poor results will be obtained [11]. In some cases where the sensors
are fairly reliable and have simple noise distributions, direct trian-
gulation or triangulation with differential windowing can produce
excellent results. Noisy sensors, however, complicate triangulation
adding uncertainty to the results. GPS [29] is perhaps the most-
used sensor based on triangulation.

Kalman Filter. In 1987, Smith and Cheeseman introduced the
use of Kalman filters to the problem of determining position [34].
Many systems in robot localization, since then, have been based on
Kalman filtering [16, 27, 10]. The robot’s pose estimation is main-
tained as a Gaussian distribution in � � " � and sensor data from
dead reckoning and landmark observations is fused to obtain a new
position distribution. This method is provably optimal when all
distributions are linear but typically fails when these assumptions
break down. Extended Kalman filters address this problem by lin-
earizing the system. In practice, obtaining linearizations for many
sensing systems is difficult and errors can propagate very quickly
through the system.

Bayesian Approaches. Possibly the most powerful family of
global localization algorithms to date is based on Bayesian infer-
ence, in particular Markov localization [24, 15] and Monte Carlo
localization [13, 37]. These are generalizations of the Kalman fil-
ter. These algorithms estimate posterior distributions over robot
poses which are approximated by piecewise constant functions in-
stead of Gaussians, enabling them to represent highly multi-modal
distributions. In this way, they can be applied in the case of sensors
that are non-linear and have non-Gaussian noise distributions. The
accuracy of the results, however, is limited by the resolution of the
approximation. Due to the very complex nature of some sensors
and usually also of the environment, many systems have difficul-
ties modeling outliers and other artifacts. These difficulties can be
addressed by sampling the distributions of the sensor signals in the
target environment and using this directly as a model, as in the case
of the sensor map we built in the first phase of our method. By ex-
plicitly integrating the conditional probability distributions, we can
obtain precise approximations of the robot’s positional distribution.
This approach is both computationally tractable and effective [37].
Many excellent examples of this method exist in the literature [35].
This the approach we took in implementing localization using wire-
less Ethernet, as described in Section 2.

Topological Approaches. Typically the Bayesian approach is
applied in the case when we have a grid-based representation of
the environment. Another alternative for modeling the environment
is with a topological map, represented as a generalized Voronoi
graph [6]. Localization on the topological map is based on the fact
that the robot automatically identifies nodes in the graph from geo-
metric environmental information [26].

6. Conclusions

In this paper, we provide strong evidence that reliable localization
with wireless Ethernet can be achieved. In our experiments, we
can measure and track position robustly with the first meter of error
distributed within a standard deviation. We used the Intersil Prism2
chipset for our wireless Ethernet cards and Apple AirPort base sta-
tions, both readily available and inexpensive hardware. The build-
ing we operated in had fairly complicated geometry and the base
stations were laid out more than a year before we began our work.
The methods we employed were general methods from robotics
and followed the Bayesian approach to localization. These methods
were readily adaptable to the problem at hand and can be applied
to other location problems that might arise in mobile computing.
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