


ABSTRACT

A Unifying Framework for

Constrained Sampling-Based Planning

by

Zachary Kingston

Complex robots with many degrees-of-freedom (e.g., humanoids, mobile manipulators)

have been increasingly applied to achieve tasks in fields such as disaster relief or spacecraft

logistics. Finding motions for these systems autonomously is necessary if they are to be

applied in unstructured environments not known a priori, as they must compute motions

on-the-fly. Sampling-based motion planning algorithms have been shown to be effective

for finding motions for high-dimensional systems such as these. However, the problems

these robots face typically take the form of tasks with constraints, which limit the valid

motions a robot can take (e.g., turning a valve about its axis, carrying a tray with both arms,

etc.). Incorporating constraints while planning introduces significant challenges, as con-

straints induce a lower-dimensional manifold of constraint-satisfying configurations within

the robot’s configuration space. The lower-dimensional structure of the manifold throws

a wrench into the basic operation of a sampling-based planner, necessitating a constraint

methodology to provide a means for the planner to satisfy constraints.

Within the literature, many constrained sampling-based motion planning methods have

been proposed for sampling-based planning with constraints. Each of these methods intro-

duces a constraint methodology of their own to tackle the issues raised when considering

constraints. This thesis organizes several previously proposed constraint methodologies



along of a spectrum, cataloged by the amount of bookkeeping and computation used to

approximate the manifold of constraint-satisfying configurations. Notably, previous con-

strained sampling-based methods augment a single sampling-based algorithm with their

constraint methodology to create a bespoke planner.

This thesis presents a general framework for sampling-based motion planning with ge-

ometric constraints, unifying prior works by approaching the constrained motion planning

problem at a higher level of abstraction. The framework decouples the constraint method-

ology from the planner’s method for exploration by presenting the constraint-induced man-

ifold as a configuration space to the planner, hiding details of the constraint methodology

behind the space’s primitive operations. Three constraint methodologies from the literature

are emulated within the framework. The framework is demonstrated with a range of planners

using the three emulated constraint methodologies in a set of simulated problems. Results

show the advantages decoupling brings to constrained sampling-based planning, with novel

combinations of planners and constraint methodologies surpassing emulated prior works.

The framework is also easily extended for novel planners and constraint spaces.
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“Holonomic constraints do not fundamentally change the path planning

problem. They will only be examined briefly in Section 2.”

— J.-C. Latombe, Robot Motion Planning, Chapter 9 [2]
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Chapter 1

Introduction

Consider a spacecraft, where resources are limited, creating need for a system can reuse

human tools and spaces. Robonaut 2 (R2) is a high-dimensional robotic platform designed

to work in the same space as humans in spacecraft (shown in Figure 1.1). Future NASA

mission concepts also require spacecraft to be uncrewed for extended periods of time, but

systems inside still require maintenance. R2, and other robots, are faced with complex

constrained tasks such as removing a bag from a rack, turning a valve, and executing closed

chain motions with both feet down. In order for a robot to operate autonomously, it requires

a motion planning system that can generate movements from high-level descriptions.

Motion planning for articulated robots has seen significant advances, and is an essential

tool for a robotic system with any level of autonomy. With planning, a robot’s movements

can be specified with start and goal configurations, rather than a full prescription of interme-

diate states [2, 3]. However, there is an increasing need for plans that satisfy constraints on

a robot’s configuration, as constraints can concisely specify complex motions for a robot.

In some instances, such as some specific end-effector pose constraints, effective solutions

exist for some cases, but in general finding motions for complex robots subject to general

configuration constraints poses significant challenges. Such constraints are ubiquitous in

robot manipulation (e.g., opening a door, sliding a drawer, pushing an object, etc.).

In general, sampling-based planners have been effective at planning motions for high-

dimensional systems [3]. These planners randomly explore the robot’s configuration space

and build a discrete representation of valid motions. Many sampling-based planners have
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Figure 1.1 : Examples of NASA’s Robonaut 2 (R2), a dexterous humanoid robot, executing

constrained tasks. Clockwise from top-left, R2 turns a valve, docks with a handrail, extracts

a bag from a rack, and moves its torso with both feet attached to handrails. Credit: NASA.

been developed with different methods to explore and exploit the valid motions of a robot.

However, incorporating constraints in planning is still difficult, as finding configurations

that satisfy constraints is challenging. Recently, several algorithms have been developed for

planning with constraints that are effective for realistic problems [4, 5, 6]. However, these

algorithms are somewhat limited in the sense that they adapt a specific sampling-based

algorithm to also satisfy task constraints, convolving constraint satisfaction with planning

methodology.

1.1 Contribution

To understand the contribution of this thesis, it is important to understand the structure of

constrained sampling-based planners. Constrained sampling-based planning algorithms pre-



3

sented in the literature differ primarily by their constraint methodology, or technique applied

to generate feasible motion and samples that satisfies constraints. These methodologies can

be placed upon a spectrum, delineated by the amount of computation and bookkeeping they

perform to satisfy constraints. Each of these methodologies necessarily makes trade-offs

between space and time efficiency, performing well in some environments but potentially

failing in others. None of the constrained sampling-based planners in the literature make

dramatic changes to the structure of the underlying augmented motion planning algorithm,

these methods instead augment primitive operations to generate feasible motion. Addition-

ally, just as trade-offs are made in constrained planners with constraint methodologies, there

are many unconstrained sampling-based planners each with their own heuristics or explo-

ration strategies to perform well in certain environments. However, as the state-of-the-art

stands now, developing a constrained sampling-based planner with a choice of constraint

methodology well-suited to the constraint and an exploration strategy well-suited to the

problem requires design of a bespoke planner that integrates the two.

This thesis presents a solution to the design of constrained sampling-based algorithms

for more complex systems by means of a framework that decouples constraint satisfaction

from space exploration in the planner. The framework is a layer over the unconstrained plan-

ning problem, integrating the constraint methodology at the level of the space the planner

plans within, rather than the planner itself. With this framework, a broad class of sampling-

based planners can utilize many previously proposed constraint satisfaction methods and

leverage the tools developed by the community, such as asymptotically optimal planners [7],

path optimization [8], or domain specific planners for high-dimensional problems [9]. The

conceptual framework encapsulates and extends previous approaches in the literature by

approaching the problem from a higher-level of abstraction. Presented in this thesis are

emulations of three successful and widely known methodologies: CBIRRT2 [4], TB-RRT [6],
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and AtlasRRT [5]. Additionally, different constraint satisfaction methodologies can all use

the same underlying constraint representation within the framework. Furthermore, exper-

imental results show that different problems can be solved more successfully using novel

combinations of planning algorithms and implicitly defined constrained spaces.

The framework was originally presented in the Internation Symposium of Robotics

Research 2017 [10], and is a first step towards broad application of sampling-based plan-

ning techniques for high-dimensional systems, as it enables high-dimensional and domain-

specific planning algorithms to handle tasks with constraints. Robonaut 2, and other systems

like it, will no longer need custom planners [11] with the framework, and instead can lever-

age advanced sampling-based planning techniques that exist in the literature.

1.2 Organization

The thesis is organized as follows. Chapter 2 formulates and discusses the mathematical

objects and constructs necessary to define the constrained motion planning problem. Chap-

ter 3 presents and discusses related work, and organizes prior approaches to constrained

sampling-based planning along a spectrum. The framework is presented at a high-level in

Chapter 4, along with the details of the three constraint methodologies emulated within

the framework. Empirical results and implementation details of the framework are shown

in Chapter 5. Finally, further discussion of the framework and concluding remarks are given

in Chapter 6.
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Chapter 2

Problem Formulation

This chapter provides the notation and mathematical constructs necessary for constrained

sampling-based motion planning. Motion planning, particularly constrained motion plan-

ning, draws from concepts in differential geometry to describe the various spaces utilized

in the planning process. A good reference for these topics is [12].

This chapter is organized as follows. First, Section 2.1 describes the unconstrained

instance of the motion planning problem. Second, Section 2.2 describes the constrained mo-

tion planning problem. Finally, some techniques used for satisfying constraints are provided

in Section 2.3.

2.1 The Motion Planning Problem

A key idea in motion planning is to transform the problem of planning for a dimen-

sioned, articulate robot into planning for a single point that represents the robot in a higher-

dimensional space. This space is called the configuration space.

Definition 2.1. CONFIGURATION SPACE

A configuration of the robot is denoted by q ∈ Q, where Q is the configuration space, a

metric space and differentiable manifold. The configuration space contains all configura-

tions of the robot, whether they are valid and collision-free or not. The free portion of the

configuration spaceQ f ree ⊆Q is the free space: the set of all configuration where the robot

is not ion collision with obstacles or itself.
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For example, an abstract point robot on the plane is parameterized by the x- and y-

value that describes its location and many manipulators are parameterized by the position

of the revolute joints of the arm. The number of degrees of freedom of a robot, i.e., the

dimensionality of its configuration space, is denoted by n. Given a configuration space, the

motion planning problem is defined as follows.

Definition 2.2. MOTION PLANNING PROBLEM

The motion planning problem is defined as finding a continuous, collision-free path from

qstart to qgoal in configuration space τ : [0,1]→Q f ree, τ(0) = qstart , τ(1) = qgoal .

In many cases, avoiding collisions is the only concern for computing a valid path. One

of the most powerful features of sampling-based planners is that they avoid explicit com-

putation of Q f ree, as described in Chapter 3.4. Additional details on the formulation of the

motion planning problem and the configuration space can be found in [2].

2.2 The Constrained Motion Planning Problem

To discuss constrained motion planning, the types of constraints that are considered must

first be discussed. Most commonly, specialized constraints take the form of end-effector

constraints. As the end-effector is the component of the robot carrying out the task, it is

desired to be constrained according to some objective, whether that be maintaining contact,

not rotating past a certain limit, or otherwise. Recently, many approaches have been taken

in the literature to specify the motion constraints in a general formulation, presented below.

Definition 2.3. CONSTRAINT FUNCTION

A constraint function F(q) :Q→ R
k evaluates to F(q) = 0 when q satisfies the constraint.

This work assumes F is continuous (C1) and differentiable everywhere. k is the number of

equality constraints imposed.
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For this work, the constraints are purely geometric, and rely only on the configuration of

the robot q, not on other properties of the robot’s motion such as velocities or accelerations.

Constraints of this type are holonomic, or integrable constraints. This class of constraints

captures a broad and interesting class of possible task encodings, covered in detail in Chap-

ter 3.2. For a brief example, end-effector constraints and balance constraints can both be

formulated as a constraint function.

The constraint function defines a lower-dimensional implicit constrained configuration

space within the ambient configuration space.

Definition 2.4. CONSTRAINT MANIFOLD

The constraint function defines an (n− k)-dimensional implicit constrained configuration

space within the ambient configuration space, the constraint manifold:

X = { q ∈ Q | F(q) = 0 }

As F is continuous and differentiable everywhere, X is a differentiable manifold. k, the

number of equality constraints, is referred to as the co-dimension of the constraint manifold

with respect to the configuration space. X is also referred to as the implicit manifold, or the

manifold for short.

The relative measure (volume) of X compared to Q is small and usually 0, given its

lower-dimensionality. Similar to the definition of Q f ree, define X f ree ⊆ X as all collision-

free configurations that also satisfy constraints, X f ree = X ∩Q f ree.

Definition 2.5. CONSTRAINED MOTION PLANNING PROBLEM

The constrained motion planning problem, with a constraint function F and configuration

space Q, is a problem of finding a continuous, collision-free path τ : [0,1]→X f ree.

For example, consider a point robot with a configuration space Q⊂ R
3. Given F(q) =
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‖q‖−1, the robot is constrained to the surface of a unit sphere, a two-dimensional manifold

in R
3.

Note that inequality constraints of the form F(q) ≤ 0 can be dealt with in much the

same way as collision-avoidance is dealt with, as collision-avoidance is can be phrased as

an inequality constraint (e.g., halfplanes to define polytope obstacle).

2.3 Satisfying Constraints

A critical element of a constrained planning algorithm is its constraint methodology, or how

it generates configurations that satisfy the constraint. This section covers some of the tools

employed by constrained sampling-based planning algorithms described in Chapter 3.5.

Definition 2.6. PROJECTION OPERATOR

A projection operator is a continuous idempotent mapping P(q) : Q→ X , where if q ∈

X ,P(q) = q.

Projection takes a configuration and projects it onto the surface of the implicit manifold,

solving for a root of the constraint function. Typically this is implemented using Jacobian

gradient descent, using the Jacobian of the constraint function J(q). The next step in the

descent ∆q can be computed by solving the system of equations:

J(q)∆q = F(q),

either through pseudo-inverse techniques or other methods. The descent stops when F(q) =

0. A more comprehensive look at projection for constrained motion planning is found

in [4]. More contextual details of projection for constrained motion planning is given in

Chapter 3.5.2.2.

Local parameterization of the implicit manifold can be accomplished by a tangent space
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(alternatively, a chart from [5]). The tangent space is constructed by finding the basis for

the nullspace of J(q), which can be computed through a matrix decomposition.

Definition 2.7. TANGENT SPACE

The tangent space Tq is a (n−k)-dimensional space with its origin at a configuration q ∈X ,

with an n× (n− k) orthonormal basis Φq.

A point t ∈ Tq can be mapped into qt ∈ Q by qt = q+Φqt. To map the configuration

qt onto the manifold (an exponential map), an orthonormal projection can be computed by

solving the system of equations:

F(q) = 0 and Φ
T
q (q−qt) = 0

The opposite mapping from the manifold to Tq is much simpler: t = Φ
T
q (q− qt). Tangent

spaces are composed into an approximation of the manifold by the AtlasRRT and TB-RRT

constrained spaces within the framework. A more comprehensive look at manifold ap-

proximation for planning can be found in [5], with many operations on implicit manifold

discussed in [13]. The concepts of differential manifolds outlined here are covered in depth

in [12]. More contextual details of tangent spaces and atlas construction for constrained

motion planning are given in Chapters 3.5.2.3 and 3.5.2.4.
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Chapter 3

Related Work

This thesis is focused on studying sampling-based planning with geometric task constraints [14],

which has a wide breadth of literature concerning both techniques to plan motions and repre-

sent constraints. While sampling-based planning is the dominant motion planning paradigm

today for highly articulated robots, several different classes of motion planning algorithms

have been developed over the years. This chapter organizes and discusses a breadth of lit-

erature, first introducing early planning methods in Section 3.1. Next, a brief overview of

constraints for constrained motion planning is presented in Section 3.2. Constrained motion

planning algorithms that are non-sampling methods are presented in Section 3.3. Then, un-

constrained sampling-based algorithms are presented in Section 3.4. This leads into the final

section which presents and organizes constrained sampling-based planners on a spectrum,

Section 3.5.

3.1 Early Methods

Motion planning is a PSPACE-hard problem [15], with complexity growing with the number

of the robot’s degrees-of-freedom. Although exact algorithms exist, they are difficult to

implement and scale poorly to high-dimensional robots. Early on, potential fields were

proposed as an alternative to exact methods where following the gradient of the potential

would guide a robot to its goal [16]. It is difficult, though, to come up with a general

mechanism to escape local minima of a potential function [17] or design one that has only
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one minimum. Heuristic search techniques that operate over a discretization of the space

of all robot configurations are yet another family of planning algorithms. These algorithms

provide so-called resolution completeness: a path will be found if the discretization is fine

enough [14]. A careful choice of resolution and heuristics are critical for heuristic search.

In principle, many of the classes of motion planning algorithms described above could be

adapted to incorporate constraints (e.g., discretized search with constraints [18]). However,

due to the complications of scaling these methods to higher-dimensional systems, they are

generally not applied to modern systems.

Sampling-based algorithms (the focus of this thesis) take a very different approach. They

randomly sample valid configurations and form a graph of valid motions [3]. Sampling-

based planning algorithms typically provide probabilistic completeness: the probability

of finding a solution goes to 1 with the run time of the algorithm, provided a solution

exists [14]. Sampling-based motion planning algorithms have been shown to be effective at

solving motion planning problems in a broad range of settings with minimal changes. They

have also been used in very different contexts, such as computer graphics and computational

structural biology (see, e.g., [19, 20]).

Constraints on motion have had a rich history in industrial control, specifying Cartesian

end-effector constraints to describe assembly tasks [21, 22, 23]. For modern robotics, con-

straints can be used to specify many useful manipulation tasks, intrinsic properties of the

robot such as parallel manipulators and closed chains and even problems outside of robotics,

such as structural biology [24]. The first applications of geometric constraints to planning

in low-dimensional spaces were reduced to problems of finding geodesics on polyhedral

structures [25], similar to finding shortest paths of visibility graphs [26, 27]. Additionally,

as motion planning was applied to more complex, higher-dimensional robotic systems, ge-

ometric constraints increased the difficulty of the motion planning problem and required
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additional consideration to plan effectively.

3.2 Constraint Expression

As stated in Chapter 2.2, end-effector constraints are a common encoding of task constraints.

End-effector constraints, while not all-encompassing, have the benefit of being intuitive to

specify by a user of a robotic system, especially for generating novel constraints while

attempting to execute some task. End-effector constraints have origins in industrial control

with Cartesian constraints between interacting objects [21], which were developed into

end-effector constraints on manipulators [22, 23].

There are many modern incarnations of end-effector constraints [28], such as the Task-

Space Region formulation employed by the CBIRRT2 planner [4]. Task-space regions are

general method for sampling configurations subject to many Cartesian end-effector con-

straints, but not all (such as a screwing motion). End-effector constraints can also be ex-

tended to closed-chain systems, by decomposing the closed chain into two manipulators

that must maintain contact of the end-effectors throughout the entire motion, closing the

chain [29]. Task-space regions have also been extended to Task-Space Region Chains [4],

which model articulated kinematic structures such as doors and drawers in a scene for

end-effector constraints, similar to how closed-chain systems are planned for.

Recently, many approaches have been taken in the literature to specify the motion

constraints of the form F(q) = 0 on a robotic system. The most general approach is to not

assume any properties of the constraint function in relation to the kinematic structure of the

robot [5]. This general representation comes at the price of the ability to exploit features

of the constraint that might be employed by a system utilizing end-effector constraints. If

constraints can be cast as functions that can be automatically differentiated or have analytic

derivatives, the solver speed can be improved and satisfying configurations can be generated
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faster [30]. This thesis focuses on constraints of this form, as this formulation is general and

encompasses most constraints that are of concern.

3.2.1 Constraint Composition

The representation of a constraint function and its derivative is critical to efficiently solving

an instance of a constraint motion planning problem. This becomes challenging when a

constraint function is a composition of many constraints. So far the discussion of constraints

has limited itself to single constraint functions, which encode the full set of constraints on

a system. A question of interest for more complex systems is how to compose multiple

constraints on a system into one coherent function.

Composing constraints that all need to be simultaneously satisfied into one constraint

function is non-trivial. For example, given a humanoid robot, what is the best way to com-

bine and encode balance, the task objective, a visibility region that must be maintained,

and others? This “and”-ing of constraints together into one function can be thought of as

computing the intersection of sets of configurations that satisfy each constraint. When the

structure of the constraints is known and their importance and dependence can be deduced,

it is possible to order the constraints and use nullspace projection to attempt to solve hierar-

chically [31], as is done in [11]. Another approach is to use more advanced gradient descent

techniques or cyclic projection such as those discussed in [4]. The method of constraint

composition when considering multiple simultaneous constraints has dramatic effects on

performance, and method selection is critical to efficient operation of the planner and the

completeness of the method.

What if the composition of tasks has more than one modality? Intermittent contact, an

essential component of manipulation and legged locomotion, requires the constant addition

and removal of constraint [32, 33]. Combining constraints where only a subset need to be
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satisfied at any given time is an “or”-ing of the constraints together: creating a union of

constraint manifolds that potentially intersect and overlap. This creates singularity points,

changes in dimension, and other problematic changes that most constraint methodologies

cannot handle. One approach is to use a higher-level discrete representation of a “graph” to

handle mode switching between different constraints, which might have different numbers

of equality constraints imposed on the system [30, 34]. This problem can also be thought of

as a special instance of hierarchical planning, with a discrete selection of constraint modality

followed by geometric constrained planning. Foot-step planning and other task and motion

planning problems can all be thought of within this framework [35, 36, 37, 38, 39]. Each of

these planners employs domain specific knowledge to solve the problem efficiently, but no

general purpose solutions have been proposed.

3.3 Non-Sampling Methods

In recent years, many non-sampling methods have also been proposed that can scale to com-

plex systems. Although not the focus of this thesis, a summary is provided for completeness.

As robotic manipulators became more complex and had degrees-of-freedom redundant

to the task at hand, Cartesian curve tracking required resolution of the redundant degrees-of-

freedom of the robot [40], solved using inverse kinematic (IK) techniques [41, 42]. Finding

configurations that satisfy hard constraints can be handled in a variety of ways. In common

cases, such as an end effector pose constraints, IK solvers can be used. IK is concerned with

the problem of finding robot configurations such that an end effector achieves a desired pose.

For more complex constraints or in the presence of kinematic redundancies, IK alone is typ-

ically not sufficient to guarantee completeness. One approach to the constrained planning

problem is to plan in the robot’s workspace, so geometric constraints can be directly evalu-

ated and satisfying poses can be sampled. Post-planning a path in the robot’s configuration



15

space is generated using IK similar to curve tracking technqiues [31, 43]. However, these

methods may not be efficient as re-planning is required if a found path cannot be mapped

into the configuration space of the robot. Completeness is also not guaranteed unless all

feasible IK solutions can be generated given the constraints.

Another approach that operates within the robot’s workspace is reactive control, which

uses convex optimization to find local satisfying motions, such as those used at the DARPA

Robotics Challenge (e.g., [44, 45, 46]). While effective with operator supervision, these con-

trollers are usually incomplete and risk local minima. As local controllers are optimization-

based methods, hard constraints are relaxed into soft constraints, and invalid motions can

be generated.

One possible alternative to sampling-based planning is to use penalty functions to turn

hard constraints into soft constraints and use trajectory optimization methods [47, 48, 49,

50] instead. Trajectory optimization approaches optimize within trajectory space and are

effective for everyday manipulation tasks, but suffer from many of the same shortfalls as

reactive control. When combining optimization with random trajectory initialization in

the appropriate functional space, probabilistic completeness can still be preserved [47].

Comprehensive comparison of constrained non-sampling-based methods to sampling-based

planners has not been done, and a thorough analysis is left as future work.

3.4 Unconstrained Sampling Methods

It is helpful to first describe the general structure of (unconstrained) sampling-based plan-

ning algorithms and the common primitives they rely on. For a more in-depth review of

sampling-based planning see [3, 14, 51]. The general idea behind sampling-based planning

is to avoid computing the free space exactly, but, instead, sample free configurations and con-

nect them to construct a tree/graph that approximates the connectivity of the underlying free
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procedure GRAPHPLANNER(qstart, qgoal)

G.init(qstart, qgoal);

while no path from qstart to qgoal do

qrand← Sample();

Q← SelectNghbrs(G, qrand)

for all qnear ∈ Q do

if Connect(qnear, qrand) then

G.Add(qnear, qrand)

procedure TREEPLANNER(qstart, qgoal)

T .init(qstart);

while no path from qstart to qgoal do

qrand← Sample();

qnear← Select(T , qrand)

qnew← Extend(qnear, qrand);

if Connect(qnew, qnear) then

T .Add(qnear, qnew)

Figure 3.1 : Prototypical examples of graph- and tree-based sampling-based planners.

space. Most sampling-based algorithms provide probabilistic completeness guarantees [52]:

if a solution exists, the probability of finding a path goes to 1 with the number of samples

generated by the algorithm.. However, if no solution exists, then most sampling-based al-

gorithms cannot recognize this (although it is possible [53]). Sampling-based planners fall

broadly into two categories: graph-based methods such as PRM [54] and tree-based methods

such as RRT [55].

3.4.1 Graph-Based Methods

Figure 3.1 shows in pseudo-code the two main varieties of sampling-based planners. Graph-

based methods construct a “roadmap” within the configuration space that can be queried mul-

tiple times for motion plans. On the left is shown a basic version of the first sampling-based

planner, a graph-based method known as the Probabilistic Roadmap Method (PRM) [54]. It

incrementally constructs a roadmap embedded in Q f ree by repeatedly sampling collision-

free configurations via rejection sampling. For each sampled configuration, it computes
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“nearby” configurations sampled during previous iterations. If a local planner determines

that there exists a collision-free motion between the new sample and a neighbor, a new edge

is added to the roadmap. This process continues until the start and goal configuration are in

the same connected component of the graph, at which point the shortest path in the roadmap

can be extracted via, e.g., A*. The PRM algorithm grows a roadmap that can be reused for

solving many motion planning problems in the same environment. First, each new start and

goal configuration can be added to the roadmap. Next, the roadmap is grown (if needed)

until the start and goal can be connected.

3.4.2 Tree-Based Methods

In many cases, however, solving only one particular problem is more interesting (e.g., when

the environment is changing, is very large, or has many different connected components).

In such cases, a tree planner as shown on the right of Figure 3.1 might be more appropriate.

The most well-known variant of this type of planner is the Rapidly-exploring Random Tree

(RRT) [55], but several other tree-based planners have been proposed (e.g., [56, 57, 9]). The

RRT algorithm grows a tree of conformations from the start to the goal. At each iteration

a random sample is generated (which may be in collision). The nearest configuration in

the tree grown so far is determined and the tree is extended from this nearest configuration

toward the random sample. If the new tree branch can be connected to the goal via a local

planner, the algorithm terminates.

Tree-based planners can also be easily extended for kinodynamic motion planning,

where the dynamics can often be written as q̇ = f (q,u). u is a control input, a part of the

robot’s control space u ∈ U , where U is a differentiable manifold. During the extension the

local planner can use a steering function to drive the system towards the randomly sampled

state, but even randomly sampling a control input u is generally sufficient for probabilistic
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completeness [55]. A popular variant of tree planners is to grow two trees simultaneously,

one from the start and one from the goal [58]. After one of the trees is extended, it is

checked whether the new state can be connected to nearby configurations in the other tree.

The bidirectional tree search terminates once a connection between the two trees is found.

Many improvements and adaptations of basic algorithms have also been proposed to handle

more complex environments, such as biasing search based on previous samples to explore

free space more efficiently. Both the EST [56] and KPIECE [9] planner utilize this technique.

3.4.3 Other Augmentations

The paths produced by sampling-based planning are feasible, but sometimes far from op-

timal. There are various techniques that post-process paths to locally optimize them [8].

This tends to work well in practice. However, with some small modifications, planners like

PRM and RRT can be proven to be asymptotically optimal: the solution path will converge

to the globally optimal solution over time [7]. Subsequent work has improved the conver-

gence rate (see, e.g., [59]), but in practice repeatedly running a non-optimizing planner,

smoothing the solution path and keeping the best one seems to work surprisingly well in

comparison [60, 61]. It is also possible to create sparse roadmaps or trees that guarantee

asymptotic near-optimality [62, 63]. That is, the solution paths converge to paths whose

length is within a small constant factor approximation of the shortest path. There are com-

plex trade-offs between the time to first feasible solution, convergence rate and degree of

optimality that highly problem-dependent. Systematic benchmarking is needed to determine

a good algorithm for a given problem domain [64].

Finally, an idea that can be combined with many of the planning algorithms above is

lazy evaluation of the validity of configurations and the motions that connect them [65,

66]. Collision checking is the most expensive operation in sampling-based planning. By
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postponing this step until a candidate solution is found, collision checking can be avoided for

all configurations and motions that are never considered to be part of a candidate solution.

3.4.4 Common Components

Despite their differences, sampling-based planners have similar requirements from the

robot’s configuration space [14]. Below are some of the components that are commonly

used in sampling-based algorithms.

Samplers Sampling-based planners sample new configurations in the configuration space

(Sample in Figure 3.1) in order to guide exploration. Typically, uniform sampling is

used, but various heuristics have been proposed to sample (approximately) in lower

dimensional spaces to improve the odds of sampling in narrow passages, which is key

to solving the motion planning problem. Sampling near the surface of configuration

space obstacles, a co-dimension 1 manifold, can be justified by the fact that configura-

tions in narrow passages tend to be close to this surface. Although this surface is not

computed analytically, various techniques have been proposed to sample near the sur-

face [67, 68]. Alternatively, one could sample near the medial axis, a one-dimensional

structure formed by all configurations that have more than closest point on the bound-

ary of Q f ree. Configurations on the medial axis tend to “see” more of Q f ree than

other configurations [69, 70]. Finally, deterministic quasi-random samples have been

shown to improve the dispersion compared to uniformly random sampling [71].

Metrics & nearest-neighbor data structures Usually, the natural distance metric for the

configuration space is used in planning for nearest-neighbor computation, so states

nearby novel states can be found (e.g., Select and SelectNghbrs in Figure 3.1).

The choice of distance measure is often critical to the performance of sampling-based
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planners. Intuitively, a good distance measure reflects the difficulty of connecting

configurations. If the measure is a proper metric, various data structures can be used to

efficiently find nearest neighbors. In many cases, approximate neighbors are sufficient,

which can be computed much more efficiently in high-dimensional spaces than exact

nearest neighbors [72].

Local planner A local planner is a fast, not necessarily complete method for finding paths

between nearby configurations. In sampling-based planners, geodesic movement un-

derlies Extend and Connect, as shown in Figure 3.1. In many cases interpolation

is used (or SLERP for rotations [73]). However, for kinodynamic systems a steering

function could be used.

Coverage estimates Several sampling-based planners use the density of samples in a grid

defined in a low-dimensional projection of the configuration space as way to measure

coverage and guide the exploration [66, 74]. Although random projections often work

well in practice [75], for constrained planning it may be difficult to define a projec-

tion over Q that approximates the density of sampling in the implicit configuration

space X .

The Open Motion Planning Library [76] provides various implementations of these core

components as well as implementations of all the sampling-based planning algorithms cited

in this section.

3.5 Constrained Sampling-Based Methods

Sampling-based planning with constraints introduces another element of difficulty in the

problem with the need to find configurations that satisfy the constraint function. The core

concepts that enable a sampling-based planner to perform effectively without the presence of



21

constraints require adaptation to appropriately handle the constraint function, and generate

a satisfying path. Let us reconsider each of the concepts introduced in the previous section,

in the light of the need to satisfy the constraint function:

Samplers Sampling valid configurations is crucial to guiding the exploration of a planner

through a robot’s free space. However, with a constraint function that implicitly de-

fines its valid region, the structure of this implicit region is not known a priori, and is

thus hard to sample from without careful consideration or pre-processing. A planner

needs to have the capability of either sampling valid configurations that satisfy the

constraint function (finding solutions to F(q) = 0) or guiding the search in such a

way so that the valid space is explored.

Metrics & nearest-neighbor data structures Normally, the distance metric utilized by a

sampling-based planner is defined by the configuration space, such as the Euclidean

metric for Rn. However, the constraint function defines a subset of the configuration

space that can be curved and twisted relative to the ambient configuration space. In

this case, the configuration space distance metric bears very little resemblance to

distance on the manifold, as is the case in, e.g., the “swiss roll” function [77]. A more

appropriate metric for this space would be something like the Riemannian metric,

as the constraint function defines a Riemannian manifold [12]. However, implicitly

defined metrics such as the Riemannian metric are expensive to compute as it requires

computation of the shortest geodesic on the manifold between two points. Computing

the Riemannian metric is infeasible for any motion planning application that is con-

cerned with speed of execution. However, if a roadmap has already been constructed

on the constraint manifold then shortest path length within the roadmap could be used

as an approximation of the Riemannian metric, as is done in [77]. A sampling-based
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planner needs to consider its choice of metric to effectively plan with constraints. Ad-

ditionally, for nearest-neighbor computation, there are also approximate methods that

have been employed for curved data [78]. These methods require pre-computation

and are not suited for the rapidly updating structures employed in planning, and the

adaptation of approximate methods is an open problem.

Local planner Normally, the local planner is a fast procedure to generate the intermediate

configurations between two configurations. This, in the case of interpolation, cor-

responds to computing the geodesic between the configurations. However, within

implicit spaces defined by constraint functions, interpolation becomes very difficult

as the curvature and structure of the space is unknown a priori. If the constraint de-

fines a manifold, there are many existing approaches within the literature to compute

the minimum length geodesic (some not from robotics) [79, 80, 81, 82]. How a plan-

ner employs a local planner that respects constraints is crucial to its success in the

constrained planning problem.

Coverage estimates To the best of the author’s knowledge, no constrained sampling-based

planner has employed a planning methodology that utilizes a coverage estimate in its

planning process. An interesting direction for future research is to gather knowledge

of the structure of the constraint manifold to direct the planning process.

For a sampling-based planner to plan with constraints, both sampling and local planning

must be resolved to handle satisfying the constraint, as both of these directly affect whether

the planning generates a valid path. As such, most methods focus on these two elements. For

metrics, the metric from the ambient configuration space is typically used unless otherwise

specified, which works well in practical applications. The ambient configuration space’s

metric defines a semi-metric for the constrained space, as the triangle inequality may not
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hold given sufficient curvature of the implicit space [83]. However, semi-metrics are “good

enough” for most sampling-based planners as it only affects the effectiveness of exploration,

but some theoretical guarantees may not hold.

In the following sections, the literature on constrained sampling-based planning methods

is organized into high-level categories along a spectrum, which will be explained shortly.

Section 3.5.1 details each of the categories, which are explained in detail in Section 3.5.2.

3.5.1 Overview

The approaches to handling constraints within a sampling-based framework can be orga-

nized into a spectrum which organizes them in order of the “complexity” of the algorithmic

machinery necessary to compute satisfying samples and connect them to the motion graph.

The spectrum is as follows, from least complex to most complex:

Relaxation As the critical limitation of sampling-based planners to solving constrained

problems is their inability to find satisfying configurations (due to the lower dimension

of X), a simple idea is to relax the surface of the constraint manifold by increasing

the allowed tolerance of the constraint function, changing F(q) = 0 to ‖F(q)‖ < ε .

With this relaxation, sampling-based planners that have no additional machinery to

handle the constraint can plan and generate a path.

Projection Finding satisfying configurations of the constraint function F(q) = 0 requires

finding solutions to the constraint’s system of equations. From Chapter 2.3, a pro-

jection operator takes a configuration and projects it onto the surface of the implicit

manifold, iteratively retracting the point to a minimum of the constraint function,

solving a linear system of equations at each iteration. The projection operator is a

heavy hammer available to the planner to use for both sampling and local planning.
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Tangent Space From a known satisfying configuration, a tangent space of the constraint

function can be generated (Chapter 2.3). The tangent space is constructed by finding

the basis for the nullspace of the derivative of the constraint function. Satisfying

configurations and valid local motions can be generated within the tangent space.

Atlas Instead of recomputing tangent spaces at all points when an expansion is needed,

the tangent spaces can be kept and composed together to create a piece-wise linear

approximation of the manifold, which can then be readily used for sampling satisfying

configurations or computing geodesics for local planning. This is called an atlas, in a

slight abuse of terminology from differential geometry.

Reparameterization For certain constraints, it is possible to compute a new parameteri-

zation of the robot’s configuration, allowing direct sampling of constraint satisfying

configurations. Using the reparameterized space, a new configuration space can be

generated or a local motion computed and then mapped back into the robot’s previous

configuration space.

Each methodology will be discussed in detail in Section 3.5.2. Notably, most techniques

for constrained sampling-based motion planning do not alter the core mechanics used by

sampling-based planners. Generally, constrained sampling-based algorithms are adaptations

of existing algorithms that incorporate a methodology for constraint satisfaction. RRT-based

planners are often used as the basis for a constrained planner, perhaps in part due to the

straightforward steps in the algorithm. Note that RRT-based planners rely on uniform sam-

pling, which is typically not possible with implicit manifolds. It is an open question whether

other sampling-based planners that do not depend on uniform sampling (e.g., [56, 84, 85])

might have an advantage, assuming they can be adapted to deal with constraints.
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a) b)

Figure 3.2 : Sampling and local planning with relaxation-based constraint handling. The

constraint manifold (green) is given non-zero volume by relaxing the constraint according

to some tolerance (boundaries are shown by faded extensions of the manifold). a) Standard

rejection sampling is done to find close-to-satisfying configurations. Invalid samples are in

grey, valid samples in black. b) Standard local planning is done (dashed line).

3.5.2 Methodologies

3.5.2.1 Relaxation Methods

Overview The primary challenge facing sampling-based planning approaches with con-

straints is generating configurations that satisfy the constraint equation F(q) = 0. Sampling-

based planners generally sample within configuration space in which the constraint function,

a set of equality relations, defines a zero volume subset. Hence there is zero probability that

an uniformed random sample will satisfy the constraint. To resolve this issue, relaxation-

based approaches to solving constrained problems relax the constraint function, growing the

subset of satisfying configurations by introducing an allowable tolerance to the constraint,
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‖F(q)‖< ε . Note that in general each of the constraint solving techniques has a tolerance on

constraint satisfaction, but generally this number is tuned to achievable numerical precision

to obtain accurate results. In this technique the constraint is purposefully relaxed far greater

than other techniques, with ε being far greater than achievable numerical tolerance.

Literature The set of satisfying configurations has non-zero probability of being sam-

pled within the relaxed constraint, albeit with chances similar to narrow passages in the

unconstrained instance of the motion planning problem. Sampling with relaxation based

approaches is depicted in Figure 3.2a. This technique is applied by [86, 87] for bi-manual

manipulation problems. These works leverage execution-level controllers with compliant,

closed-loop control to ensure successful execution despite configurations not within the

zero-set of the constraint function. As the subset of constraint satisfying configurations

defines a narrow band around the manifold, techniques well suited to motion planning prob-

lems in difficult domains can be adapted to improve performance, such as [88, 89]. Local

planning is also very simple within a relaxation-based method, shown in Figure 3.2b. The

local planner of the ambient configuration space is used. Since connections made to the

planner’s motion graph are generally local, the curvature of the manifold is respected as

motions do not go far enough to invalidate themselves.

Discussion Relaxation-based approaches to constrained planning bridge unconstrained

instances of the motion planning problem to the constrained incarnation. The sampling

strategies employed by a relaxation-based planner can use algorithmic techniques meant

to exploit lower-dimensional structures within planning such as obstacle-based sampling

and medial axis sampling. As relaxation-based approaches do not fundamentally change the

planning problem from the perspective of the motion planner (as they encode the constraint

as a narrow passage), the constraint methodology is already decoupled from the planning
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procedure PROJECTION(q)

x← F(q)

while ‖x‖> ε do

∆q← J(q)+x

q← q−∆q

x← F(q)

return q

An iterative procedure that uses the Jacobian pseudo-

inverse (J(q)+) of the constraint function F(q). Note

that the Jacobian does not need a full inversion if so-

lutions ∆q to J(q)∆q = F(q) can be found. QR factor-

ization [90] and other matrix decompositions might be

more efficient with equivalent performance for certain

problems.

Figure 3.3 : Pseudocode of a typical projection routine.

approach taken. As such, very little adaptation of any sampling-based planner is needed to

handle the inflated constraint. Sampling-based planning methodologies that better suite the

planning problem could be used to solve relaxed constrained planning problems. Sampling-

based planners also retain their probabilistic completeness utilizing the relaxed constraint.

However, execution success is no longer a given, as execution success is now determined

by the controller capability to handle plans that deviate from the geometrically-defined

constraint. Much of the complexity of handling the constraint is pushed onto the controller,

rather than the planner. Despite these bonuses, this approach is not usually taken as it is

inefficient given complex constraints. Sampling narrow passages is still inefficient compared

to other approaches such as projection- or approximation-based methods. Additionally, these

methods are reliant on properties of the robot and its controller, and whether the compliance

of the mechanism is sufficient to retain the constraint in the face of geometric inaccuracy.

3.5.2.2 Projection Methods

Overview In a constrained motion planning problem, a satisfying path only contains

configurations that satisfy the constraint function, F(q) = 0. One method to find satisfying
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Figure 3.4 : Sampling and local planning with projection-based constraint handling. The

constraint manifold (green) is projected to (black arrows) using a projection operator. a)

After drawing a sample from configuration space (grey), it is retracted to the surface of the

constraint manifold (black) using the projection operator. Local planning is shown in b).

From a starting configuration (bottom left), a new unsatisfying configuration (grey) closer

to the goal is generated by interpolation (yellow arrow). That configuration is then projected

to the manifold (black arrow), and the process continues till the goal is reached or another

termination condition is met.
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configurations is with a projection operator (as defined in Definition 2.6 in Chapter 2.3).

Projection takes a configuration and projects it into the set of satisfying configurations,

retracting the point to a minimum of the constraint function. Formally, a projection op-

erator is an idempotent mapping P(q) : Q→ X , where if q ∈ X ,P(q) = q. Projection is

typically an iterative optimization-based procedure that finds solutions to the constraint

equation, F(q)≈ 0. A common implementation of projection is a Newton procedure with

Jacobian (pseudo-)inverse gradient descent, using the Jacobian of the constraint function

J(q) [91, 42]. This is shown in Algorithm 1. The constraint function must encode the dis-

tance of the configuration from the solution of the equation so that the gradient adequately

represents progress towards the manifold. As such, it is actually not strictly necessary that

the underlying subspace defined by the constraint be a manifold, as long as this distance

is properly encoded. Projection only requires piece-wise differentiability of the constraint

function so that gradient descent can converge successfully.

Projection-based approaches utilize the projection operator heavily within the sampling

and local planning components of the planner. Sampling with a projection operator is shown

in Figure 3.4a. Samples are drawn from the ambient configuration space and are projected

to solve the constraint function. As time trends to infinity, the constraint function’s satis-

fying subset of configurations will be fully covered by projection sampling, proved in [4].

This property of projection sampling preserves the probabilistic completeness of RRT-like

projection-based algorithms [4]. An example of local planning using a projection operator is

shown in Figure 3.4b. In this method, the curvature of the constraint function is captured by

small incremental steps interleaved with projection. From an initial satisfying configuration

to a goal configuration, a small interpolation is done within the ambient configuration space.

The interpolated point is projected to generate a satisfying configuration. The process is

repeated from each successive point until the goal is reached. This is the core of the mech-
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anism introduced by [29], which considers constrained motion planning for closed-loop

planar chains.

Literature Historically, projection-based methods saw early adoption in solving loop-

closure problems for parallel manipulators, an intrinsic constraint. Planning with loop-

closures was (and continues to be) very relevant in structural biology with analytical protein

analysis [92], and complex loop-closure problems in robotics were solved with PRM variants

using active/passive chain methods [29, 93]. In active/passive chain methods, the projec-

tion operator uses IK to join the passive chain to the active chain, closing the loop and

creating a satisfying configuration. Cyclic-Coordinate Descent [94] is another loop closure

method that, unlike numerical IK, does not require the computation of Jacobian (pseudo-

)inverses. Projection operators were also used to solve curve tracking problems in industrial

applications early on [95].

The idea of projection to satisfy constraints was applied to general end-effector con-

straints in [96]. Task Constrained RRT [28] further generalized the idea of constraints and

utilized Jacobian gradient descent [42] for projection. Recently, CBIRRT2 [4], the motion

planner implemented for the Humanoid Path Planner System [30], and other planners such

as one for the HRP2 humanoid [97] utilize projection with general constraints. Additionally,

the projection methodology has been extended to handle “soft” constraints with GradienT-

RRT [4]. The proposed framework can emulate CBIRRT2 and other previous approaches, as

shown in Chapter 4.3.

A special application of projection-based approaches to sampling-based motion plan-

ning with constraints is the domain of regrasping problems. In regrasping problems, a

manipulated object must be released by a manipulator (due to some obstacle within the

current homotopic group of the path) and regrasped to continue progress. These problems
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generally define a constraint manifold which can be described as a foliated manifold, where

the constraint manifold is divvied into slices for each pose the end-effector of the robot

can take [32]. In a foliation, an n-dimensional manifold X is decomposed into a disjoint

union of indexed, connected m-dimensional submanifolds (m < n) called leaves Li such that

X = ∪iLi. Each of these leafs corresponds to the self-motion manifold of the robot at a par-

ticular end-effector pose, of which there are infinitely many. The self-motion manifold is the

set of all configurations where the end-effector remains in the same pose, or the nullspace of

the manipulator Jacobian. This property has been exploited for manipulation planning [32]

and by a few constrained planners [98, 99] to achieve manipulation tasks with regrasping.

Note that regrasping problems are not the exclusive domain of projection-based approaches,

but have not been attempted by other types of sampling-based planners with constraints.

Discussion Projection-based planners have a number of notable advantages that con-

tribute to their success as one of the most widely implemented methodologies to constraint

handling. Primarily, the projection operator is easy to implement and captures the structure

of the constraint function within the planning process. Historically, this has been imple-

mented with randomized gradient descent in [29], but modern solvers typically implement

a form of Jacobian gradient descent [28]. More advanced solvers can be used such as

hierarchical inverse kinematic solvers or cyclical projection for systems under multiple

constraints [4, 11]. Particularly important from an implementation perspective is the imple-

mentation of the gradient descent routine, as it requires solving a potentially complex system

of equations described by the constraint at each step of the iteration. Matrix decompositions

can be expensive, and the constraint Jacobian is typically not guaranteed to be invertible.
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Figure 3.5 : Tangent space-based constraint handling. Given an initial satisfying configura-

tion, a tangent space to that point can be computed which is the nullspace of the constraint

function’s Jacobian (purple blobs), and new satisfying configurations can be generated by

local perturbations (black arrows). a) samples are generated by creating a tangent space at

a known configuration and projecting random vectors. Local planning is shown in b). From

a starting configuration (bottom left), a tangent space is computed, and the vector from

the current configuration to the goal is computed v (yellow arrow) and projected (purple

arrow) into the tangent space (black arrowhead). The projected vector is added to the current

configuration to generate a novel configuration close to satisfying the constraint.
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3.5.2.3 Tangent Space Methods

Overview If constraint functions define a manifold or if the Jacobian of the constraint

function is of full-rank, it is possible to locally approximate the manifold using a tangent

space of a satisfying configuration. The tangent space defines a locally linear approximation

of the constraint manifold to a Euclidean space, which extends until the curvature of the

manifold bends sufficiently away. As defined in Definition 2.7 in Chapter 2.3, the tangent

space is constructed by finding the basis for the nullspace of J(q), which can be computed

through a matrix decomposition. The tangent space Tq is a (n− k)-dimensional space with

its origin at a configuration q ∈ X , with an n× (n− k) orthonormal basis Φq. A vector v

can also be projected through the tangent space to remove the components orthogonal to

the Jacobian, leaving only components that are within the nullspace of the Jacobian, Tqv.

This capability is primary used by algorithms based upon tangent spaces to generate new

configurations. Given a satisfying configuration, the tangent space is calculated, and some

random vector within the tangent space is generated (a tangent vector). The tangent vector is

added to the configuration from which the tangent space was created to generate a new, local

configuration that is close to the manifold. The process is depicted within Figure 3.5a. As the

co-dimension of the constraint manifold approximation increases, sampling in the tangent

space becomes more accurate at the price of increased computational cost per sample. Local

planning utilizing tangent spaces is depicted in Figure 3.5b. From an initial configuration, a

vector to the goal configuration is computed. This vector is projected into the tangent space

and decomposed only into its components tangent to the manifold. The tangent vector is

then added to the initial configuration to generate the next configuration in the local plan,

similar to how sampling is done above. From the new configuration, the process is repeated

until the goal is reached.
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Literature Projection from tangent spaces was utilized within the work of [29] to

generate nearby samples, which are then fixed up with projection. Tangent spaces have been

used by [100, 28] for manipulators under general end-effector constraints. The technique has

also seen many applications in curve tracking constraints for redundant manipulators [101,

102, 103] and structural biology to generate valid motions of proteins with loop closures [24,

104, 105].

In tangent space-based algorithms, new satisfying configurations are created by per-

turbing known satisfying configurations with vectors tangent to the constraint. The small

perturbations create configurations that are close to satisfying the constraint, and can be

projected into the satisfying set with typically few iterations. This works well for heavily

constrained systems where the set of valid motions is limited. With tuning of tolerances, it

is also possible to not even require reprojection of the constraint onto the manifold. Tan-

gent space-based methods work particularly well for constraints that are closer to “linear”

than curved, and are well approximated by Euclidean spaces. End-effector constraints in

particular have been the target of tangent space-based methods for exploration [100, 28].

Discussion However, tangent space-based methods are not without their drawbacks.

Computing the kernel of the constraint Jacobian is expensive and requires multiple matrix

decompositions to solve numerically. The method also breaks down near singularity points,

due to the Jacobian losing rank and no longer maintaining a surjective mapping to the

ambient configuration space. Additionally, as stated above, tangent space-based methods

break down when the manifold becomes highly curved, as tangent movement rapidly drifts

away from the surface of the manifold.
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Figure 3.6 : Atlas-based sampling and local planning, akin to AtlasRRT. The atlas is a set of

tangent polytopes covers the constraint manifold (purple blobs). In this figure, the atlas has

already been computed and covers the space. During planning, the atlas is constructed in

tandem with sampling and local planning. a) sampling of the manifold is done by drawing

samples from the tangent polytopes by randomly sampling within (grey). These points are

then orthogonally projected from polytopes to the surface of the manifold (black arrow to

black), ψq. Local planning is shown in b). Roughly, interpolation is done with the tangent

space (yellow arrows) from a configuration q to another qt , and new configurations are

projected to the manifold for validation (black arrows). Reprojection is also used to switch

tangent spaces (not shown). This continues until the goal is reached. See [5] for details.



36

3.5.2.4 Atlas Methods

Overview Furthering the idea utilizing tangent spaces to approximate the constraint

locally is the idea of building an atlas of the manifold, a concept borrowed from the defini-

tion of differentiable manifolds [12]. Such methods also require that the constraint function

defines a manifold. Unlike methods described in Section 3.5.2.3, atlas-based methods store

generated tangent spaces to avoid having to compute them in a small neighborhood of the

tangent space. The tangent spaces are organized within a data structure called an atlas. The

atlas is defined as a piece-wise linear approximation of the constraint manifold using tan-

gent spaces, which fully cover and approximate the manifold [106]. The key difference

from the method described in [106] and atlas-based planners is the incremental construction

of the atlas interweaved with space exploration. These tangent spaces are generated and

utilized exactly as described above in Section 3.5.2.3, and offer capabilities of sampling

and mapping to and from the manifold and the plane. Atlas-based approaches utilize the

tangent spaces to project configurations to the manifold and to lift configurations into the

basis defined by the tangent space.

Recall from Chapter 2.3, that a point t ∈ Tq can be mapped into qt ∈ Q by qt = q+Φqt.

To map the configuration qt onto the manifold (an exponential map ψq), an orthonormal

projection can be computed by solving the system of equations:

F(q) = 0 and Φ
T
q (q−qt) = 0

The opposite mapping from the manifold to Tq is much simpler:

ψ−1
q (qt) = t = Φ

T
q (q−qt)

. These procedures are described in detail in [13], along with other operations on implicit

manifolds.
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Sampling from an atlas is done as follows. A tangent space is chosen at random from

the atlas, and a sample is drawn and projected from the tangent space as described in

Section 3.5.2.3. This is shown in Figure 3.6a.

Literature Planners that implement variants of the atlas-based methodology are de-

rived from the procedure described in [106]. AtlasRRT [5] implements the methodology

faithfully, computing the tangent spaces and the hyperplanes to separate them (creating

tangent polytopes) to guarantee uniform coverage of the part of the manifold covered by the

tangent spaces. When traversing the manifold to compute connecting geodesics, AtlasRRT

fully evaluates each point, projecting to the manifold orthogonally utilizing the tangent

space and checking feasibility. Interpolation is done within the tangent spaces of the atlas,

projecting the interpolated tangent space configuration at each step to validate the motion.

This is shown in Figure 3.6b. Tangent Bundle RRT, or TB-RRT [6] is another method that

utilizes atlas-based methodology. As opposed to AtlasRRT, TB-RRT performs a “lazy” eval-

uation and does not compute the separating halfspaces, simply collecting a set of tangent

spaces that cover the manifold. TB-RRT only projects to the manifold when it needs to

switch between tangent spaces, interpolating within the tangent space exclusively. Together,

these features make TB-RRT more computationally efficient than AtlasRRT at exploring the

constrained space. TB-RRT comes at cost of overlapping tangent spaces which leads to less

uniform sampling. Futhermore, TB-RRT’s lazy interpolation causes potential problems with

invalid points such as failing to check collisions with narrow configuration space obstacles.

AtlasRRT has been the focus of multiple extensions, improving its capability and aug-

menting its guarantees. As mentioned above, one of the critical problems with generating

a tangent space around a point is handling singularities, as the Jacobian of the constraint

function loses rank and a tangent space can no longer be computed. In [107] a method was in-
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troduced on top of the AtlasRRT planner to plan for singularity-free paths. AtlasRRT has also

been extended to be asymptotically optimal in the vein of RRT
∗ [7] with AtlasRRT

∗ [108].

AtlasRRT
∗ provides the same theoretical guarantees of asymptotic optimality, while also re-

specting the geometric constraints imposed on the system. There has also been an extension

to kinodynamic planning, or planning with non-holonomic constraints, utilizing the basic

framework of AtlasRRT in [109]. Like CBIRRT2, both TB-RRT and AtlasRRT are emulated

within the proposed framework, as shown in Chapter 4.4.

Discussion Atlas-based approaches make a trade-off between representational com-

plexity and computational efficiency that pays off in many problem instances. For constraint

manifolds that have complex structure and high curvature, maintaining the atlas approxi-

mation enables efficient planning regardless of the relative structure of the manifold and

configuration space. For example, a constraint manifold with a toroidal topology with a

narrow inner region would be hard for a projection-based approach to sample and explore

due to the relatively small volume of configuration space that will end up projecting to that

portion of the manifold. Atlas-based approaches would not even notice the difficulty, as

they work off the constructed approximation which is invariant (given appropriate param-

eters) to the constraint and configuration space. This is empirically shown in Chapter 5.3.

Atlas-based approaches are also probabilistically complete [5].

The primary downside to atlas-based approaches is the difficulty of implementation,

as the atlas data-structure needs to be efficient and correct as it this construction is done

during planning. Beyond this, there are also issues of diminishing returns with respect to

the co-dimension of the constraint manifold relative to the ambient configuration space [1].

For constraints that only have a few equality constraints relative to the configuration space,

maintaining an approximation of the manifold is computationally inefficient. The tangent
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Figure 3.7 : Reparameterization-based constrained handling. A new configuration space is

computed from the manipulator and constraint, reparameterizing the space (white square).

a) samples can be draw from the reparameterized space and mapped back into the original

configuration space (black arrows). Local planning is shown in b). Interpolation is done

within the reparameterized space and mapped back into the original configuration space.

space does not buy much over doing projection sampling in this case, as there is little

difference between the constraint manifold and the ambient space.

3.5.2.5 Reparameterization Methods

Overview In some cases, the constraint function and manipulator topology lend them-

selves to reparameterization, where another configuration space is generated for the robot

and constraint where each configuration fully describes the robot’s state and contains only

configurations that satisfy the constraint. This potentially allows for any unconstrained

planner to be utilized on top of a new configuration space, enabling the machinery of the

planner to function unaffected while satisfying constraints. Atlas-based approaches and
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others that use tangent spaces to the manifold can be thought of as reparameterization-based

approaches, but a distinction made with the organization as presented here is the idea of

precomputation versus online exploration and constructions. The reparameterization-based

approaches presented in this subsection are usually computed before planning, while the

tangent space based approaches generally are generated online for computational efficiency.

Additionally, reparameterization is distinct from the tangent space and atlas approaches.

Reparameterization creates a global, non-linearly-related space to the configuration space

while tangent space- and atlas-based methods create local, linear approximations.

Literature Reparameterization-based methods utilize the constraint and properties of

the manipulator to generate a new, reparameterized configuration space, which is then

mapped back into the original configuration space. Examples of this are the deformation

space for planar closed-loop systems [110] and reachable volume space [111] for general

kinematic chains. Generally, these methods have their own methods for sampling within

their reparameterized space (shown in Figure 3.7a), and their own methods of stepping

within the reparameterized space (shown in Figure 3.7b). Deformation space reparameter-

izes closed-loop planar systems by encoding the “deformation” of the closed-loop within

the reparameterized space. The deformation space encodes the configuration as a decom-

position of triangles that form the polygon formed by the manipulator. Reachable volume

space exploits properties of the joints within a kinematic chain (prismatic, revolute, and

spherical) to generate reachable volumes of each frame of the manipulator. These are akin

to Minkowski sums [3], but describe the subset of the workspace a manipulator can reach.

The planner requires computing the volumes before planning, but is efficient and can scale

to very large problem instances (around 70 degrees of freedom) [111].
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Discussion Reparameterization-based approaches are appealing from a sampling-based

planning perspective. If it was possible to simply plan within the space that contained only

satisfying configurations, the constrained planning problem can be reduced to the uncon-

strained instance. For the unconstrained problem, this would be akin to planning only within

the free configuration space. However, each of the reparameterization-based approaches re-

quires a phase of precomputation to generate the reparameterized space. Reparameterization-

based approaches heavily rely on geometrical properties of the manipulator, and use knowl-

edge of the constraint and manipulator’s shape to efficiently encode the problem. They are

also generally limited to a specific model of robot (e.g., planar chains, closed loop systems)

as reparameterization-based approaches require knowledge of the structure of the constraint

in order to create the reparameterized space. These methods are also generally complex to

implement, which prevents wide-spread applicability to many different robotic systems.

3.5.2.6 Offline Sampling

Offline sampling to solve constrained planning problems introduces a methodology or-

thogonal to those aforementioned. In offline sampling methods, the underlying constraint

manifold is sampled before planning takes place, generating a precomputed database of con-

straint satisfying samples. The way these samples are generated is generally unimportant to

the remainder of the planning approach, and one can utilize any of the methodologies that

have been described above. Normally, projection-based approaches are used due to their

ease of implementation and guarantee to cover the manifold within the limit of sampling [4].

First, samples are drawn to cover the area of interest in the satisfying subset defined by the

constraint and placed within a database. Planning then takes place using standard sampling-

based planning techniques, but with the planner taking its samples from the precomputed

set of configurations. This approach of precomputing a set of constraint satisfying configu-
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rations was employed by [112, 113] to satisfy balancing constraints on a humanoid robot.

Additionally, more structure can be imbued to the set of samples to generate a “roadmap” of

valid motions on the surface of the manifold [114, 74], akin to experience-based planners

for the unconstrained instance of the planning problem [115]. The self-motion manifold of

a robot’s end-effector can also be precomputed utilizing “roadmap”-based methods, describ-

ing a database of inverse kinematic solutions [116].

Offline sampling-based methods have the benefit of leveraging existing techniques

within the sampling-based planning literature, as they generally require minimal adapta-

tion of a planning algorithm after the precomputed set of samples is generated. Planning

is also decoupled from database generation, so the constraint sampling methodology best

suited towards the particular constrained planning problem can be used. These techniques

come with the obvious drawback of the need for precomputation, and the inflexibility that

comes with generating a database offline. However, for intrinsic constraints of the robot,

such as dynamic stability for humanoids or satisfying configurations of closed chain systems,

precomputation might be the correct answer to avoid repeating computation online. Addi-

tionally, precomputation-based approaches that apply to changing environments require an

element of online planning to handling changing obstacle configurations and potentially

invalidates edges in an offline-computed roadmap.

3.5.3 Summary

The techniques discussed above cover a spectrum of methods to compute satisfying config-

urations for constrained motion planning. The spectrum describes the amount of effort the

constraint methodology is using to more closely plan using the true implicit manifold. On

one end of the spectrum are projection-based methods, which use little information about

the constraint. On the other end lie approaches such as atlas-based methods, which compute
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considerable information about the constraint in order to approximate the implicit manifold.

Constrained sampling-based planning covers a large variety of methods that allow

sampling-based planning algorithms to incorporate geometric motion constraints. These

methods have been shown to be effective on many real-world scenarios. However, there is

as of yet no consensus about which approach is best suited for which types of constraints.

This likely depends on several factors: the dimensionality of the configuration space, the

(co-)dimension of the constraint manifold, the degree of clutter in the environment, and

so on. One factor that has not been considered in previous work is whether new explo-

ration/exploitation strategies for planning on implicit constraint manifold are needed. As

mentioned, uniform sampling and measuring distance along manifolds is either impossible

or computationally very expensive. This raises the question whether a planner that depends

less on uniform sampling and distance could be designed for planning with constraints.

As a first step towards unifying the approaches presented here, this thesis presents a

unified framework for sampling-based planning with constraints that abstracts away the

specifics of sampling and interpolating on constraint manifolds (Chapter 4). The proposed

framework allows any sampling-based algorithm that is not specifically designed for con-

straints to plan considering constraints, using a constraint methodology presented above.
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Chapter 4

The Framework

This chapter is organized as follows. First, the requirements for the proposed framework are

discussed in Section 4.1. Next, the framework is discussed at an abstract level in Section 4.2

and describe how each of the space primitives utilized by a sampling-based planner are

conceptualized. Then, in the following sections, emulations of three successful and widely

known methodologies are shown within the framework: CBIRRT2 [4] in Section 4.3, and

Tangent Bundle RRT (TB-RRT) [6] and AtlasRRT [5] in Section 4.4.

4.1 Key Components

As described in Chapter 3.4.4, sampling-based planners have similar requirements from the

robot’s configuration space [14]. However, as detailed in Chapter 3.5, constrained sampling-

based planning introduces new challenges that must be appropriately handled when using

primitive operations from the configuration space. The primary capabilities required are the

following primitives previously presented in Chapter 3.4.4, detailed here with appropriate

context.

Samplers Sampling “uniformly” over the space or nearby known states to generate new

configurations, which can be grown towards or connected to the motion graph.

Metrics & nearest-neighbor data structures Computation of distance between states, to

select nearby states in the motion graph to either extend from or connect to.
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Local planner Linear interpolation on a geodesic, or moving between two states, so that

new states can be created or validated through extension or connection.

Coverage estimates “Projection” for estimating configuration space coverage in relation

to a task, so that the planner can measure progress and sampling can be directed

towards uncovered regions (Note this is not a projection operator as described in

Definition 2.6).

These can be defined as operations on the space itself and need not be specific to any

planner. The contribution of this thesis is a conceptual framework, outlined within Sec-

tion 4.2, that enables a broad class of motion planners to plan in many constrained spaces by

exploiting the commonality of the spaces’ primitive operations. This decouples constraints

from a planner by augmenting the space with primitives that automatically satisfy imposed

constraints.

4.2 Conceptual Framework

A sampling-based planning algorithm plans within a configuration space Q, and generates

a collision-free path by using a validity checker along with properties of the configuration

space, shown in Figure 4.1a. Prior works augmented the planning algorithm with a means to

find constraint satisfying motions, shown in Figure 4.1c. In contrast, the framework is a layer

of abstraction that lies between the representation of the robot’s configuration space and the

sampling-based planner used to find valid motions, shown in Figure 4.1d. The framework

can be thought of as a representation of the implicit manifold X defined by the constraint

function F , and a means for a sampling-based planner to plan within this space.
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Figure 4.1 : A depiction of the framework and its relation to sampling-based planners. a) A

box configuration spaceQ is shown in black. A sampling-based planner (purple) plans inQ

using primitives afforded by the space. b) A constraint function F(q) = 0 defines a implicit

manifold X (green). c) An augmented constrained sampling-based planner (yellow) (e.g.,

CBIRRT2, etc.) plans on X , using its constraint methodology. d) The proposed framework

enables any sampling-based planner (such as the unaugmented planner) to plan on X by

incorporating Q and the constraint function F(q) = 0.

4.2.1 Samplers

Critical to sampling-based planners is the ability to sample new configurations in the con-

figuration space (Sample in Figure 3.1). This is normally as simple as drawing uniformly

random values from Q. However, with an implicit manifold, the structure of the manifold

is not known a priori, and is thus hard to sample uniformly without careful consideration

or pre-processing. How this sampling is done is contingent on the specific constrained
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space, but the framework does not guarantee that it will produce uniform samples. Instead,

the framework simply guarantees that any instantiation of a constraint methodology will

almost-surely sample any volume of non-zero measure within the manifold.

4.2.2 Metrics & Nearest-Neighbor Data Structures

Normally, the distance metric utilized by a sampling-based planner is defined by the config-

uration space. This metric is primarily for nearest-neighbor computation, by which states

nearby states can be found (e.g., Select and SelectNghbrs in Figure 3.1). For exam-

ple, a point robot in R
3 and a manipulator arm with Q⊆ R

n commonly use the Euclidean

norm. However, the notion of distance in the ambient space has little meaning on the im-

plicit manifold, as the manifold can twist and curve relative to the ambient space [77].

As the framework represents the implicit manifold of a constraint, a natural metric to use

would be the Riemannian metric, or the length of the geodesic between points. However,

this is computationally infeasible, as nearest-neighbor computations would require many

geodesic computations. As such, the metric from the configuration space is used unless

otherwise specified, defining a semi-metric on the manifold, as the triangle inequality may

not hold given sufficient curvature. This is still “good enough” for most motion planning

algorithms in practice, but some theoretical guarantees may not hold, such as asymptotic

optimality. Note that using the ambient metric as opposed to more appropriate metrics is

the state-of-the-art in regards to other constrained sampling-based planners, and a still open

question.

4.2.3 Local Planner

Computing geodesics from configuration qa to qb normally has an analytic form, such as

linear interpolation in R
n. Geodesic movement underlies Extend and Connect, as shown
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Figure 4.2 : Projection-, tangent bundle-, and atlas-based geodesic interpolation. Between

points (large black) on the implicit manifold (green), the discretized geodesic is computed

(black). a) Projection-based (CBIRRT2). Small extensions are taken (grey) and projected

using a projection operator (arrow). b) Tangent bundle-based (TB-RRT). The manifold

is lazily evaluated with tangent spaces (grey), projecting when necessary. c) Atlas-based

(AtlasRRT). Tangent spaces are traversed, projecting at every step.

in Figure 3.1. For implicit manifolds, traversing geodesics is one of the biggest hurdles to

cross. Traversing a geodesic in configuration space and attempting to “fix-up” the new

configuration ignores the manifold’s curvature and can generate invalid motions. Thus,

geodesic interpolation within the framework is akin to a local motion planner, computing

a discretized geodesic by growing from one state to another, taking small enough steps to

accurately traverse the manifold’s curvature. The way this traversal is accomplished is up to

the instantiation of the methodology behind the framework, and is one of the defining traits

of a constrained space. Figure 4.2 shows three local planning methodologies to compute

discretized geodesics used by the three spaces in the framework. Once the discretized

geodesic is computed, an interpolated state can be computed along the found geodesic, by

doing piece-wise interpolation.
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4.2.4 Coverage Estimates

Similar to the metric upon the space, “projection” for coverage estimates is left unaffected

by the framework. As they are heuristics to bias sampling, projections are problem specific

and are typically hard to devise. Random linear projections perform well in many cases, but

do not incorporate constraint information [75]. Interesting future work would be to utilize

information about the implicit manifold as a projection for coverage estimates.

4.2.5 Summary

In summary, the key idea of the framework is to imbue the implicit constraint manifold with

primitives that closely approximate those that exist for regular configuration spaces. This

allows any sampling-based planner to plan with constraints without any special considera-

tion. The next two sections describe two approaches to sampling and interpolation that are

on opposite ends of the spectrum in terms of amount of information they maintain about the

constraint manifold.

4.3 Emulation of Projection-Based Methodology

One of the simplest methods to sample the constraint manifold is to sample from the con-

figuration space and use the projection operator to retract samples onto the manifold. It was

shown in [4] that sampling with projection will eventually cover the manifold, albeit with

no guarantees on uniformity. Interpolation on the manifold using projection is achieved

using a method similar to the extension method of the CBIRRT2 algorithm [4] (shown

in Figure 4.2a). The projection-based space is emulated within the framework using the

aforementioned methodology. The framework is conjectured to retain the probabilistic com-

pleteness of the overlying planners, following the proof of probabilistic completeness of
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projection-based RRT-like planners in [4].

4.4 Emulation of Atlas-Based Methodologies

As discussed in Chapter 2, an implicit manifold X can be approximated by a set of tan-

gent spaces. A few recent planners use tangent space approximations for efficient sampling

nearby the manifold, such as TB-RRT [6] and AtlasRRT [5]. The planners both sample new

points by sampling within tangent spaces and projecting these points onto the manifold.

Although at first biased towards explored areas, in the limit once the manifold has been fully

explored sampling can approach uniform sampling [5]. These methods can sample within

hard to project areas, such as the interior surface of a highly curved manifold. Geodesic

interpolation is accomplished by walking along the tangent spaces of the approximation,

switching tangent spaces once certain criteria are met. TB-RRT takes a lazy approach to

interpolation, projecting to the manifold only when necessary to switch tangent spaces

(shown in Figure 4.2b). This has the benefit of performing less work computing projections,

but it is harder to do correctly. Extra consideration is needed when performing collision

checking as lazy evaluation generates a relaxed geodesic, which might miss obstacles. At-

lasRRT projects at every step along the approximation, and generates separating half-spaces

to create polytopes of the tangent space for more accurate sampling and interpolation, at the

cost of additional computation (shown in Figure 4.2c). Both of these methods are emulated

within the framework.
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Chapter 5

Experimental Results

This chapter presents and discusses experimental results gather using the proposed frame-

work. The details of the framework’s implementation and the experiments run are given in

Section 5.1. The remaining sections detail specific experiments and their results.

5.1 Setup

The framework was implemented within the Open Motion Planning Library [76] (OMPL),

which has implementations of many popular sampling-based planning algorithms. The

framework fits neatly within OMPL’s notion of a state space, and no modification was

necessary to the implementation of any of the planning algorithms for them to work with

the constrained planning framework. Moreover, all benchmarks were done with a single

set of parameters for each constrained space and planning algorithm, to preserve fairness

across multiple environments. More performance could have been gained by tuning these

for each problem, but a set of reasonable defaults is desirable especially from a naı̈ve user’s

perspective. All benchmarks were performed on workstations with an Intel R© Core
TM

i7-

6700K processor and 32GB of DDR4 RAM at 2400MHz.

The experiments shown here are meant to both demonstrate the effectiveness of the plan-

ning system as well as illustrate concepts that help put the work in context. The following

experiments were done, and illustrate the following points:

Sphere An environment consisting of a sphere constraint within R
3 with three obstacles.
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This experiment compares the run-time of various planners and constraint methodolo-

gies. This experiment shows choice of planner (exploration strategy) can dramatically

effect performance.

Torus An environment with a torus and two obstacles within R
3. This experiment expounds

upon a point made in Chapter , and shows how a problem configuration can affect the

best choice of constraint methodology.

Implicit Chain An environment consisting of a spherically jointed manipulator, implicit

defined by constraints. This experiment changes the number of obstacles in the scene,

and shows how this effect relative performance of planners and constraint methodol-

ogy.

Implicit Parallel Chain An environment with eight parallel implicit chains, creating a

high-dimensional system. This experiment demonstrates the ability of the framework

to scale to large problems by leveraging work in high-dimensional planning with no

modification to the planner.

Additionally, some qualitative results showing asymptotically-optimal planners and

other optimizing techniques in the framework is presented in Section 5.6.

5.2 Sphere Environment

Within the literature of constrained motion planning, most planners are adaptations of

sampling-based planners augmented with a constraint methodology. CBIRRT2 [4], TB-

RRT [6], and AtlasRRT [5], the planners emulated within the framework, all are augmenta-

tions of RRT-Connect [58]. Figure 5.1 shows the “sphere” environment, a two-dimensional
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Figure 5.1 : The “sphere” environment. a) The sphere constraint manifold (grey) with

obstacles (black). The solution path (yellow) runs from the south to north pole. b) Projection-

based RRT
∗ [7] motion graph (green) (Chapter 4.3). c) Tangent bundle-based BIT

∗ [59]

motion graph and tangent spaces (grey) (Chapter 4.4). d) Atlas-based SPARS [117] motion

graph and tangent polytopes (Chapter 4.4).

manifold embedded within R
3, defined by the constraint function

F(q) = ‖q‖−1

The planner must traverse three longitudinal obstacles each with a narrow passage to move

from the south to the north pole. More discussion of the planners shown in Figure 5.1 is
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Figure 5.2 : Timing results from 100 runs of each planner in the “sphere” environment

(Figure 5.1) using the three constrained spaces in the framework. Planners tested are

EST, KPIECE, their bidirectional variants BIEST and BKPIECE [56, 9], RRT [55] and RRT-

Connect [58], and PRM [54]. CBIRRT2, TB-RRT, and AtlasRRT are emulated by RRT-

Connect in their respective constrained space, and perform the worst overall.

given in Section 5.6.

Results of 100 runs of various motion planners within the framework are shown in

Figure 5.2. The planners tested are EST, KPIECE, their bidirectional variants BIEST and

BKPIECE [56, 9], RRT [55] and RRT-Connect [58], and PRM [54]. A coverage estimate

projection was used for KPIECE that mapped the Cartesian configuration space (x,y,z) ∈R3

to spherical coordinates (θ ,φ) ∈ R
2,

θ = arccos(z) and φ = arctan
(y

x

)

Each of these planners were run with the three emulated constraint methodologies in the

framework, the projection-, tangent bundle-, and atlas-based methodologies.

As shown in the Figure 5.2, combinations of planners and constrained spaces within the



55

5 10 15 20 25 30

X-,Y-Axis Bounds

0.0

0.5

1.0

1.5

2.0

2.5

T
im

e
(s
)

Time to Solve vs. Ambient Space Bounds

Projection

Atlas

Figure 5.3 : The “torus” environment (grey) with obstacles (black) and timing results from

100 runs of PRM using the atlas- and projection-based constrained space versus the size of

the x- and y- axes of the ambient configuration space. The z-axis bounds remained constant

throughout this experiment. On the left is a PRM motion graph (green) using the atlas-based

space (tangent polytopes in grey). Projection-based PRM performs orders of magnitude

worse than its atlas-based counterpart.

framework have dramatically different outcomes on planning time. Previous approaches in

the literature are emulated by RRT-Connect within the framework, which is shown to have

the poorest performance overall within the “sphere” environment. For this problem, any of

the other tested planners would be a better selection of planner if speed was the primary

concern.

5.3 Torus Environment

More so, it is not just the planner that matters when approaching a constrained problem,

the ambient configuration space can dramatically effect performance. Consider a “torus”

environment (Figure 5.3), which is a two-dimensional manifold embedded within R
3, with
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a constraint function

F(q) = (3−
√

x2 + y2)2 + z2−2.

The planning problem is to traverse from one end of the torus to the other. There are obsta-

cles bound around the outer surface of the torus, allowing passage only through the inner

hole to traverse from one end to the other. Timing results for the PRM planner using the

projection- and atlas-based methodologies are also shown in Figure 5.3, where the total

volume of the configuration space is varied while the size of the torus remains constant.

As shown by the results, projection-based planning performs orders of magnitude worse

than its atlas-based counterpart and worsens as the volume of the space expands, due to the

inefficiency of sampling configurations that mostly project to the outer surface of the torus.

The atlas-based methodology, which samples directly off of an approximation of the man-

ifold, is unaffected by changes in the ambient configuration space. Projection to the inner

surface of the torus requires sampling inside of the hole of the torus, which becomes less

likely as ambient space expands. The torus example is illustrative of a problem that might

arise on real robotic manipulators, as configuration spaces with revolute joints are toroidal

in topology. It is unknown a priori how obstacles in the environment will interact with

constraints, and no one constraint methodology is equipped to handle every case. Therefore,

the ability to combine and change constraint methodology with a planner is essential to

efficiently planning within different environments.

5.4 Implicit Chain Environment

A general trend observed is that as a planning problem becomes more constrained and the

implicit manifold more curved with respect to the ambient space, atlas- and tangent-bundle-

based methods perform better as the extra computation to maintain the approximation

pays off. However, as the dimensionality of the problem grows, the approximation is less
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Figure 5.4 : Sample solutions paths for the no, one, and two obstacle instances of the

implicit kinematic chain environment. Each of the presented paths was generated using the

atlas-based constraint methodology with the KPIECE planner.

helpful and requires a similar, amortized amount of work as projection does, and projection-

based methods do well. These are not rules written in stone, and there are many problems

which belie their guidance. Take for example the problem of an “implicit chain”, shown in

Figure 5.5. Here, the kinematics are modeled as distance constraints, one for each link, on

a chain with 5 spherical joints. The configuration space is thus R3×5. To further increase

problem complexity, the following additional constraints are imposed:
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Figure 5.5 : The graphs show the cumulative probability of finding a path versus time for

the KPIECE, RRT-Connect, and PRM planners using each constrained space with no surface

obstacles, one obstacle, and two obstacles with antipodal narrow passages. See Figure 5.4

for sample solution paths. 100 runs were used for each cumulative probability curve, with a

time-limit of 30 seconds. Note that the X-axis on each plot is different.

• The end-effector is constrained to the surface of a sphere of radius three,

• Joint 1 and 2 must have the same z-value,
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• Joint 2 and 3 must have the same x-value, and

• Joint 3 and 4 must have the same z-value.

This gives an implicit manifold dimension of six. For a coverage estimate projection, a

Cartesian to spherical coordinate projection was used for the end-effector’s location, map-

ping the configuration space (. . . ,x,y,z) ∈ R
15 to spherical coordinates upon the surface of

the constraint (θ ,φ) ∈ R
2,

θ = arccos
( z

3

)

and φ = arctan
(y

x

)

This captures movement of the chain across the surface of the constraint.

Timing results for this problem are shown in Figure 5.5. The following analysis is for the

KPIECE planner, and results for RRT-Connect and PRM are shown as well. When there are

no obstacles in this scene, tangent bundle-based methods perform the best, while projection-

and atlas-based methods perform equally less. Lazy evaluation of states works in favor

of this problem, as the planner can quickly traverse the constraint manifold. However, as

obstacles are added to the surface of the outer sphere, tangent-bundle performs worse, as

the projection and atlas methods improve relative performance drastically.

While qualitatively similar to KPIECE in many regards, one stand-out difference is the

timing results for projection-based PRM with no obstacles in the scene, which handily

outperforms the other two constraint methodologies. For this problem, projection from

unsatisfying configurations is fairly robust and can provide reasonable answers quickly.

Additionally, geodesically interpolating from distant states is easier in this environment

than constructing an atlas approximation.
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Figure 5.6 : An plan in the “implicit parallel manipulator” environment. The goal is to

move from a flat, rotated configuration to upright. This path was computed using KPIECE

in a projection-based constrained space in a median time of 14.5 seconds. Emulated prior

approaches using RRT-Connect could not solve the problem given 10 minutes of planning

time (over 100 trials).

5.5 Implicit Parallel Chain Environment

One motivating factor of this work was extending constrained planning to high-dimensional

spaces, taking advantage of previous approaches in high-dimensional planning without

any additional cost. Figure 5.6 shows the “implicit parallel manipulator” environment, a

parallel manipulator defined with a set of the “implicit chains,” defined analogously to

the previous example. The end-effectors of the chains are constrained to remain attached

to a shared disk, creating dependencies in their motion. The environment shown has eight

chains with seven links each, for a total ambient space dimensionality of 168. The constraint

manifold is of dimension 99. For a coverage estimate projection, the average height of the

end-effectors was used, mapping R
168 → R. This captures movement of the shared disk

upward, which was critical to the task at hand. Other low-dimensional projections (e.g., x-,

y-, and z-coordinate for the centroid of the disk) performed similarly to the one-dimensional
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projection chosen, albeit slightly worse.

Emulated prior works (with RRT-Connect) were unable to successfully solve this system

given 10 minutes of planning time. Using the KPIECE planner designed for high-dimensional

spaces, the framework can quickly solve (median 14.5 seconds over 100 runs, but with high

variability) this problem while satisfying constraints.

5.6 Other Results

There is little work in the literature on satisfying “soft” constraints in tandem with kine-

matic constraints. “Soft” constraints impose a cost over paths, and introduce a new objective

in planning: finding a feasible path that minimizes the cost of the “soft” constraint. At-

lasRRT
∗ [118] and GradienT-RRT [4] both respect “soft” constraints, but require specialized

implementation and integration with the constraint methodology to work. Within the pro-

posed framework, no additional overhead is necessary for asymptotically optimal planning,

as shown in Figure 5.1, which shows motion graphs for three asymptotically optimal and

near-optimal planners (RRT
∗ [7], BIT

∗ [59], SPARS [117]). In Figure 5.1, the “soft” con-

straint is path length, with the optimal path being the shortest possible path from start to

goal, while respecting constraints. Note that for the “soft” constraint of path length, distance

was defined by the ambient configuration space, not the implicit space. Additionally, path

smoothing, shortening, and interpolation algorithms work with no knowledge of constraints,

as all operations are handled by the framework [8, 60, 61].
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Chapter 6

Conclusion

This thesis has introduced a novel framework for constrained sampling-based planning that

decouples constraint satisfaction from a motion planner’s exploration of a configuration

space. The framework’s capability was demonstrated by showing emulations of the con-

straint satisfaction methodology employed by three constrained planners, CBIRRT2, TB-RRT,

and AtlasRRT. Additionally, a broad range of sampling-based planners have been empiri-

cally tested within the framework for a set of constrained problems and shown that each

planner can operate within the framework’s constraint spaces. The framework is easily

extended to new planners, and new constraint spaces can be adapted to the framework as

its concepts are general to constrained planning. Although there are rough guidelines on

when different constrained planning approaches tend to work better than others, for specific

problems it is difficult to predict which combination of constraint space and planner will

work the best. This further highlights the benefit of decoupling constraints from planning.

Currently, the framework is in the process of being integrated with real robotic plat-

forms, as to apply the techniques seen here in simulation on physical bodies. Future work

for the framework is the implementation of other constraint spaces, such as local tangent

space sampling, adapting the framework for kinodynamic planning with constraints, and

addressing proofs of completeness in light of the framework.

Another direction for future research is the development of a general approach to ma-

nipulation and locomotion planning that automatically identifies transitions from one set

of constraints to another without requiring an hierarchical decomposition. This requires
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new techniques to simultaneously explore different constraint manifolds as well as ways to

transition between them. A methodology to handle this is addressed in [119].

Another avenue for future work is addressing forces while planning with constraints.

Intrinsic to constraints is the application of force in a specific way. For example, writing on

a whiteboard is a planar geometric constraint, but also requires steady application of force to

the board. The direction of force applied is orthogonal to the geometric constraint. Generally,

this is translated into a geometric constraint, as in general planning with forces and dynamics

is much more complicated than planning quasi-statically. Leveraging information from the

constraint methodology could be potentially helpful and make force computations feasible.



64

Bibliography

[1] C. Voss, M. Moll, and L. E. Kavraki, “Atlas + X: Sampling-based planners on con-

straint manifolds,” Tech. Rep. 17-02, Department of Computer Science, Rice Univer-

sity, Houston, TX, June 2017.

[2] J.-C. Latombe, Robot Motion Planning. Kluwer Academic Publishers, 1991.

[3] H. Choset, K. Lynch, S. Hutchinson, et al., Principles of Robot Motion: Theory,

Algorithms, and Implementation. MIT Press, 2005.

[4] D. Berenson, Constrained Manipulation Planning. PhD thesis, CMU, 2011.

[5] L. Jaillet and J. M. Porta, “Path planning under kinematic constraints by rapidly

exploring manifolds,” IEEE Trans. Robot., vol. 29, no. 1, pp. 105–117, 2013.

[6] B. Kim, T. T. Um, C. Suh, and F. C. Park, “Tangent bundle RRT: A randomized

algorithm for constrained motion planning,” Robotica, vol. 34, no. 1, pp. 202–225,

2016.

[7] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion plan-

ning,” Int. J. of Robotics Research, vol. 30, no. 7, pp. 846–894, 2011.

[8] R. J. Geraerts and M. H. Overmars, “Creating high-quality paths for motion planning,”

Int. J. of Robotics Research, vol. 26, no. 8, pp. 845–863, 2007.

[9] I. Şucan and L. E. Kavraki, “Kinodynamic motion planning by interior-exterior cell

exploration,” in Int. Wksp. on the Algorithmic Foundations of Robotics, 2008.



65

[10] Z. Kingston, M. Moll, and L. E. Kavraki, “Decoupling constraints from sampling-

based planners,” in Int. Symp. Robotics Research, 2017. (To Appear).

[11] W. Baker, Z. Kingston, M. Moll, J. Badger, and L. E. Kavraki, “Robonaut 2 and you:

Specifying and executing complex operations,” in IEEE Wksp. on Advanced Robotics

and its Social Impacts, 2017.

[12] M. Spivak, A Comprehensive Introduction to Differential Geometry. Publish or

Perish, 1999.

[13] W. C. Rheinboldt, “MANPAK: A set of algorithms for computations on implicitly

defined manifolds,” Computers & Mathematics with Applications, vol. 32, no. 12,

pp. 15 – 28, 1996.

[14] S. M. LaValle, Planning Algorithms. Cambridge University Press, 2006.

[15] J. F. Canny, The Complexity of Robot Motion Planning. MIT Press, 1988.

[16] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile robots,” Int.

J. of Robotics Research, vol. 5, no. 1, pp. 90–98, 1986.

[17] J. Barraquand and J.-C. Latombe, “Nonholonomic multibody mobile robots: Con-

trollability and motion planning in the presence of obstacles,” Algorithmica, vol. 10,

no. 2, pp. 121–155, 1993.

[18] M. Phillips, V. Hwang, S. Chitta, and M. Likhachev, “Learning to plan for constrained

manipulation from demonstrations,” Autonomous Robots, vol. 40, no. 1, pp. 109–124,

2016.

[19] J.-C. Latombe, “Motion planning: A journey of robots, molecules, digital actors, and

other artifacts,” Int. J. of Robotics Research, vol. 18, no. 11, pp. 1119–1128, 1999.



66

[20] B. Gipson, D. Hsu, L. E. Kavraki, and J.-C. Latombe, “Computational models of

protein kinematics and dynamics: Beyond simulation,” Annual Review of Analytical

Chemistry, vol. 5, pp. 273–291, 2012.

[21] A. P. Ambler and R. J. Popplestone, “Inferring the positions of bodies from specified

spatial relationships,” Artificial Intelligence, vol. 6, no. 2, pp. 157–174, 1975.

[22] M. T. Mason, “Compliance and force control for computer controlled manipulators,”

IEEE Trans. on Syst., Man, and Cybernetics, 1981.

[23] O. Khatib, “A unified approach for motion and force control of robot manipulators:

The operational space formulation,” IEEE J. Robot. Autom., vol. 3, no. 1, pp. 43–53,

1987.

[24] Y. Zhang and K. Hauser, “Unbiased, scalable sampling of protein loop conformations

from probabilistic priors,” BMC Structural Biology, vol. 13, no. 1, p. S9, 2013.

[25] J. S. B. Mitchell, D. M. Mount, and C. H. Papdimitrious, “The discrete geodesic

problem,” SIAM J. on Computing, vol. 16, no. 4, pp. 647–668, 1987.

[26] T. Asano, T. Asano, L. Guibas, J. Hershberger, and H. Imai, “Visibility-polygon

search and Euclidean shortest paths,” in Annual Symp. on Foundations of Computer

Science, pp. 155–164, 1985.

[27] C. Alexopoulos and P. M. Griffin, “Path planning for a mobile robot,” IEEE Trans.

on Syst., Man, and Cybernetics, vol. 22, no. 2, pp. 318–322, 1992.

[28] M. Stilman, “Global manipulation planning in robot joint space with task constraints,”

IEEE Trans. Robot., vol. 26, no. 3, pp. 576–584, 2010.



67

[29] J. H. Yakey, S. M. LaValle, and L. E. Kavraki, “Randomized path planning for

linkages with closed kinematic chains,” IEEE Trans. Robot. Autom., vol. 17, no. 6,

pp. 951–958, 2001.

[30] J. Mirabel, S. Tonneau, P. Fernbach, et al., “HPP: A new software for constrained

motion planning,” in IEEE/RSJ Int. Conf. on Intell. Robots and Syst., pp. 383–389,

2016.

[31] L. Sentis and O. Khatib, “Synthesis of whole-body behaviors through hierarchical

control of behavioral primitives,” Int. J. of Humanoid Robotics, vol. 2, no. 4, pp. 505–

518, 2005.
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[75] I. A. Şucan and L. E. Kavraki, “On the performance of random linear projections for

sampling-based motion planning,” in IEEE/RSJ Int. Conf. on Intell. Robots and Syst.,

2009.
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