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Abstract

The ProbabilisticRoadMap planner (PRM) has been applied with success to multiple planning
problems involving robots with 3 to 16 degrees of freedom (dof) operating in known static
environments. This paper describes the planner and reports on experimental and theoretical
results related to its performance. PRM computation consists of a preprocessing and a
query phase. Preprocessing, which is done only once for a given environment, generates a
roadmap of randomly, but properly selected, collision-free configurations (nodes). Planning
then connects any given initial and final configurations of the robot to two nodes of the
roadmap and computes a path through the roadmap between these two nodes. The planner
is able to find paths involving robots with 10 dof in a fraction of a second after relatively short
times for preprocessing (a few dozen seconds). Theoretical analysis of the PRM algorithm
provides bounds on the number of roadmap nodes needed for solving planning problems in
spaces with certain geometric properties. A number of theoretical results are presented in this
paper under a unified framework.

4.1 Introduction

Path planning for robots in known and static workspaces has been studied extensively over
the last two decades [Lat91]. Recently there has been renewed interest in developing planners
that can be applied to robots with many degrees of freedom (dof), say 5 or more. Indeed,
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2 KAVRAKI AND LATOMBE

an increasing number of practical problems involve such robots, while very few effective
motion planning methods are available to solve them. Besides its use in robotics, planning
with many dof is becoming increasingly important in emerging applications, e.g., computer
graphic animation, where motion planning can drastically reduce the amount of data input by
human animators [KKKL94], and molecular biology, where motion planning can be used to
compute motions of molecules (modeled as spatial linkages with many dof) docking against
other molecules [Kav97].

In this paper we describe the Probabilistic RoadMap planner (PRM). This planner has been
applied with success to multiple planning problems involving robots with 3 to 16 dof moving
in static environments. PRM computation is organized in two phases: the preprocessing
phase and the query phase. During the preprocessing phase a probabilistic roadmap is
constructed by repeatedly generating random free configurations of the robot and connecting
these configurations using some simple, but very fast motion planner. We call this planner
the local planner. The roadmap thus formed in the free configuration space (C-space [LP83])
of the robot is stored as an undirected graph. The configurations are the nodes of the graph
and the paths computed by the local planner are the graph edges. This phase is concluded by
some processing, which selectively adds nodes in parts of the free C-space with the goal of
improving the roadmap connectivity. Following the preprocessing phase, multiple queries can
be answered. A query asks for a path between two free configurations of the robot. To answer
a query PRM first attempts to find a path from the start and goal configurations to two nodes
of the roadmap. Next, a graph search is performed to find a sequence of edges connecting
these nodes in the roadmap. Concatenation of the successive path segments transforms the
sequence found into a feasible path for the robot. Two snapshots along a path produced by
PRM for a rigid 6-dof robot are shown in Figure 4.1.

In this paper we describe the PRM algorithm as this has evolved through our previous work
presented in [Kav95, KL94a, KL94b, KŠLO96] and report a number of experimental results.
We also discuss the theoretical analysis of the planner developed in [KKL96, KLMR95]
and outline a unified framework for this analysis. In particular, we discuss the notion of
“goodness” properties [BKL

�
97] and evaluate the performance of PRM under the assumption

of � -goodness and expansiveness for the solution space and ������� -goodness for the planned
path.

The organization of the paper is as follows. Section 4.2 gives an overview of some previous
research and relates our work to this research. Section 4.3 describes PRM in general terms, i.e.,
without focusing on any specific type of robot. Both the preprocessing and the query phases
are discussed here in detail. Next, in Section 4.4, we present some experiments with rigid and
articulated robots. Section 4.5 presents a unified framework for analyzing the performance of
PRM and outlines a number of theoretical results. Section 4.6 summarizes the paper.

4.2 Relation to Previous Work

Robot path planning has been proven a hard problem [Rei79]. There is strong evidence that
its solution requires exponential time in the number of dimensions of the C-space, i.e., the
number of degrees of freedom of the robot. The reader is referred to [Lat91, KLMR95] for an
overview of the complexity of several complete planners and related hardness results.

Recently there has been renewed interest in developing practical path planners [Lat91,
BKL

�
97]. These planners embed weaker notions of completeness (e.g., probabilistic

completeness) and/or can be partially adapted to specific problem domains in order to boost

cbook 26/2/1998 22:49—PAGE PROOFS for John Wiley & Sons Ltd (jwcbook.sty v5.0, 17-4-1997)



PROBABILISTIC ROADMAPS FOR ROBOT PATH PLANNING 3

Figure 4.1 A 6 dof rigid robot moving through a narrow door.

performance in those domains.
Some of the most impressive results have been obtained using potential field methods.

Such methods are attractive, since the heuristic function guiding the search for a path, the
potential field, can easily be adapted to the specific problem to be solved, in particular
the obstacles and the goal configuration. The main disadvantage of these planners is the
presence of local minima in the potential fields. These minima may be difficult to escape.
Local minima-free potential functions (also called navigation functions) have been defined in
[Kod87, RK92, BL91]. But these functions are expensive to compute in high-dimensional C-
spaces and have not been used for many-dof robots. One of the first successful potential field
planners for robots with many dof is described in [FT89]. This planner employs a learning
scheme to avoid falling into the local minima of the potential field and has been applied with
some success to robots with up to 6 dof. However the bookkeeping done during the learning
phase becomes impractical when the dof grow larger.

Techniques for both computing potential functions and escaping local minima in high-
dimensional C-spaces were presented in [BL91, BLL92]. The Randomized Path Planner
(RPP) described in [BL91] escapes local minima by executing random walks. An analysis
of this planner is initiated in [LL96]. RPP has solved many difficult problems involving
robots with 3 to 31 dof. It has also been used in practice with good results to plan motions
for performing riveting operations on plane fuselages [GMKL92], and to plan disassembly
operations for the maintenance of aircraft engines [CL95]. Additionally, RPP has been
embedded in a larger “manipulation planner” to automatically animate scenes involving
human figures modeled with 62 dof [KKKL94]. However, several examples have also been
identified where RPP behaves poorly [CG93]. In these examples, RPP falls into local minima
whose basins of attraction are mostly bounded by obstacles, with only narrow passages to
escape. The probability that any random walk finds its way through such a passage is almost
zero, while the use of several potential functions that can prevent this from happening is rather
time consuming.

Other interesting lines of work include the method in [BF94] which is based on a
variational dynamic programming approach and can tackle problems of similar complexity
to the problems solved by RPP. In [GG90, GZ94] a sequential framework with backtracking
is proposed for serial manipulators, and in [CH92] a motion planner with performance
proportional to task difficulty is developed for arbitrary many-dof robots operating in cluttered
environments. The planner in [Kon91] finds paths for 6-dof manipulators using heuristic
search techniques that limit the part of the C-space that is explored, and the planner
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4 KAVRAKI AND LATOMBE

in [ATBM92] utilizes genetic algorithms to help search for a path in high-dimensional C-
spaces. Parallel processing techniques are investigated in [CG93, LPO91]. Hybrid methods
are discussed in [CQM95].

The planning method presented in this paper differs significantly from the methods
referenced above, which are for the most part based on potential field or cell decomposition
approaches. Instead, PRM applies a roadmap approach [Lat91], that is, it constructs a roadmap
of paths in the free C-space. Previous roadmap methods include the visibilitygraph [LPW79],
Voronoi diagram [OY82], and silhouette methods [Can88]. All these three methods compute
a roadmap that completely represents the connectivity of the free C-space. The visibility
graph and Voronoi diagram methods are limited to low-dimensional C-spaces. The silhouette
method applies to C-spaces of any dimension, but its complexity makes it little practical.

Roadmaps have also been built and used incrementally in several other planners. The
planner in [CL90] incrementally builds the skeleton of the C-space using a local opportunistic
strategy. This work has inspired the approaches in [RC94, CB94] which construct retracts of
the free C-space using sensor data and thus do not assume that the (static) environment in
which the robot moves is known a priori. The approach in [Che92] builds a sparse network of
robot subgoals with the use of a simple and a computationally expensive planner.

The randomized techniques of PRM were initially presented in [KL94a, KL94b]. Parallel
independent work was done in [Ove92, ŠO97, OŠ95]. A common paper from the two groups
was published in [KŠLO96]. The work in [HST94], again done independently, describes ideas
similar to PRM. Applications to non-holonomic robots were investigated in [Šve97, ŠO97].
Applications to many-dof holonomic robots were discussed in [Kav95, KL94a, KL94b,
KŠLO96]. The theoretical analysis of PRM was initiated in [KKL96, KLMR95], while
[BKL

�
97] presents PRM in the context of randomized approaches to robot path planning and

[HLM97] extends PRM to a new planner that is able to deal with difficult assembly problems.

4.3 The PRM Planner

We now describe PRM in general terms for a holonomic robot without focusing on any
specific type of robot. During the preprocessing phase a data structure called the roadmap
is constructed in a probabilistic way for a given scene. The roadmap is an undirected graph���������
	��

. The nodes in
�

are a set of configurations of the robot appropriately chosen over
the free C-space. The edges in

	
correspond to (simple) paths; an edge between two nodes

corresponds to a feasible path connecting the relevant configurations. These paths, which we
refer to as local paths, are computed by an extremely fast, though not very powerful planner,
called the local planner. During the query phase, the roadmap is used to solve individual path
planning problems in the input scene. Given a start configuration 
�������� and a goal configuration

������
� , the method first tries to connect 
�������� and 
������
� to some two nodes 
��������� and 
�������
� in

�
.

If successful, it then searches
�

for a sequence of edges in
	

connecting 
��������� to 
�������
� . Finally,
it transforms this sequence into a feasible path for the robot by recomputing the corresponding
local paths and concatenating them.

We assume here that the preprocessing phase is entirely performed before any path planning
query. However, the preprocessing and query phases can be interwoven, giving a learning
flavor to PRM. For instance, a small roadmap could be first constructed; the roadmap
could then be augmented (or reduced) using intermediate data generated while queries are
being processed. This interesting possibility will not be explored in the paper, though it
is particularly useful to conduct trial-and-error experiments in order to decide how much
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PROBABILISTIC ROADMAPS FOR ROBOT PATH PLANNING 5

computation time should be spent in the preprocessing phase.
In our description below, let

�
denote the robot’s C-space and

���������
its free subset (also

called the free C-space).

4.3.1 The Preprocessing Phase

The preprocessing phase consists of three successive steps: roadmap construction, roadmap
expansion, and roadmap component reduction. The objective of the construction step is to
obtain a reasonably connected graph and to make sure that most “difficult” regions in this
space contain at least a few nodes. The expansion step is aimed at further improving the
connectivity of this graph. It selects nodes of

�
which, according to some heuristic evaluator,

lie in difficult regions of
� ���	�
�

and expands the graph by generating additional nodes in
their neighborhoods. Hence, the covering of

� �������
by the final roadmap depends on the local

intricacy of
� ���	�
�

. The final step, the component reduction step, is optional and is included
here for completeness.

Roadmap Construction

Initially the graph
� � � ��� 	 �

is empty. Then, repeatedly, a random free configuration is
generated and added to

�
. For every such new node 
 , we select a number of nodes from the

current
�

and try to connect 
 to each of them using the local planner. Whenever this planner
succeeds to compute a feasible path between 
 and a selected node 
�� , the edge

� 
 � 
 � � is added
to
	

. To make our presentation more precise, let:

�
� be a symmetrical function
� ���	����� � ���	�
������� �����

, which returns whether
the local planner can compute a path between the two configurations given as
arguments;�
� be a function

� � � � � �
� ��� �
, called the distance function, defining

a pseudo-metric in
�

. (We only require that � be symmetrical and non-
degenerate.)

The roadmap construction step algorithm can be outlined as follows:

1.
�����

2.
	����

3. loop
4. 
 � a randomly chosen free configuration.
5.

�! "�
a set of candidate neighbors of 
 chosen from

�
.

6.
�#� � � � 
 �

7. forall 
 �%$ �" 
, in order of increasing � � 
 � 
�� � do

8. if & same connected component
� 
 � 
�� �%' � � 
 � 
�� � . then

9.
	�� 	 � � � 
 � 
�� ���

10. Update
�

’s connected components.

Several choices for the steps of above algorithm are still unspecified. In particular, we need
to define how random configurations are created in step 4, propose a local planner for 8, clarify
the notion of a candidate neighbor in 5, and choose the distance function � in 7.
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6 KAVRAKI AND LATOMBE

Creation of random configurations. The nodes of
�

should constitute a rather uniform random
sampling of

� ���	���
. Every such configuration is obtained by drawing each of its coordinates

from the interval of allowed values of the corresponding dof using the uniform probability
distribution over this interval. The obtained configuration is checked for collision. If it is
collision-free, it is added to

�
; otherwise, it is discarded.

The local planner. Two issues need to be addressed for the local planner. One is whether
the planner should be deterministic and the other how fast this planner should be. There are
tradeoffs with both issues. If a non-deterministic planner was used, local paths would have to
be stored in the roadmap and the roadmap would require more space. Also, a more powerful
local planner will be slower than a less powerful one; but because it would be more successful
in finding paths, it would require a smaller number of roadmap nodes. Our best experimental
results have been obtained when the local planner is deterministic and very fast. These results
were also independently confirmed in [Ove92, OŠ95, Šve97].

A quite general such local planner, which is applicable to all holonomic robots, connects
any two given configurations by a straight line segment in

�
and checks this line segment for

collision and joint limits (if any). Verifying that a straight line segment remains within the
joint limits is straightforward. Collision checking can be done by recursively decomposing
the line segment into two halves and checking for collision the middle configuration until a
prespecified resolution has been achieved [BL91].

The node neighbors. Another important choice to be made is that of the set
�  

, the candidate
neighbors of 
 . The local planner will be called to connect 
 with nodes in

�  
and the

cumulative cost of these invocations dominates preprocessing time. We avoid calls of the
local planner that are likely to return failure by submitting only pairs of configurations
whose relative distance (according to the distance function � ) is smaller than some constant
threshold maxdist. Thus, we define:

�  � � 
 � $ � � � � 
 � 
 � ��� maxdist
���

Additionally, according to the algorithm outline given above, we try to connect 
 to all nodes
in

�  
in order of increasing distance from 
 ; but we skip those nodes which are in the

same connected component as 
 at the time the connection is to be tried. By considering
elements of

�  
in this order we expect to maximize the chances of quickly connecting 
 to

other configurations and, consequently, reduce the number of calls to the local planner (since
every successful connection results in merging two connected components into one). In our
experiments we found it useful to bound the size of the set

�� 
by some constant � . This

additional criterion guarantees that, in the worst case, the running time of each iteration of the
main loop of the construction step algorithm is independent of the current size of the roadmap�

. Thus, the number of calls to the local method is linear in the size of the graph it constructs.

The distance function. The function � is used to both construct and sort the set
�� 

of
candidate neighbors of each new node 
 . It should be defined so that, for any pair

� 
 � 
 � �
of configurations, � � 
 � 
�� � reflects the chance that the local planner will fail to compute
a feasible path between these configurations. One possibility is to define � � 
 � 
�� � as a
measure (area/volume) of the workspace region swept by the robot when it moves along
the path computed by the local planner between 
 and 
 � in the absence of obstacles. Thus,
each local planner would automatically induce its own specific distance function. Since
exact computation of swept areas/volumes tends to be rather time-consuming, a rough but
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PROBABILISTIC ROADMAPS FOR ROBOT PATH PLANNING 7

inexpensive measure of the swept-region gives better practical results. Very simple distance
measures also seem to give good results. For example, when the general local planner
described above is used to connect 
 and 
�� , � � 
 � 
�� � may be defined as follows:

� � 
 � 
 � � � �������� robot

�
	 � 
 ��� 	 � 
 � � � � (4.1)

where
	

denotes a point on the robot,
	 � 
 � is the position of

	
in the workspace when the

robot is at configuration 
 , and
�
	 � 
 ��� 	 � 
�� � � is the Euclidean distance between

	 � 
 � and	 � 
�� � .

Roadmap Expansion

If the number of nodes generated during the construction step is large enough, the set
�

gives a fairly uniform covering of
� ���	�
�

. In easy scenes
�

is then well connected. But in
more constrained ones where

� ���	�
�
is actually connected,

�
often consists of a few large

components and several small ones. It therefore does not effectively capture the connectivity
of
� �������

.
The purpose of the expansion is to add more nodes in a way that will facilitate the formation

of a large component comprising as many of the nodes as possible and will also help cover the
more “difficult” (narrow) parts of

� �������
. The identification of these difficult parts of

� ���	�
�
is

no simple matter and the heuristic that we propose below clearly goes only a certain distance
in this direction.

For each node 
 found during graph construction, we define a weight � � 
 � , which should
be large whenever 
 “is in a difficult region”. Additionally, the weights for all 
 should add
up to

�
. Let us now call the expansion of node 
 the creation at random of another node in

the free neighborhood of 
 . The following is then the heuristic scheme that we propose. We
add a user specified number � of new nodes to our collection. This time instead of choosing
them at random, we choose a node among the

�
ones which the roadmap construction step

generated with probability: ��� � 
 is selected
� � � � 
 ���

and we expand that node 
 . The simplest way to expand 
 is to perform a short random-
bounce walk starting from 
 . A random-bounce walk consists of repeatedly picking at random
a direction of motion in

�
and moving in this direction until an obstacle is hit. When a collision

occurs, a new random direction is chosen. And so on. We repeat this until a maximum number
of steps have been attained (typically in the order of 45). The final configuration 
 � reached by
the random-bounce walk and the edge

� 
 � 
�� � are inserted into
�

. Moreover, the path computed
between 
 and 
�� is explicitly stored, since it was generated by a non-deterministic technique.
We also record the fact that 
 � belongs to the same connected component as 
 . Then we try
to connect 
 � to the other connected components of the network in the same way as in the
construction step. The expansion step thus never creates new components in

�
. At worst, it

fails to reduce the number of components. We repeat the above process � times (good values
of � are between

�����
and

�
), creating � new nodes in

�
.

If the function � � 
 � adequately identifies the difficult parts of
� ���	�
�

, our heuristic will
tend to fill these parts more than others. Thus it is essential to choose � � 
 � carefully. In our
experiments we use the results of roadmap construction to build � � 
 � . We define the degree�  

of a node 
 as the number of connections that 
 has with other nodes at the end of the
roadmap construction. Then:

cbook 26/2/1998 22:49—PAGE PROOFS for John Wiley & Sons Ltd (jwcbook.sty v5.0, 17-4-1997)



8 KAVRAKI AND LATOMBE

� � 
 � �
�

�  � � �
�
�

�����

�
� � � � �

We regard this number as a measure of the “difficulty” of the C-space region in which the node
lies. Nodes with low degree are in “difficult” parts of

� ���	���
. It is crucial to retain such nodes

since they may lie in narrow passages of
� ���	���

and may contribute to producing a connected
roadmap in

� ���	���
.

Component Reduction

Typically the roadmap expansion step yields one connected component comprising most of
the produced nodes, when

� � � is large enough. Of course, this is not the case when
� ���	���

is not connected. There are also difficult examples where
� �������

is connected but our local
planner failed to achieve some crucial connections.

There are difficult examples where a few large components remain at the end of graph
expansion. Then we have two choices. The first is to continue adding nodes until a maximum
amount of time has elapsed. This is our preferred course of action and in most problems
PRM will quickly find a large connected component of

�
that captures the connectivity of the

underlying space. The second option, presented here for completeness, is to use a powerful
planner to attempt connections among any remaining components.

We can proceed as follows. For any two components, starting with the largest, we select a
pair of nodes, � in the first and 
 in the second, which are close to each other (according to
the C-space metric � ). In our implementation RPP [BL91] is called to connect � and 
 . If it
produces a connection, the two connected components are merged into one, and a new pair
of components is considered. Instead, if it fails to produce a connection within some short
time bound, a different pair of � and 
 is chosen and a new connection is attempted. In this
way we avoid getting stuck at a case that may be hard for RPP, or even impossible (if the two
components are not path-connected in

� �������
). The process is repeated a few times for each

pair of components. Eventually, if RPP fails to produce a connection, we consider that the
components cannot be connected and we retain them as they are. Connection paths computed
during that step are recorded, since their recomputation would be relatively expensive.

4.3.2 The Query Phase

During the query phase, paths are to be found between arbitrary input start and goal
configurations 
 ������� and 
 ������� , using the roadmap constructed in the preprocessing phase.
Assume for the moment that

� ���	�
�
is connected and that the roadmap consists of a single

connected component
�

. We try to connect 
 ��� � � and 
 �����
� to some two nodes of
�

,
respectively 
��������� and 
�������
� , with feasible paths

�
������� and

�
�����
� . If this fails, the query fails.

Otherwise, we compute a path
�

in
�

connecting 
��������� to 
�������
� . A feasible path from 
 ������� to

������
� is eventually constructed by concatenating

�
������� , the recomputed path corresponding to�

, and
�
�����
� reversed. This path may be improved by running a smoothing algorithm on it.

Possible smoothing techniques include the one in [LTJ90], which selects random segments of
the global path and tries to shortcut them by using the local planner, and the method in [BG94],
which iteratively performs local geometric operations (i.e., cutting off triangle corners).

The main question is how to compute the paths
�
��� � � and

�
�����
� . The queries should

preferably terminate quasi-instantaneously, so no expensive algorithm is desired here. Our
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PROBABILISTIC ROADMAPS FOR ROBOT PATH PLANNING 9

strategy for connecting 
 ������� to
�

is to consider the nodes in
�

in order of increasing
distance from 
 ��� � � (according to � ) and try to connect 
 ��� � � to each of them with the local
planner, until one connection succeeds or until an allocated amount of time has elapsed. If
all connection attempts fail, we can perform one or more random-bounce walks, as described
in Section 4.3.1. But, instead of adding the node at the end of each such random-bounce
walk to the roadmap, we now try to connect it to

�
with the local planner. As soon as 
���� � �

is successfully connected to
�

, we apply the same procedure to connect 
������
� to
�

. The
reconstruction of a robot path from the sequence of nodes in

�
reduces to the concatenation

of the paths that take the robot between adjacent nodes in
�

. Some of these paths have
been produced by random-bounce walks during the preprocessing phase and are stored in
the relevant edges of

�
. Paths corresponding to connections that have been found by the local

planner are recomputed.
In general, however, the roadmap may consist of several connected components

� � ,� ����� � � � � � ���
. This is usually the case when

� ���	���
is itself not connected. It may also happen

when
� �������

is connected, for instance if the roadmap is not dense enough. If the roadmap
contains several components, we try to connect both 
 � � ��� and 
 �����
� to two nodes in the same
component, starting with the component closest to 
 ������� and 
 ������� . If the connection of 
 ��� � �
and 
 �����
� to some component

� � succeeds, a path is constructed as in the single-component
case. The method returns failure if it cannot connect both 
 ������� and 
 ������� to the same roadmap
component. Since in most examples the roadmap consists of rather few components, failure
is rapidly detected.

If path planning queries fail frequently, this is an indication that the roadmap may not
adequately capture the connectivity of

� �������
. Hence, more time should be spent in the

preprocessing phase, i.e.,
� � � should be increased. However, it is not necessary to construct

a new roadmap from the beginning. Since the preprocessing phase is incremental, we can
simply extend the current roadmap by resuming the construction step algorithm and/or the
expansion step algorithm, starting with the current roadmap graph, thus interweaving the
preprocessing and the query phases.

4.4 Experimental Results

We demonstrate the application of PRM to one example in detail and briefly report on
its performance with a couple of other examples. Other experiments can be found in
[Kav95, KL94a, KL94b, KŠLO96]. The planner is implemented in C and for the experiments
reported here we used a DEC Alpha workstation. This machine is rated at 126.0 SPECfp92
and 74.3 SPECint92.

A 2D articulated robot

We use as a first example a planar articulated robot with an arbitrary number of revolute
joints. Figure 4.2 illustrates such a robot in which the links are line segments. The shape of
the links may actually be any polygon. Points � � through ��� (in the figure, k=6) designate
revolute joints. Point � � denotes the base of the robot; it may, or may not, be fixed relative
to the workspace. The point ��� ( ��� in the figure) is called the endpoint of the robot.
Each of the rest of the revolute joints � � has defined internal joint limits, denoted by �
	�� �
and � � � , with ��	�� ��
 � � � . If the robot’s base is free, the translation of � � is bounded
along the

	
and � axes of the Cartesian coordinate system embedded in the workspace
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J 1

J 2

J 3

J 4

J 5

J6

Figure 4.2 A planar articulated robot.

by �
	�� � and � � � , and ��	�� � and � � � , respectively. We represent the C-space of such a�
-link planar articulated robot by

� �������
	
�
����������������� ��������	��
���
�
, if its base is fixed, and

by
� ��������	
�
� �!�"�#� ������$!	
�
�%$&�"�'� ()	
*!+,�"�-� �����/.0	
�
�1.��"�'���0�2�-� ����� � 	
�
� � �3	

if its base is free. A
self-collision configuration is any configuration where two non-adjacent links of the robot
intersect each other. We do not allow such configurations. Thus,

���������
is constrained by the

obstacles and by the set of self-collision configurations. We outline below our choices for the
implementation of PRM when these are different from the ones described in Section 4.3.

The local planner. The planner of Section 4.3 attempts to connect two configurations by a
straight line in

� ���	�
�
and for articulated robots gives reasonably good results. However, a

planner that proved better for articulated robots is the following. Let � and 
 be the two
configurations we attempt to connect and � � � � � �
� � � be the points on the robot as shown in
Figure 4.2. We simultaneously translate every second � � , that is � 4  � � � , � � � � � � ��� � � � , along
the straight line in the workspace that connects its workspace position at configuration � to its
workspace position at configuration 
 . Then we adjust the positions of ��4  � , � � � � � � � ��� � �

,
by computing the inverse kinematics of the robot. In this way the ��4  � ’s follow the motion
initiated by the �14  � � � ’s. If

�
is even then the position of � � is not determined by the above.

It can be determined by moving the last dof of the robot (the one that specifies the position
of � � ) on a straight line in

�
so that it reaches its desired value in configuration 
 . If during

the motion, the robot collides with an obstacle or with itself, or if a joint reaches a limit, or an
adjustment is impossible, the planner fails. The planner generalizes directly to 3D articulated
robots and any kind of robot for which we can move a few of its dof at a certain direction and
adjust the others.

The distance function. Let � � � 
 � , � � � � � � ��� �
denote the position of � � (see Figure 4.2), when

the robot is at configuration 
 . We define the distance � � 
 � 
 � � between any two configurations

 and 
�� as:

� � 
 � 
 � � �65 ��

� ���
�
��� � 
 � � ��� � 
 � � � 4�7 �
8�4

�

where
�
� � � 
 � � � � � 
�� � � is the Euclidean distance between � � � 
 � and ��� � 
�� � . This distance is

quick to compute and has an intuitive meaning for articulated robots.

Collision checking. Collision checking for planar robots can be implemented using a
discretized C-space bitmap for each link of the robot. We assume that each link of the robot
is free to translate and rotate and we precompute for it a 3D C-space bitmap that explicitly
represents the free subset of the link’s C-space (the “0”s) versus the part that gives rise to
collision with an obstacle (the “1”s). When testing for collision, PRM tests each link against its
C-space bitmap, which is very fast. This technique is practical only for 2D workspaces, since
3D workspaces would require the generation of 6D bitmaps. For our examples we discretize
each dof to 128 values and we compute the C-space bitmaps with the use of the Fast Fourier
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������

� 4� �

Figure 4.3 A 2D articulated robot with a fixed base and 7 revolute joints.

� ��� ���
� T ��� ��� � � T
� �	� Collision Avg. Success Rate (%)

(sec) (sec) (sec) checks nodes
�
�

� 4 ��� ���
20.1 13.1 7.0 621943 1062 100.0 36.7 56.7 36.7
30.1 19.5 10.6 889384 1643 100.0 66.7 70.0 66.7
40.3 26.3 14.0 1145091 2233 100.0 90.0 86.7 90.0
50.3 32.7 17.6 1392454 2783 100.0 96.7 96.7 96.7
60.2 39.1 21.1 1631612 3284 100.0 100.0 100.0 100.0
70.3 45.8 24.5 1876006 3805 100.0 96.7 100.0 96.7
80.4 52.2 28.2 2104209 4272 100.0 100.0 100.0 100.0

Figure 4.4 PRM applied to the 2D 7-revolute-joint robot.

Transform [Kav93]. For self-collision, each link of the robot is tested against the others.

Experiments. Figure 4.3 shows four configurations forming the test set of an articulated robot
in a scene with several narrow gates. The robot has a fixed base, denoted by a square, and 7
revolute dof.

The table in Figure 4.4 reports the success rates of connecting the configurations in the
test set to roadmaps obtained with different preprocessing times. The preprocessing time,
T ��� ���
� , is shown in column 1. It is broken into T ��� ��� � � and T

� �	� , the times spent in roadmap
construction and expansion, in columns 2 and 3 respectively (note that T

� �	� is approximately�
��

of T ��� ���
� � . Also, maxdist

� � � �
(the workspace is 
 � ���	� � 
 � ���	� ), � ��
 �

, and the
number of steps of the random bounce are 45.

For every row in Figure 4.4 we independently generated 30 roadmaps, each with the
indicated preprocessing time. The roadmaps generated for different rows were also computed
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12 KAVRAKI AND LATOMBE

Figure 4.5 Fixed-base robot with 8 spherical joints (16 dof).

independently, that is, no roadmap in some row was reused to construct a larger one in the
followingrow. Column 4 in Figure 4.4 gives the average number of collisionchecks performed
during the preprocessing phase for different preprocessing times. Column 5 in Figure 4.4
reports the average number of nodes, over the 30 runs, in the largest roadmap component
at the end of the preprocessing phase. The largest connected component of each roadmap
is used for query processing. Columns 6 though 9 are labeled with the four configurations� � � � � �
� � � of Figure 4.3. The columns report the success rate when trying to connect, in
less that 2.5 seconds, the corresponding configuration to each of the 30 produced roadmaps.
One trial was made per roadmap. Note that after a preprocessing of 50 sec, the success rate
of connecting each of

� � � � 4 � � � � � � to the roadmap is above
��� � ���

. Path planning will
succeed between any two configurations that can be connected to the roadmaps produced as
described in Section 4.3. Typically it took a small fraction of second to reconstruct the path in
the machine used.

A 3D articulated robot

We show in Figure 4.5 four configurations of a 16-dof articulated robot. The robot has a
fixed base and 8 spherical joints. The creation of the random configurations, and the distance
function used are the same as in the 2D case. However, the local planner is a straight-line
planner and collision checking is done by checking each of the links of the robot against all
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Figure 4.6 Rigid robot with 6 dof.

the obstacles. For this example we conducted similar experiments as and in the 2D case and
we found that approximately 769 seconds are needed to produce a roadmap that adequately
captures

� �������
. That roadmap contained approximately

� ��� � �
nodes and the success rate for

the queries was
� � �

or higher, again when allowing 2.5 seconds to process a query.

A 3D rigid robot

Another example is shown in Figure 4.6. This is a rigid robot which needs to go through
a small gate in its workspace. The robot in this case consists of five polyhedral links of the
same size which are rigidly attached to each other. The workspace is such that the robot needs
to rotate while going through the gate. The width of the gate determines the difficulty of the
problem. In our implementation the gate is 2.5 times wider than the smallest dimension of
each robot link. Our implementation choices remain the same as in the 2D case except that
the local planner is the straight-line planner and that collision checking was performed using
RAPID [LMCG95].

Similar experiments over a large number of runs have shown that approximately 1.5 hours
are required to create a roadmap to which all of the configurations in Figure 4.6 can be
connected with probability higher than

� � �
. The roadmap contained

� � � � � �
nodes on the

average. We also note that preprocessing time drops to a fews tens of minutes once the
workspace gate is 5 times wider than the smallest dimension of each robot link.
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14 KAVRAKI AND LATOMBE

4.5 Theoretical Analysis

The intuitive reason for the experimental success of PRM is that there usually exist many
collision-free paths joining two configurations. Hence, to bound the running time of PRM we
assume that

� ���	�
�
satisfies some geometric property capturing the above intuition. We propose

three such properties. Our thesis is that the success of any sampling strategy will stem from a
similar property.

In our analyses, we consider that the key number affecting PRM’s running time is the
number of nodes in the constructed roadmap. Since to generate a single node it might be
necessary to randomly pick several (possibly, many) configurations in

�
, we implicitly assume

that the volume of
� ���	���

relative to the volume of
�

is not too small. If this assumption
is not satisfied, any variant of the roadmap algorithm presented in Section 4.3 will behave
poorly. In this case, we should probably make the additional assumption that a few free
configurations are given (after all, every query will specify two such configurations); then,
a possible sampling strategy could be to build a roadmap by generating nodes in small regions
centered at the given configurations, first, and at the newly generated nodes, next.

Note that bounding the number of nodes is not sufficient to bound the running time of PRM,
because it does not account for the running time of the local planner. Suppose that two nodes
can be connected by the local planner but the path connecting them is arbitrarily close to the
free space boundary. Then the local planner may have to break it into arbitrarily many small
segments [BKL

�
97]. This problem could be eliminated by computing the volume swept out

by the robot when it moves between two configurations along a straight path in
�

, but this
computation can be very expensive.

4.5.1 Basic-PRM

For our analysis we rid the planner of choices that were made to improve its performance and
do not consider the roadmap expansion step of the preprocessing. We call this new planner
basic-PRM.

Let � be the nodes in the constructed roadmap. We say that configuration 
 can “see”
configuration 
 � if it can be connected to it by a local planner. The preprocessing step is
as follows:

Preprocessing:
1.

� � �
.

2. While
� 
 � do:

(a) Pick a configuration 
 in
�

at random.
(b) If 
 is in

� ���	�
�
then

i. Store 
 as a node of the roadmap.
ii.

� � � � �
.

3. For every pair of nodes call the local planner.
4. Pick one representative node from each component of the current roadmap.

Let
�

be the set of these representative nodes. Invoke Permeation
��� �

to
improve the connectivity of the nodes (see below).

Note that steps 1-3 are as in the roadmap construction step of PRM in Section 4.3, while
step 4 corresponds to the roadmap component reduction step of Section 4.3. The result of
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the preprocessing should be a roadmap
�

such that no two components of
�

are in the same
component of

� �������
. Step 3 may fail to find all possible links between the nodes due to the

incompleteness of the local planner. Permeation invoked in step 4 fixes this problem by
using the complex planner to discover additional connections between nodes. We assume that
this complex planner is error-free in that it discovers a path between two given configurations
whenever one exists, and reports failure when there is none. But of necessity such a complete
planner is expensive to run, and so we seek to use it sparingly.

The query processing is handled by the following algorithm:

Query-Processing
� 
 ��� � � � 
������
� � :

1. For
� � � � � � � ��� 	 ��� � do:

(a) If there exists a node m that sees 
 � then � � � � .
(b) Else

i. Repeat
�

times:

Pick a configuration q uniformly at random in a neighborhood of 
��
until q sees both 
�� and a node m.

ii. If all
�

trials failed then return FAILURE and halt, else � � � � .

2. If � ������� and � �����
� are in the same component of the roadmap then return YES;
else return NO.

Step 1(b)i differs slightly from the corresponding step of the query-processing algorithm in
Section 4.3. Picking configurations in this set requires guessing configurations in C-space and
retaining only those that are seen by 
 � . This means that each of the

�
iterations performed

at Step 1(b)i may require several trials to obtain a configuration visible from 
 � . The analysis
proposed below ignores these trials and focuses only on the number

�
. Another difference

between the above algorithm and the one of Section 4.3 is that it returns FAILURE (instead of
NO) at Step 1(b)ii. Due to the use of the Permeation in the preprocessing, both the answers
YES and NO are now always correct. With some probability though, the query-processing
algorithm may fail to give an answer.

4.5.2 Visibility Assumption: � -goodness

For any configuration 
 $ � ���	�
� , let � � 
 � consist of all those configurations 
�� $ � ������� that 

sees. We denote the volume of a subset � of

�
by � � � �

.

Definition 4.5.1 Let � be a positive real. A configuration 
 $ ��������� is � -good if � � � � 
 �����
�	� � � ���	��� � . Furthermore,

� ���	�
�
is � -good if all the configurations it contains are � -good.

The visibility volume assumption made here is that
� �������

is � -good, that is, each
configuration in it sees a significant portion of

� �������
. The underlying intuition is that it is

then relatively easy to pick a set of nodes that, collectively, can see most of
� ���	�
�

. But the
assumption fails to prevent

� �������
from containing narrow passages through which it might be

difficult to connect nodes. For example, consider the case where
�

is two-dimensional and� �������
consists of two disks of equal size that overlap by a very small amount. Then

� ���	���
is

� -good for ��
 � �
�
. But the probability that any node in one disk sees a node in the other

disk is very small. For this reason, we need the third step of the preprocessing of PRM which
employs a powerful complex planner.
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16 KAVRAKI AND LATOMBE

Let us now present some performance guarantee for the preprocessing phase. Call a set of
nodes almost complete if the volume of the subset of

���������
not visible from any of these nodes

is at most
� � ��� � � � � ���	��� � . Intuitively, if we were to place a point source of light at each node,

we would like a fraction at least
� � � � � of

� �������
to be illuminated.

Theorem 4.5.1 Assume that
� �������

is � -good. Let
�

be a constant in
� � ���	�

and � be a positive
real large enough that for any

	 $ � � ��� �
,
��� � 	 ����� 8 ����� 	�
�� 4�8 ��
�� � 	 � ���

. If � is chosen such
that:

� � �
�
������� �

�
� ����� �� ���

then preprocessing generates an almost complete set of nodes for
� ���	�
�

with probability
at least

� � �
.

For the proof of this theorem see [KLMR95]. Note that the probability that a roadmap does
not provide almost complete coverage of

� ���	�
�
decreases exponentially with the number of

nodes. Also, as � increases, the requirement for an almost complete set grows weaker, i.e., the
portion of the free space that has to be visible by at least one node gets smaller. Intuitively, this
comes from the fact that a greater � will make it easier to connect query configurations to the
roadmap. Naturally, the number of nodes needed becomes smaller. Theorem 4.5.1 only says
that most of

� ���	�
�
is likely to be visible from some node in the roadmap; using this property

alone, we can show that queries can be answered quickly [KLMR95]:

Theorem 4.5.2 Let the number of iterations
�

at Step 1(b)i of query-processing be set
to

����� � ����� �
, where

�
is a constant in

� � ���	�
. If an almost complete set of nodes has been

chosen, then the probability that query-processing outputs FAILURE is at most
�

.

In order to ensure a good probability that the query processing outcomes YES or NO,
we need to use the complex planner in Permeation to determine which nodes of

�
are

reachable from each other. By calling the complex planner we partition
�

into subsets such
that all the nodes in the same subset belong to the same component of

� �������
and no two nodes

in two different subsets are in the same component of
� �������

. If � is the size of
�

, this can be
done with � � � 4 � invocations of the complex planner by trying it on every pair of nodes in

�
.

In [KLMR95] we present a randomized algorithm for solving permeation. Suppose there are�
components in

�
. The analysis of the algorithm in [KLMR95] shows that the worst case is

when all components are equal to � � � and then the expected cost of permeation is � � � � � .
When there is one giant component and

��� �
components of size � �����

the expected cost is� � � � � 4 � , which is shown to be the non-deterministic lower bound.

4.5.3 Visibility Assumption: Roadmap Connectedness

The � -goodness assumption does not prevent the existence of narrow passages in
� ���	�
�

. In
the presence of narrow passages, preprocessing may require a considerable amount of
time to build a connected roadmap due to the calls to the complex planner. Intuitively what
happens is that a very small subset of

� �������
at the one end of the passage sees a large fraction

of
� ���	���

at the other end of the passage. Therefore, the probability that preprocessing
will pick nodes outside the passage that see each other is small. Similarly, the probability of
picking a node inside the passage decreases as the passage gets narrower.
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To remove the need for the “complex planner” we now introduce the notion
of expansiveness. We first define precisely the kind of roadmap we would like
preprocessing to construct.

Definition 4.5.2 Let
� �������

be an � -good space. A roadmap
�

is an adequate representation of� �������
if its nodes provide an almost complete coverage of

� ���	�
�
and no two components of

�
lie in the same component of

� �������
.

Let
�

be an adequate representation of
� ���	�
�

. Since
� �������

is � -good, no component of
� ���	���

has volume less than � � � � ���	��� � . Therefore, at least one node of
�

lies in every component of� �������
. Since no two components of

�
lie in the same component of

� ���	�
�
, there is a one-to-

one correspondence between the components of
�

and those of
���������

.
Let us refer to the subset of points in

��� � ���	�
�
that can see a large portion of

� ���	�
�����
as

the lookout of
�

. The previous example suggests that we characterize narrow passages by the
minimum volume of the lookout of the visibility set � � 
 � over all 
!$ �����	��� . If a set � � 
 � has
a small lookout, preprocessing will have difficulty computing a roadmap capturing the
connectivity of

� �������
without calling the complex planner.

Definition 4.5.3 Let � be a constant in
� � ���	�

and
�

be a subset of a component
	

of the free
space

� �������
. The � -lookout of

�
is the set:

� -LOOKOUT
� � � � � 
!$ � � � � � � 
 � ��� � � � � � ��	 ��� � � �

Definition 4.5.4 Let � , � , and � be constants in
� � ���	�

. The free space
� �������

is
� � � � � � � -

expansive if it is � -good and for every 
 $ � ������� we have:

� � � -LOOKOUT
� � � 
 ����� � � � � � � � 
 ��� �

Given the above definition for expansiveness we compute an upper bound for the number
of nodes that are needed to build an adequate roadmap without calling the complex planner.

Theorem 4.5.3 Assume that
� ���	�
�

is
� � � � � � � -expansive. Let � be a constant in

� � ��� �
. If � is

chosen such that:
� � � �

�	�
������


�	���
�

�

�
� � �

then preprocessing generates a roadmap that is an adequate representation of
� ���	���

with
probability at least

� � � .
The proof of this theorem is given in [HLM97]. Its significance is twofold. The probability

that a roadmap does not adequately represent
� ���	���

decreases exponentially with the number
of nodes, and the number of nodes needed increases moderately when � , � , and � decrease.

4.5.4 Path Clearance Assumption

Another assumption that removes the need for a complex planner is the path clearance
assumption: we assume that between the two configurations given by a query, there exists
a collision-free path 
 of length � that achieves some clearance � between the robot and the
obstacles.
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18 KAVRAKI AND LATOMBE

More formally, let us parametrize 
 by the arc length
�

from the initial configuration and
let � designate the path’s total length, i.e., 
�� � $ 
 � � � � � 
 � � � $ � ���	�
�

. We define
� � � � to be the Euclidean distance between 
 � � � and the free space boundary, and � ��� � to be�����	� ��
 ��
 ��� � � � � . We consider the version of basic-PRM as outlined in Section 4.5.1 with the
exception of the permeation step. The query-processing algorithm is also simpler than what
we considered in Section 4.5.1, in that it only checks if the initial and goal configurations see
nodes in the roadmap. If any one of these connections fails, the query-processing algorithm
returns NO. Hence, this query-processing algorithm is deterministic.

Under the path clearance assumption, any NO outcome is incorrect. Let � be the probability
that we are willing to tolerate for this event. The following two theorems relate the size of the
roadmap to this probability, as well as to the two parameters of the path-clearance assumption,
that is, the length � of the hypothesized path and its clearance. They give a performance
guarantee for the whole planner.

Theorem 4.5.4 Let � $ � � ��� �
be a positive real constant. Let � be the constant��� � � ��� � � � � � � ���	�
� � where

� � denotes the unit ball in � � . If � is chosen such that:

� �
� ��� ��� ��� � � � � �� � � � � � � � (4.2)

then the planner outputs YES with probability at least
� � � .

Note that, for any given � and � ��� � , the quantity on the left side of the above inequality
tends toward zero when � � �

. It is even more important to remark that it depends
exponentially on � .

The following theorem is similar to the previous one, but makes use of the clearance
distribution � � � � rather than just its infimum:

Theorem 4.5.5 Let � $ � � ��� �
be a positive real constant. Let � be the same constant as in

Theorem 4.5.4. If � is chosen such that:

��� �
� � ��� � � � ��� � � � � � � � �

� � � � ��� � � � (4.3)

then the planner outputs YES with probability at least
� � � .

We refer the reader to [KKL96] for the proof of both theorems above. Relations 4.2 and 4.3
imply that the number of nodes that the planner must generate to output YES with probability
at least

� � � is polynomial in
�
� � ��� � and logarithmic in � .

4.6 Conclusion

We have described PRM, a two-phase method for solving robot motion planning problems
in static workspaces. In the preprocessing phase, PRM constructs a probabilistic roadmap as
a collection of configurations randomly selected across the free C-space. In the query phase,
it uses this roadmap to quickly process path planning queries, each specified by a pair of
configurations. The preprocessing phase includes a heuristic evaluator to identify difficult
regions in the free C-space and increase the density of the roadmap in those regions. This
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feature enables us to construct roadmaps that capture well the connectivity of the free C-
space. The method is general and can be applied to virtually any type of holonomic robot as
described in this paper. Applications to non-holonomic robots can be found in [Šve97, ŠO97].
Finally, the method can be regarded as a learning approach by interleaving the preprocessing
and query processing phases.

The analyses of PRM relate geometric properties of the solution space to the performance
of the planner. We provided performance guarantees for PRM under the assumption of � -
goodness and expansiveness for the solution space, and ������� -goodness for the planned path.
Much work still has to be done to understand the role of the key parameters of PRM and
find out how to adjust them automatically. The expansion step of the preprocessing phase
also deserves closer attention. Our hope is that the analysis of PRM will further contribute to
explaining the excellent experimental results of PRM and suggest sampling techniques that
will improve the performance of the planner.

A challenging goal would also be to extend the method to dynamic scenes. One first
question is: how should a roadmap computed for a given workspace be updated if a few
obstacles are removed or added? Another question worth exploring is how the method can
incorporate dynamic or other constraints for the motion of the robot.
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