In the Proc. of IEEE/RSJ/GI International Conf. on Intelligent Robots and Systems (IROS), 1764-1772, 1994

Randomized Preprocessing of Configuration Space
for Path Planning: Articulated Robots

Lydia Kavraki

kavraki@cs.stanford.edu

Jean-Claude Latombe
latombe@cs.stanford.edu

Robotics Laboratory, Department of Computer Science,
Stanford University, Stanford, CA 94305, USA

Abstract

This paper describes the application of a recent ap-
proach to path planning for robots with many degrees of
freedom (dof) to articulated robots moving in two or three
dimensional static environments. The planning approach,
which itself is not restricted to articulated robots, consists
of a preprocessing and a planning stage. Preprocessing
is done only once for a given environment and generates
a connected network of randomly, but properly selected,
collision-free configurations (nodes). Planning then con-
nects any given initial and final configurations of the robot
to two nodes of the network and computes a path through
the network between these two nodes. We show that af-
ter paying the preprocessing cost (on the order of minutes
on a DEC Alpha workstation), planning is extremely fast
(ranging from a fraction of a second to, at most, a few
seconds) for many difficult examples involving 7-dof and
12-dof robots. The approach is particularly attractive for
many-dof robots which have to perform many successive
point-to-point motions in the same environment.

Acknowledgments: This research was funded by ARPA
grant N00014-92-3-1809.

1 Introduction

We describe the application of a recently developed
path planning method to many-dof articulated robots
operating in two or three dimensional environments.
The planning method carries out a preprocessing of
the configuration space (C-space), after which many
difficult path planning problems can be solved in time
ranging from a fraction of a second to a few seconds in
the worst case.! The preprocessing itself is not very
long: in the order of a few minutes.

During the preprocessing stage a set of collision-
free configurations (nodes) are generated in the free

LAll the running times given in this paper were obtained by
running our planner on a DEC Alpha workstation.

Figure 1: Snapshots along a path of a 12-dof robot

C-space of the robot and interconnected into a net-
work using very simple and fast path planning tech-
niques applied to pairs of neighboring nodes. The net-
work produced has a large number of nodes (order of
thousands). It may contain one or several connected
components, depending on the robot’s free C-space
and on the time spent on preprocessing.

After preprocessing, planning a path between any
two configurations is solved by connecting both con-
figurations to some two nodes A and B in the network,
and searching the network for a sequence of edges con-
necting A and B. The resulting path can be improved
using any smoothing algorithm. The planner fails if
it cannot connect any of the two input configurations
to the network, or if A and B lie in two different con-
nected components of the network.

Extensive experiments have been carried out with
an implementation of the method on a DEC Alpha
workstation. In this paper we report our results for
articulated robots moving in 2D and 3D workspaces.
Difficult planning problems like the one in Fig. 1 are
solved in a fraction of a second after a preprocessing

step of 14 minutes. The robot used in this example
has a fixed base and 6 spherical joints, for a total of 12
dof. Once preprocessing has been done, almost every
path planning query in the same environment can be
solved in a few seconds.

Our approach is particularly suitable for robots
with many dof which perform several point-to-point
motions in known static environments. Examples
of tasks meeting these conditions include inspection
and repair in constrained environments (e.g., nuclear
plants), point-to-point welding operations to assem-
ble the body of a car, and washing/cleaning airplane
fuselages. In such tasks, redundant dof are needed
to achieve some final configuration of the end-effector,
while avoiding collisions of the rest of the arm with the
complicated environment. Programming such robots
is tedious and time consuming. An efficient planner
can considerably reduce the programming burden.

Section 2 gives an overview of previous related re-
search. Sections 3 and 4 describe the preprocessing
and planning stages of our approach. In Section 5
we discuss the implementation of the method for ar-
ticulated robots and in Section 6 we report a series of
experiments conducted with the implemented planner.

2 Relation to Previous Research

Path planning in a known environment has been
studied extensively over the last years [13]. There ex-
ists a strong interest in developing efficient heuristic
planners for many-dof robots, since complete methods
have overwhelming complexity in high dimensions.

Heuristic planners for many-dof robots include the
potential field method proposed in [5], where a learn-
ing scheme is used to avoid falling in the local min-
ima of the potential field function. The quantity of
the stored information however, makes the method
impractical when the number of dof grows too large.
Ways of computing potential functions for many-dof
robots and randomized search techniques to escape lo-
cal minima are introduced in [3]. Other potential field
methods are described in [2]. In [7] a sequential frame-
work with backtracking is described for serial manip-
ulators. Various search techniques that limit the C-
space explored to find a path are investigated in [12]
for 6-dof robots. A planner based on variational dy-
namic programming is introduced in [1]. Genetic algo-
rithms have been employed in [16] and use of parallel
processing techniques is investigated in [4, 15].

Potential field methods seem to be the most efficient
techniques so far for dealing with many dof. Among
them, the Randomized Path Planner (RPP) [3] has
been experimented with for robots having 3 to 31 dof

and is often very efficient. It has also been used in
practice with good results [6]. However, several cases
have been identified where RPP behaves poorly [4, 20].
RPP may fail to find a path in reasonable time if
the robot falls into a local minimum of the potential
field function and the way out of the local minimum
is through narrow passages in the C-space which can
not be easily located with the guidance of the poten-
tial function. RPP attempts to escape this minimum
by performing a series of random walks, but the prob-
ability that any of these walks finds its way through a
narrow passage is almost zero.

The approach discussed in this paper is a learning
scheme that scales efficiently in many dimensions and
it is not restricted to any particular type of robot. Pre-
vious work on the approach is described in [10, 9]. A
similar method developed independently is presented
in [17, 18]. The same authors discuss an application
of their approach to non-holonomic robots in [19]. A
combination of the common ideas in [17, 18] with the
method presented here is attempted in [8].

3 Preprocessing Stage

The preprocessing stage of our planner consists of
the sequence of steps outlined below. In this section
our description is for a general many-dof robot.

1. Graph Construction. During this step random
configurations of the robot (nodes) are generated and
are interconnected with a simple and fast planner.

When generating nodes, care is taken to produce a
rather uniform distribution in the free C-space. For
example, for the robot of Fig. 1, a node is generated
by drawing a value for each of the 12 dof uniformly
from its allowed range. After the 12 random choices
have been made, the resulting configuration is tested
for collision with obstacles and itself. We keep it only
if it passes this test. A prespecified number N of nodes
are computed in the above way. We discuss later how
the choice of N affects the algorithm. In our many-dof
examples, N is in the order of a few thousands.

We now try to interconnect the nodes obtained so
far with a simple and fast planner. Given some metric
in C-space, for each node z, we sort all other accord-
ing to increasing distance from x. Then a simple plan-
ner (see Section 5) tries to connect z to each of the
K closest nodes (K is a parameter). Each successful
connection yields an edge of the network. Robot paths
computed here are not stored since they can easily be
recovered. The connected components of the resulting
network are computed by a breadth-first search.

2. Graph Enhancement. Typically at the end of

step 1 we have a few large components and several
small ones. The purpose of the enhancement is to add
more nodes in a way that will facilitate the formation
of a large component comprising as many of the nodes
as possible and will also help cover the more “difficult”
(narrow) parts of the C-space. The identification of
these difficult parts of the C-space is no simple matter
and the heuristic that we propose below clearly goes
only a certain distance in this direction.

For each node z found during graph construction,
we define a weight w(z), which should be large when-
ever £ “is in a difficult region”. Additionally, the
weights for all x should add up to 1. Let us now
call expansion of node x the creation at random of
another node y in the free neighborhood of z. The
simplest way to do this is to choose each of the pa-
rameters that describe the configuration uniformly at
random from a small interval centered at the value of
the corresponding parameter of z. The following is
then the heuristic scheme that we propose. We add a
user specified number M of new nodes to our collec-
tion. This time instead of choosing them at random,
we choose a node from among those that step 1 gen-
erated with probability

Pr(z is selected) = w(z),

and we expand that node x. If y is the created node we
denote by p(y) node z, that is the node responsible for
y’s creation. We repeat this M times. If function w(z)
adequately identifies the difficult parts of C-space, our
heuristic will tend to fill these more than others.

The essential parameter in our scheme is the func-
tion w(z). A description of possible weight functions
is given in [9]. In our experiments we use the results
of step 1 to build w(z). We define the degree d, of a
node z as the number of connections that z has with
other nodes at the end of step 1, and

1 Yoo
w(w):dz+1 /;dtJrl'

We regard this number as a measure of the “difficulty”
of the C-space region in which the node lies. Nodes
with low degree are in “difficult” parts of the C-space.
It is crucial to retain such nodes since they may lie in
narrow passages of the C-space and may contribute to
producing a connected network in the free C-space.
After all M nodes have been produced (good values
of M are between N/2 and N), we test each node y of
them for connection with its parent node p(y). In the
case of a successful connection, we record the fact that
the new configuration y has been connected with p(y)
and thus with all the nodes in the component of p(y); if

the connection fails the new node is considered as not
belonging to any component yet. Then y is tested for
connection with the K closest among the N + M — 2
other nodes which lie in a different component than
y itself. The effect of the addition of the M nodes
is a larger network, whose connected components are
recomputed. At this stage, components which contain
a small fraction (usually less than 0.5% of the total
nodes) are discarded.

3. Further reduction of the number of com-
ponents. For the examples of this paper, graph en-
hancement yields one connected component compris-
ing most of the nodes, when N + M is large enough.
This component is stored for use during planning.
There are difficult examples where a few large compo-
nents remain at the end of step 2. A powerful planner
can then be used to attempt connections among these
components. This option is explained in depth in [9].

4 Path Planning Stage

Let z and y be the initial and final configurations
of the robot. We first connect z to a node of the
precomputed network. To do this we sort the network
nodes in increasing distance from z and try to connect
x with them, starting with the closest nodes, using the
simple planner. If all these attempts fail, we execute a
random walk of certain length and try to connect the
final configuration of the walk to the network with the
simple planner. The length of the random walk can
be chosen uniformly in the interval [1,maxz_length],
where max_length is a constant. The above step can
be repeated a few times if necessary.

Let A and B be the nodes with which z and y get
connected respectively. A breadth-first search of the
network constructs a path between A and B. This
path is thus the shortest in the number of nodes. The
robot paths connecting successive nodes along this
path are recomputed. The path between z and y can
be smoothed using any standard smoothing technique.

4. Implementation: Articulated Robots

We now discuss the implementation of our method
for 2D and 3D articulated robots. We base our dis-
cussion on the robot of Fig. 2. This planar robot has
5 revolute joints. If its base, that is Ji, can move it
has a total of 7 dof, otherwise it has 5 dof.

1. Generation of random configurations. To cre-
ate a random configuration of the robot we draw each
dof uniformly from its allowed range. Typically a very
small percentage of the randomly guessed configura-
tions are collision-free. Several optimizations can be

J
J2 ‘ J6

J1
J3 ‘]5
Figure 2: The robot

applied in this step. For example if the robot has many
links, we can draw the dof values in sequence and check
for collision as soon as the location of a link gets de-
termined. In our implementation such optimizations
are not performed.

2. Simple Planner. During the graph construction
phase of preprocessing, a planner is needed to obtain
thousands of connections. It is crucial that a sim-
ple and fast planner is used at that stage. The plan-
ner should have high chances of success for connecting
configurations that are close together.

A possible candidate planner is the straight line in
C-space. We have tried this planner and it gives rea-
sonably good results. It is also very simple to imple-
ment for robots moving in 3D workspaces.

Another planner that proved useful for articulated
robots is the following. Let z and y be the two con-
figurations we attempt to connect and Ji,...,J; be
the points on the robot as shown in Fig. 2. We simul-
taneously translate every second J;, that is Jowit1,
i =0,...k/2, along the straight line in the workspace
that connects its workspace position at configuration
z to its workspace position at configuration y. Then
we adjust the positions of Jaxi, i = 1,...%/2, by com-
puting the inverse kinematics of the robot. In this way
the Jo,;’s follow the motion initiated by the Ja.;41’s.
If k is even then the position of Ji is not determined
by the above. It can be determined by moving the
last dof of the robot (the one that specifies the posi-
tion of Ji) on a straight line in the C-space so that it
reaches its desired value in configuration y. If during
the motion, the robot collides with an obstacle or with
itself, or if a joint reaches a limit, or an adjustment
is impossible, the planner fails. The planner gener-
alizes directly to 3D articulated robots and any kind
of robot for which we can move a few of its dof at a
certain direction and adjust the others.

3. Distance between two configurations. We
would like to avoid invoking the simple planner in sit-
uations where it is unlikely to succeed. That is why
we define a distance in C-space and call the planner
only for nodes that are close together.

Let J;(z), 1 = 1,...,k denote the position of J;
(see Fig. 2), when the robot is at configuration z. We
define the distance d(z,y) between any two configura-

tions x and y as
A 1/2
d(z,y) = (Il 7i () —Ji(y)ll2)
=1

where ||J;(z) — J;(y)|| is the Euclidean distance be-
tween J;(z) and J;(y). This distance is quick to
compute and has an intuitive meaning for articulated
robots. Other distances can be used here. For exam-
ple, for fixed-base robots it may be useful to weight
the above sum with large weights assigned to the dis-
tances of the J;’s close to the base and small weights
assigned to the distances of the J;’s towards the free
end of the robot. This is because displacements of the
links near the base have a more significant effect on
the robot than displacements of the end effector.

4. Choosing N. For many-dof robots, this parameter
should be set to at least a few thousands. Increasing
N generally reduces the time needed for path plan-
ning and improves the quality of the path obtained,
but it also increases preprocessing time. If N is set
too small, no nodes may be generated in “difficult”
regions of C-space, thus there will be no enhancement
of these regions during step 2 for preprocessing. N
should be determined by experimentation. For exam-
ple, if path planning often fails, this is an indication
that the network does not capture well the connectiv-
ity of the free C-space and thus N must be increased.

5. Choosing K. During graph construction, we at-
tempt to connect each node = to the K closest nodes
in the network. On the one hand, K should not be too
small, because we want to give our simple planner a
good chance to make connections. On the other hand,
making it too large increases preprocessing time un-
necessarily, since the simple planner cannot connect
nodes that are far apart. A few successful connec-
tions per node are enough to ensure large connected
components. In our experiments we used K = 30.

6. Choosing M. During graph enhancement, we
add M nodes in the “difficult” regions of the C-space.
Setting M between 1/3 and 1/2 of the initial nodes
gives good results. We select a node to be expanded
with the probability distribution function of step 2.
To expand a configuration z we let each dof take a
random value in an interval centered around its value
at z. We set this interval to about 1/6 of the range of
the dof. Also, for fixed-base robots we decrease this
interval as we move towards the base of the robot.
If we considerably vary a dof near the base we may
create a configuration which is not close to the initial
one.

& &
> &€& 4aE

¢ o

¢ o

. @

¢ o

<o @

¢ o

* &

¢ ¢Ve o o 0| oo
& & | & & | & & | & &
radidl IRGRAE NS4 4} 15 40 &

Figure 3: The robot is an articulated linkage with a moving base and 5 revolute joints (7dof)

N M | Final nodes | Prepr. (sec) | C1 C2 | C3 | C4 | C5 | C6 | CT | C8
600 300 236 12.68 0.00 F F F F 1.12 F F
800 400 470 19.67 0.00 F F F F 0.17 F F
1000 | 500 516 26.50 F 0.02 | 0.00 | 0.00 | 0.33 F 0.00 | 0.00
1200 | 600 779 35.18 0.03 F F F F F F F
1400 | 700 1695 42.20 0.02 | 0.02 | 0.00 | 0.02 | 0.12 | 2.42 | 0.00 | 0.00
1600 | 800 1931 49.79 0.02 | 0.02 | 0.00 | 0.02 | 0.12 | 1.15 | 0.00 | 0.00
1800 | 900 2287 58.63 0.12 | 0.00 | 0.02 | 0.00 | 0.25 | 0.40 | 0.02 | 0.00
2000 | 1000 2630 69.40 0.03 | 0.02 | 0.00 | 0.02 | 0.27 | 1.25 | 0.00 | 0.02

Figure 4: Preprocessing and time for connection to networks for Cj,...,Cg of Fig. 3

7. Collision checking. Collision checking for planar
robots can be implemented using a discretized C-space
bitmap for each link of the robot. We assume that each
link of the robot is free to translate and rotate and we
precompute for it a 3D C-space bitmap that explic-
itly represents the free subset of the link’s C-space
(the “0”s) versus the part that gives rise to collision
with an obstacle (the “1”s). When testing for colli-
sion, the planner tests each link against its C-space
bitmap, which is very fast. This technique is practical
only for 2D workspaces, since 3D workspaces would re-
quire the generation of six-dimensional bitmaps. We
use it in our implementation for planar robots (we
discretize each dof to 128 values) and in particular we
compute the C-space bitmaps with the use of the Fast
Fourier Transform [11]. For self-collision, each link of
the robot is tested against the others.

For robots moving in 3D workspaces, we check (an-
alytically) each of their links against the obstacles and
against other links. In this case, collision checking is
more expensive and it increases preprocessing times.

5 Experimental Results

The planner is implemented in C and we used a
DEC Alpha workstation (Model Flamingo rated at
121.5 SPECmark89) running under DEC OSF/1 for
our experiments. We present experiments with a free-
flying articulated robot and a fixed-base manipulator.
In all figures, we draw a square at the base of the robot
to distinguish it from the other end of the robot.

Free-flying Articulated Linkage. Fig. 3 shows a
free articulated robot with 5 revolute joints (7 dof)
and the environment in which it moves through a set
of 8 different configurations. The configurations were
specified manually. Path planning problems can be
defined by selecting any two of these configurations.
Columns 1 and 2 of the table of Fig. 4 show the val-
ues of the parameters N (initial nodes) and M (nodes
added in “difficult” regions). We set M = N/2. Col-
umn 3 gives the number of configurations in the largest
component produced and column 4 the time spent on
preprocessing in seconds. Smaller networks in this ta-

I S S || . | S || . E—— —\-j—
= - - O S S N S S N S N
Cl CQ C3 C4
. S | | | | || — e —
= - - i S S) S S N (s =
Cs Cs Cy Cs
Figure 5: The robot is an articulated linkage with a fixed base and 7 revolute dof
N M | Final nodes | Prepr. (sec) | C1 C2 | C3 | C4 | C5 | C6 | CT | C8
800 400 583 25.69 0.30 F F F F F F F
1000 | 500 977 36.06 0.02 | 0.00 F 0.58 F F 0.03 F
1200 | 600 1150 44.83 0.00 F 0.00 F 4.08 F F 4.02
1400 | 700 1151 60.43 0.02 F F F F 0.57 F F
1600 | 800 2084 69.66 0.02 | 0.07 | 0.02 | 0.47 | 0.00 | 0.05 | 0.02 | 1.37
1800 | 900 2371 80.74 0.02 | 0.02 | 0.02 | 2.87 | 0.00 | 0.02 | 0.02 | 0.03
2000 | 1000 2646 92.78 0.00 | 0.02 | 0.18 | 2.25 | 0.02 | 0.02 | 0.52 | 0.02
2200 | 1100 2940 104.45 0.02 | 0.03 | 0.02 | 0.20 | 0.00 | 0.02 | 0.02 | 0.02
Figure 6: Preprocessing and time for connection to networks for Cy,...,Cs of Fig. 5
N M | Final nodes | Prepr. (sec) || C1 C2 | C3 | C4 | C5 | C6 | CT | C8
1200 | O 615 33.43 0.30 F F F F F F F
1500 | O 827 48.58 0.00 F F F F F F F
1800 | O 1478 61.08 0.02 | 1.37 | 0.00 | 0.55 | 0.43 F 0.58 | 2.08
2100 | O 1197 77.76 0.00 F F F F 0.13 F F
2400 | O 2061 91.18 0.00 | 0.07 | 0.02 | 0.48 | 0.02 | 0.00 | 0.02 | 0.53
2700 | O 1578 106.58 0.00 F F F F 0.00 F F
3000 | O 2615 122.71 0.00 | 1.12 | 0.02 | 1.43 | 0.18 | 0.00 | 0.30 | 0.00
3300 | O 2609 137.73 0.02 | 0.02 F 0.42 F 0.02 | 0.02 F
Figure 7: Preprocessing and time for connection to networks for C4,...,Cg of Fig. 5, when M=0

ble are not part of larger networks; all networks were
produced independently. Preprocessing time includes
the graph construction and graph enhancement time.
In columns 5 through 12 we give the time required to
connect configurations C1, ..., Cs of Fig. 3 to the pre-
computed networks. When this time is 0.00 this means
that it took less than 0.01 seconds to connect the con-
figuration to the network, and when it is more than 1
second, this indicates that a few random walks were
performed. An ‘F’ indicates failure to obtain a connec-

tion of the configuration to the precomputed network
after 30 random walks (their lengths are chosen uni-
formly in the interval [100,10000]). To estimate path
planning time between two configurations we add the
time needed to connect these to the network to the
time required to obtain a path on the network. On
the average, less than 0.1 seconds are spent searching
the networks considered here.

It is clear from the table of Fig. 4 that if a small
network is created, it does not capture well the struc-

i

C 7 CS

Figure 8: The robot has a fixed base and 6 spherical joints (12 dof)

N M | Final nodes | Prepr. (sec) C1 C2 | C3 | C4 C5 Cé C7 C8
500 500 906 134.33 11.93 F F 6.22 | 12.10 | 0.07 F F
800 800 1480 290.84 0.05 | 0.82 | 3.53 | 0.82 F F 19.15 | 0.08
1100 | 1100 2112 475.66 0.07 | 0.20 | 4.05 | 0.07 F F F 4.90
1400 | 1400 2724 686.21 0.08 | 1.53 | 6.37 | 0.28 | 9.87 | 0.83 | 20.52 | 5.92
1700 | 1700 3376 884.23 0.05 | 0.23 | 7.88 | 0.08 | 3.08 | 0.17 | 7.33 4.60
2000 | 2000 3945 1051.84 0.05 | 0.08 | 3.00 | 0.10 | 8.88 | 0.07 | 20.58 | 3.85
2500 | 2500 4973 1432.89 0.07 | 0.70 | 0.05 | 0.50 | 0.05 | 0.07 | 6.30 7.02
3000 | 3000 5995 1837.21 0.10 | 0.10 | 3.65 | 0.83 | 0.17 | 0.87 | 5.32 | 13.53

Figure 9: Preprocessing and time for connection to network for C1,...,Cg of Fig. 8

ture of the robot’s free C-space and attempts to con-
nect configurations Ci,...,Cs to it often fail. Path
planning between any two of the above configurations
will fail if either of them cannot be connected to the
network. However, when N + M is sufficiently large,
a large component comprising most of the generated
configurations is formed and path planning is in the
order of a small fraction of a second. A preprocessing
of 40 seconds is sufficient for this example.

Fixed-Base Articulated Linkage in 2D. We re-
port preprocessing and connection to network times
for another experiment with an 7-dof articulated robot
with a fixed base. A set of 8 different configurations of
the robot is shown in Fig. 5. The results of the method
are given in Fig. 6. Again path planning takes a frac-
tion of a second for most pairs of configurations of
Fig. 5 after a preprocessing step of 70 seconds.

We show in Fig. 7 a similar table to that of Fig. 6
but with results obtained without the enhancement of
the “difficult” regions (M = 0). Comparison between

the corresponding rows of the two tables is possible
because the sum of N + M is the same. We observe
that, in this case at least, the method is not very sta-
ble when enhancement is omitted. For example, for
a small N (N = 1600) and enhancement (M = 800),
we managed to connect all our configurations to the
network produced, but for N = 3300 and without en-
hancement (last row) this did not happen.

For a different seed for the random number genera-
tor, we may obtain a better component for N = 3300
and good timings for the connection of the consid-
ered configurations. For this example, enhancement
helps significantly improve the quality of the results
of the preprocessing phase. It seems that some posi-
tions of the fixed-base robot are very constrained (es-
pecially the ones where the robot goes through one of
the openings in the workspace walls). Enhancement
of these configurations is crucial. For instance, with
N = 1600, M = 800 we obtained one major compo-
nent in 29 out of 40 trials. The corresponding success
for the same total number of nodes and without en-

hancement (N = 2400, M = 0) was only 14 out of 40.

Fixed-Base Articulated Linkage in 3D. We show
in Fig. 8 a 12-dof articulated robot. The robot has a
fixed base and 6 spherical joints. We report in Fig. 9
the performance of our method. The simple planner
used in this case is the straight line in C-space. Note
that preprocessing time increases significantly. This is
due to the fact the collision checking is more expensive
in 3D. Apart from that, the behavior of the method
is the same and planning takes a few seconds, in the
worst case, after a preprocessing of 884 seconds.

6 Conclusion

We have described a new method for planning paths
for many-dof robots. In this paper we analyze the per-
formance of the method for articulated robots with 7
to 12 dof. With our technique, an initial cost is paid
once in preprocessing the C-space. Afterwards, almost
any path planning problem can be solved in a short
time. An element of the success of the method is that
it heuristically identifies the “difficult” regions of the
C-space and enhances the information it has about
them. Our approach is particularly useful in cases
where repeated motions are to be carried out over the
same environment, as is the case for many inspection,
welding, and riveting tasks. Possible extensions of the
approach include:

e Some methods need to be devised to guess good
values of the parameters of our algorithm. Adap-
tive/learning techniques may be useful.

e During path planning the network can be searched
for the shortest path between two nodes, or the path
that keeps a minimum clearance with the obstacles.
In general, we may want to encode some features of
the paths in the network edges and search for optimal
paths for these features during path planning.

e After a path planning query, the network can be
enhanced with the initial /configuration as new nodes,
and the paths that connect these to the network.

o Finally, it is interesting to extend the method to
changing environments.

References

[1] J. Barraquand and P. Ferbach, “Path planning
through variational dynamic programming”, TR 33,
Paris Res. Lab., DEC, Paris, France, 1993.

[2] J. Barraquand, B. Langlois and J.C. Latombe, “Nu-
merical Potential Field Techniques for Robot Path
Planning”, IEEE Tr. on Syst., Man, and Cuyb.,
22(2):224-241, 1992.

[3] J. Barraquand and J.-C. Latombe, “Robot motion
planning: A distributed representation approach”,

[6]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Intl. J. of Rob. Res., 10:628-649, 1991.

D. Challou and M. Gini, “Parallel Robot Motion
Planning”, Proc. of IEEE ICRA, GA, (2):46-51, 1993.
B. Faverjon and P. Tournassoud, “A Practical Ap-
proach to Motion-Planning for Manipulators with
Many Degrees of Freedom”, Robotics Research 5,
H. Miura and S. Arimoto, eds., MIT Press, Cam-
bridge, MA, 424-433, 1990.

L. Graux, P. Millies, P.L.. Kociemba, and B. Langlois,
“Integration of a Path Generation Algorithm into Off-
Line Programming of AIRBUS Panels”, Aerospace
Automated Fastening Conf. and FEzp., SAE Paper
922404, Oct. 1992.

K. Gupta and Z. Guo, “Sequential search with back-
tracking”, Proc. IEEE ICRA, Nice, 2328-2333, 1992.
L. Kavraki, P. Svestka, J.-C. Latombe and M. Over-
mars, “Probabilistic Roadmaps for Fast Path Plan-
ning in High Dimensional Configuration Spaces”, in
preparation, April 1994.

L. Kavraki, J.-C. Latombe, “Randomized Preprocess-
ing of Configuration Space for Fast Path Planning”,
Proc. IEEE ICRA, San Diego CA, 1994.

L. Kavraki, J.-C. Latombe, “Randomized Prepro-
cessing of Configuration Space for Fast Path Plan-
ning”, Tech. Rep. STAN-CS-93-1490, Comp. Sci.
Dept, Stanford Univ., Sept. 1993.

L. Kavraki, “Computation of Configuration-Space
Obstacles using the Fast Fourier Transform”,
Proc. IEEE ICRA, Atlanta, GA, 255-261, 1993.

K. Kondo, “ Motion planning with six degrees of
freedom by multistratergic bidirectional heuristic free
space enumeration”, IEEE Tr. on Rob. and Autom.,
7(3):267-277, 1991.

J.-C. Latombe, Robot Motion Planning, Kluwer Aca-
demic Publishers, Boston, 1991.

J. Lengyel, M. Reichert, B.R. Donald, D.P. Gree-
berg, “Real-Time Robot Motion Planning Using Ras-
terizing Computer Graphics Hardware”, Proc. SIG-
GRAPH 90, Dallas, 327-335, 1990.

T. Lozano-Pérez and P. O’Donnell, “Parallel robot
motion planning”, Proc. IEEE ICRA, Sacramento
CA, 1000-1007, 1991.

E. Mazer, J.M. Ahuactzin, G. Talbi and P. Bessiere,
“The ariadne’s clew algorithm”, manuscript, 1992.
M. Overmars, “A random approach to path plan-
ning”, RUU-CS-92-32, Comp. Sci., Utrecht Univ., the
Netherlands, October 1992.

M. Overmars, P. Svestka, “A probabilistic learning ap-
proach to motion planning” RUU-CS-94-03, Comp.
Sci., Utrecht Univ., the Netherlands, Jan. 1994.

P. Svestka,“A probabilistic approach to motion plan-
ning for car-like robots”, RUU-CS-93-18, Comp. Sci.,
Utrecht Univ., the Netherlands, April 1993.

X. Zhu and K. Gupta, “On local minima and random
search in robot motion planning”, manuscript, 1993.

