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Adaptive sampling methods, often used in combination with Markov state models (MSMs), are
becoming increasingly popular for speeding up rare events in simulation such as molecular dynamics
(MD) without biasing the system dynamics. Several adaptive sampling strategies have been pro-
posed, but it is not clear which methods perform better for different physical systems. In this work,
we present a systematic evaluation of selected adaptive sampling strategies on a wide selection of
fast folding proteins. The adaptive sampling strategies were emulated using models constructed on
already existing simulated MD trajectories. We provide theoretical limits for the sampling speedup
and compare the performance of different strategies with and without using some a priori knowl-
edge of the system. The results show that for different goals, different adaptive sampling strategies
are optimal. In order to sample slow dynamical processes such as protein folding without a priori
knowledge of the system, a strategy based on the identification of a set of metastable regions is
consistently the most efficient, while a strategy based on the identification of microstates performs
better if the goal is to explore newer regions of the conformational space. Interestingly, the max-
imum speedup achievable for the adaptive sampling of slow processes increases for proteins with
longer folding times, encouraging the application of these methods for the characterization of slower

processes, beyond the fast-folding proteins considered here.

I. INTRODUCTION

Molecular dynamics (MD) simulations have become in-
dispensable for gaining insight into molecular systems
at high spatial and temporal resolutions. However, a
key limitation for MD with accurate all-atom force-fields
remains the computational demand for simulating pro-
cesses with long timescales. In particular, biologically
relevant processes, such as protein folding and conforma-
tional changes, typically require simulation time in excess
of milliseconds, while atomic-resolution MD trajectories
can currently reach timescales on the order of microsec-
onds on standard computational resources.

In the last decade, significant efforts have been de-
voted to alleviate the MD timescale problem. In gen-
eral, such efforts can be divided into three broad cat-
egories. In the first category, the use of different
computational resources has allowed the simulation of
longer timescales, either by cumulating trajectories from
massively-distributed computing [1, 2] or by the design of
special-purpose hardware [3]. The second class of meth-
ods can be characterized by their ability to accelerate
the occurrence of rare events in simulation, thereby re-
ducing the actual computational time needed to observe
biophysically relevant processes in practice. Examples in
this class include accelerated MD [4], replica-exchange
MD [5] and metadynamics [6]. While these methods
improve the efficiency of sampling and can be used for
thermodynamics studies, they alter the system’s Hamil-
tonian, and can not be directly used to extract kinetic in-
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formation from the simulation. Path reweighting meth-
ods [7-10] have been recently proposed to recover the
kinetic information after altering the system’s Hamilto-
nian.

The third class of methods can be grouped under the
term adaptive sampling [11-21]. An analysis of the power
and limitation of such methods is the subject of this work.

Instead of simulating long MD trajectories to observe
rare events, adaptive sampling methods take a “divide
and conquer” approach and attempt to iteratively com-
bine many short MD simulations, distributing them in a
way to escape from local free energy minima, and effi-
ciently visit different regions of the conformational space
of the systems of interest. At each iteration, all of the
simulations that have been performed at that point are
pooled and analyzed. New simulations are then initial-
ized by using the information extracted from the analy-
sis of the previous iterations. The main idea of adaptive
sampling is that, by periodically analyzing the confor-
mational space already explored, new simulations can be
restarted in a way that may significantly enhance the
probability of observing rare events. The choice of the
strategy chosen to restart the trajectories is crucial to the
success of the approach, and several different methods
have been proposed [13-17, 22-24]. Recently, enhanced
sampling in combination with adaptive sampling meth-
ods has also been proposed [25].

The popularity of adaptive sampling methods is due to
the significant advances in the analysis of MD trajecto-
ries. In the last decade, different methods have been put
forward to extract essential information from high dimen-
sional MD data to a small number of reaction coordinates
associated with the slow collective processes in the sys-



tem’s dynamics [26, 27]. Such methods include Markov
State Models (MSMs) [28-32], Diffusion Maps [33-36],
likelihood based approaches [37], cut-based free energy
profiles [38], or neural networks [39-41]. In particular,
MSMs provide a good complement for adaptive sampling
as they are designed to handle many short trajectories
and do not require an equilibrium sampling to recover
global thermodynamics and kinetic properties (such as
metastable states, free energy barriers, and transitions
between states), as long as the trajectories are in local
equilibrium.

As mentioned above, different adaptive sampling meth-
ods can be characterized by how the information ex-
tracted from previously explored space is used to initiate
new trajectories at each iteration. Although the power
of adaptive sampling has been demonstrated by success-
ful applications [42-44], there is no general consensus as
to how to choose a particular method over another for
a specific system. If the goal is to simulate a rare event
such as protein folding, does a method based on eigen-
values outperform one based on counts? Could the same
adaptive sampling method be then used for general ex-
ploration of conformational space? Additionally, previ-
ous studies [12-15] report efficiency gains with adaptive
sampling between a factor 2 and a factor of 10. What
characteristics of the system of interest can we use to
predict that a particular adaptive sampling method will
provide a better efficiency gain? Here we present a sys-
tematic study on a number of model systems to address
these questions. In particular, we consider the efficiency
of different adaptive sampling strategies for two different
goals on a number of model systems: to speedup the sim-
ulation time needed to observe a specific rare event, such
as the folding of a protein, or to speedup the exploration
of large regions of the conformational space of the same
protein.

In order to be able to benchmark and compare the
results on different systems, we use previously generated
extensive MD trajectories [45] to generate 8 discrete mod-
els for protein dynamics. The results of this analysis
reveal that different strategies are needed for different
goals. In particular, on-the-fly estimation of global equi-
librium properties from non-equilibrium data is very im-
portant to speedup the folding of a protein, while the
knowledge of equilibrium properties is not needed if the
goal is the exploration of large regions of the conforma-
tional space (independently if folded or unfolded). This
result suggests that different strategies may need to be
combined in various stages of a specific application to
both enhance the occurrence of a rare event and appro-
priately sample the different metastable states. Compar-
ison of the results on different proteins suggest that the
speedup that can be achieved by adaptive sampling is
larger for slower processes, thus encouraging the applica-
tion to more complex systems.

II. METHODS
A. Dataset of Simulations

We used previously existing long all-atom MD trajec-
tories of 8 different small proteins[45], obtained on the
Anton supercomputer, to generate discrete model sys-
tems, as discussed below. The dataset is summarized
in Table I and contains proteins ranging from 10 to 80
residues, with different topologies (a-helices, 3 sheets, or
a mix of both), simulated folding times ranging from 0.6
to 49 us, and different timescale gaps between the folding
process and other competing slow processes.

TABLE I: Previuosly simulated proteins used to
generate discrete models in this study

Protein Name |PDB ID of Folded Structure|Size (# residues)|Folding Time (us) from [45]
Chignolin 2RVD 10 0.6
Trp-cage 2JOF 20 14
BBA 1FME 28 18
WW Domain 2F21 35 21
Protein B 1PRB 47 3.9
Homeodomain 2P6J 52 3.1
a3D 2A3D 73 27
A-repressor 1LMB 80 49

B. Construction of discrete protein models

To emulated adaptive sampling, an MSM was gener-
ated for each protein from the previously existing long
all-atom MD trajectories, then synthetic microstate tra-
jectories are generated by sampling the MSM transi-
tion matrix. An MSM models the system’s dynamics
by discretizing the explored conformational space into a
finite number of states, and estimating their probabil-
ity and the probability of transition between them [28].
The analysis is summarized by a transition matrix, T;;,
that indicates the probability that the system transitions
from state i to state j within a chosen lag time 7. The
discretization of the original conformational space into
states (also called microstates) is usually performed by
clustering the configurations sampled by MD trajectories
using a distance metric that can separate slowly mixing
configurations from rapidly interconverting ones [46, 47].

We have used standard procedures to perform these
steps. In particular, for each protein, we used the Time-
lagged Independent Component Analysis (TICA) [48, 49]
combined with the commute map [46], to reduce the
dimensionality of the system. As an input for TICA,
each conformation was first featurized using all pairwise
inter-residue distances (between the two closest heavy-
atoms) and all dihedral angles along the protein chain.
For smaller systems, the reciprocals of the inter-residue
distances were also used as additional features. The Eu-
clidean distance between the lower-dimensional points in
the commute map space provides a good measure to ob-
tain a kinetically meaningful state decomposition, and
an associated MSM [46]. All conformations were then



partitioned with k-means clustering into 1000 or 2000
microstates, depending on the size of the protein. It was
ensured that the slowest MSM eigenvector is the folding-
unfolding process and all microstates are connected by
removing disconnected microstates. Finally, the transi-
tion matrix for the MSM is computed using maximum-
likelihood estimation with a detailed balance constraint.
The lag time, 7, for the MSM was chosen based on the
convergence of the implied timescales, and the Marko-
vianity property of the MSM was tested by using the
Chapman-Kolmogorov test [28]. All the analysis was per-
formed using the PyEMMA Python package [50] and the
exact parameters for the construction of discrete protein
models for each protein are listed in the Supplementary
material.

C. Simulating Trajectories using MSMs

Adaptive sampling involves iteratively running many
short MD trajectories, and different adaptive sampling
methods differ in how the new structures are chosen to
initialize the next round of MD trajectories. We can sim-
ulate the adaptive sampling process of iteratively running
an ensemble of n MD trajectories using the transition
matrix from an MSM as follows. Note that the restart
strategies here are concerned with selecting states visited
among the discrete set of microstates in the MSM. In ac-
tual molecular dynamics simulations, continuous trajec-
tories in a protein configurational space are used instead
of the synthetic trajectories generated here by jumping
between the different discrete states of an MSM in adap-
tive step 2. Therefore, in actual simulations the anal-
ysis (adaptive step 3 below) involves also the the dis-
cretization of all the available trajectories into a set of
microstates.

Step 1
n Start states

!

finished

Step 2: Step 5:
Simulate n discrete If iterations < max
trajectories
\
Step 3:

Step 4:
Selectn
Restart states

Analyse all previous
trajectories with
chosen strategy

FIG. 1: Adaptive sampling strategy schema

e Adaptive step 1: Start with a randomly chosen

unfolded state from the discrete set of microstates
available for a given protein

e Adaptive step 2: Generate n independent discrete
trajectories (of a fixed length) from the selected
state(s) using the probabilities from the MSM tran-
sition matrix

e Adaptive step 3: Analyze the ensemble of trajecto-
ries generated

e Adaptive step 4: Select n microstates among the
ones visited so far from which to start the next
round of trajectories

e Adaptive step 5: Repeat adaptive steps 2,3 and 4
or finish after a certain number of iterations

We denote the adaptive steps 3 and 4 together as the
restart strategy for an adaptive sampling method. Fig-
ure 1 is a graphical representation of the process. The
different restart strategies that we use in this work are
described in detail in the following section. When using
continuous trajectories from actual molecular dynamics
simulations, the analysis step 3 also includes the dis-
cretization of the continuous trajectories into discrete
trajectories (for instance, by means of TICA and MSM).
Thus, the restart strategy for adaptive sampling in ac-
tual molecular dynamics simulations must also select a
set of individual conformations or frames from the se-
lected microstates to initialize the next MD simulation.
This can be done for example in a uniformly random fash-
ion within the microstate or by selecting a representative
conformation. The length of the trajectories in each iter-
ation can be varied, but it needs to be larger than the lag
time used to generate the MSM. Here we chose the length
of each short MD trajectory the same as the lag time 7,
that is, the analysis is performed after the discrete tra-
jectories have been propagated by one step of length 7.
At each iteration, for a given strategy, the n restarting
points for the new trajectories are chosen independently
of each other.

In order to study the speedup in folding, subsets of
the discrete microstates for each protein are denoted as
folded and unfolded states. Using the PDB files from
Table I, the native contacts are extracted for the folded
structure of each protein. A native contact is defined
if the distance between the two closest heavy atoms in
a pair of residues is 4A or less. For each state in the
MSM, we compute the median number of native contacts
over all the conformations mapped to the state. States
above a threshold value for the number of native contacts
are assigned as a folded state. States below a threshold
value for the number of native contacts are assigned as
an unfolded state. The threshold values for individual
proteins can be found in the Supplementary material.



D. Restart Strategies for Adaptive Sampling

For each protein model, we use the MSM analysis and
adaptive sampling procedure detailed above with differ-
ent restart strategies. We use a number of popular strate-
gies that do not assume a priori knowledge of the system,
such as the microstate counts, or strategies that assume
some a priori knowledge of the system, such as the num-
ber of native contacts.

Here we describe all the restart strategies that we have
used on all the different protein models. Several of these
strategies require to set the value of some parameters,
which are provided in the Supplementary material.

a. MD As a reference, we generate synthetic MD
trajectories without any adaptive choice of the restart
points. No analysis is performed after each iteration, and
each trajectory is restarted from the same state where it
ended in the previous iteration. That is, the restart state
chosen for trajectory n; at iteration ¢ is simply the state
of trajectory n; at iteration ¢t — 1.

b.  Microstate Counts (1/C) One intuitive and pop-
ular restart strategy consists in choosing the restart
states based on how many times the previous trajecto-
ries have visited each state in the conformational space
[13, 14, 17], in order to favor less populated states. In
particular, a given state i is chosen as restart state with a
probability inversely proportional to the number of times
it has been visited.

¢.  Macrostate Counts (1/Cpr) Another count-based
method that has been used in different applications clus-
ters all the visited microstates into fewer metastable
macrostates on-the-fly. Usually, eigenvectors of a matrix
summarizing the sampling performed are used for the
clustering [15, 16]. Here we use the transitions between
all the visited microstates to build an on-the-fly MSM,
and the microstates are clustered into macrostates us-
ing PCCA+ [22]. The restart state is then chosen with
the following procedure. A macrostate is first chosen
with probability inversely proportional to the number of
times the macrostate has been visited. Then a microstate
within the chosen macrostate is chosen with probability
inversely proportional to the number of times the mi-
crostate has been visited. We have tested four varia-
tions of this strategy. The first two variations (named
1/C§;, and 1/C§; ,) make use of the count matrix C;; to
directiy estimate the on-the-fly MSM transition matrix.
The count matrix C;j; contains the number of transitions
that have been recorded in previous iterations from state
i to state j. Every time a state is visited, the correspond-
ing value in the count matrix is incremented by one. This
count matrix is normalized such that each row sums to
one and then used to estimate the on-the-fly MSM for the
adaptive sampling strategies. The two variations differ as
follows:

1/01((;’1: PCCA+ is used to cluster the microstates into
30 macrostates.

1/Cf 5t The number of macrostates generated by

PCCA+ is based on the number of significant
timescales using a 50% kinetic content cutoff [46].

The next two variations (named 1/Cf7, and 1/Cf;,)
are used to estimate the effect of using non-equilibrium
trajectories for the adaptive sampling strategies. Since in
most adaptive sampling methods many relatively short
trajectories are used, the non-equilibrium sampling can
introduce errors in the analysis of these trajectories. Re-
cently, the Koopman reweighting method [51-56] has
been introduced to correct for the non-equilibrium ef-
fects in estimating global equilibrium properties and can
significantly reduce this error. In order to evaluate the
effect of the non-equilibrium sampling error in the per-
formance of the adaptive sampling strategy, we assume
that the use of Koopman reweighting in the analysis of
MD trajectories can provide an accurate estimate of the
equilibrium transition probabilities between any pair of
explored microstates. Thus, in the synthetic trajecto-
ries used here, at each iteration, we estimate an on-the-
fly Koopman-corrected MSM by using the true transi-
tion probability between the explored microstates (prop-
erly renormalized) and discarding any transition to unex-
plored states. Two more variants are studied by applying
this correction to the previous two:

1/01{271: PCCA+ is used to cluster the microstates into
30 macrostates, on the Koopman-corrected MSM

1/CK ,: The number of macrostates generated by
PCCA+ on the Koopman-corrected MSM is based
on the number of significant timescales using a 50%
kinetic content cutoff [46].

d. @y - Native Contacts If additional information is
available on the system of interest, it can also be used to
guide the sampling. For instance, it has been proposed
[18] to select restarting structures for adaptive sampling
based on the number of contacts likely made in the folded
states based on an evolutionary coupling analysis. Alter-
natively, the FAST method [19] was proposed as a way to
exploit a priori information, such as the distance to a tar-
get structure. Here, we consider the case where the folded
structure is known, and the number of native contacts
can be used as a reaction coordinate for the folding pro-
cess. Out of the states already visited by the simulation,
states with a higher median number of native contacts are
chosen with higher probability than states with a lower
number of native contacts. The probability of choosing a
visited state ¢ is proportional to exp(—k * |Q; — Qmaz])s
where Q; is the number of native contacts in state i,
Qmaz is the total number of native contacts, and k is a
parameter of the strategy (see Supplementary material).

e. Qfnn - Native and Non-native contacts A varia-
tion of the previous strategy is to use two reaction coor-
dinates in the case when the folded structure is known,
keeping track of the number of both native and non-
native contacts that are formed during the simulation.
For each state in the MSM, we compute the median num-
ber of native and non-native contacts over all conforma-
tions mapped to each state. Out of the states already



visited by the simulation, states with a higher number of
native contacts have a higher probability of being cho-
sen as restarting points, as in the Qs strategy described
above. Additionally, states with a lower number of non-
native contacts are chosen with a higher probability than
states with a higher number of non-native contacts. The
probability of choosing a visited state ¢ is proportional
to exp(—d;), where d; = \/k% % (Qi — Qmaz)? + k3 * N2,
Q; is the number of native contacts in state i, Qqes iS
the total number of native contacts, N; is the number of
non-native contacts in state i, and k1, ko are parameters
of the strategy. One can think of d; as a distance to the
folded state in native/non-native contact space (scaled by
k1 and k3). The two parameters k1 and ko were optimized
by a parameter sweep (see Supplementary material). In
real simulations such an optimization of the parameters
is not possible, but we perform it here to estimate the
upper bound for the speed up.

f Desc - Optimal strategy for exploration We also
test a strategy that is not feasible in practice but offers a
baseline comparison as a theoretically optimal one. This
strategy is built by using knowledge of the full transition
matrix of the system, that is not a priori known in real
applications (it is usually the goal of the sampling). For
each visited microstate ¢, we compute the probability to
transition to any microstate not yet explored using the
true transition matrix:

Pesclil = D

jE€unexplored

Tli, 5]

The state with the highest p.s. value is chosen as the
restart state. As stated above, this strategy is impossi-
ble to implement in practice for real protein simulations,
but it is as a useful benchmark for comparing adaptive
sampling strategies that aim to explore conformational
space.

g. topt - Optimal strategy to speedup slow processes
(protein folding) We also test another theoretically op-
timal strategy given perfect knowledge of the system dy-
namics as well as knowledge of the folded states. In a
way that is similar to the definition of mean first passage
time [57], for each state ¢ in the MSM, we compute a
value top[¢] which estimates the minimal time to reach
the folded state. We first define that for each folded
state f, tope[f] = 0. Then we iteratively solve the follow-
ing recurrence relation for each state i outside the folded
region:

topt [Z] =1+ Z T[iaj]min(topt [Z]a topt [j])
jEstates

The equation is solved iteratively until the relative
change in t,,; drops below a cutoff. We then use it to de-
fine a benchmark restart strategy, by selecting the restart
state among the ones explored that has the lowest topt
value, representing the state that is the closest to the
folded state. Note again that this strategy is impossible
to implement in practice, but still is a useful benchmark

for adaptive sampling strategies. With the ¢,,; bench-
mark the maximum achievable speedup with adaptive
sampling for the folding of a protein can be evaluated.

III. RESULTS AND DISCUSSION

In order to quantify the performance of different adap-
tive sampling strategies, we considered two broad mea-
sures of efficiency. The first measure is the time it takes
for a strategy to simulate a rare event, in terms of steps of
synthetic trajectories. For the dataset used here, the rare
event of interest is the folding process and, for all pro-
teins considered, the slowest timescale (or rarest event)
is the folding timescale. For each strategy, the average
time measured for a given strategy to reach the folded
state starting from an unfolded state is compared with
the corresponding time in the absence of adaptive sam-
pling (that is, for the MD strategy described above). The
second measure is one that focuses on the exploration of
the configurational space instead of a single rare event.
For any given strategy, we measure the time needed to ex-
plore 95% of the states used to build the MSM and com-
pare it with the corresponding MD time. For each pro-
tein, we evaluate these two measures for each of the adap-
tive sampling strategies described above. Each strategy
is evaluated by using a different number of parallel tra-
jectories n, ranging from 1 to 5000. The results reported
are averaged over 100 independent runs per protein and
per number of parallel trajectories.

A. Time to fold

Figure 2 shows the average folding time for each of the
strategies for three different proteins using 100 parallel
trajectories. First, we note that the popular microstate-
based 1/C strategy does not always appear to speedup
the folding time, while the macrostate-based methods
do show significant improvement over MD. Interestingly,
the benchmark strategy designed to maximize the prob-
ability to visit unexplored regions of the configurational
space (Pese, defined above) does not significantly speedup
the sampling of the folding rare event. Both 1/C and
Pesc are strategies designed for general exploration and
not specifically for rare event sampling, and it is not sur-
prising that these strategies do not perform well in ac-
celerating folding events. Instead, the macrostate-based
methods appear to successfully introduce a sampling bias
toward states that are along the direction of the slowest
timescale, as manifested in the significant speedup with
respect to simple MD. These results are consistent over
the set of model proteins studied.

Within the macrostate-based methods, the correction
for non-equilibrium that can be achieved by Koopman
reweighting (1/CX) appears to further improve the sam-
pling of the rare folding event over using a simple un-
corrected count matrix (1/C§;) in the on-the-fly MSM
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FIG. 2: Comparison of the number of steps of synthetic
trajectories required to fold for the different adaptive
sampling strategies for three different proteins using 100
parallel trajectories. The 20% and 80% percentiles are
shown as the error bars. The results of the t-test
between MD and the individual strategies for the
different proteins are reported in the Supplementary
material.

definition. The correction for non-equilibrium allows a
more accurate estimation of the leading eigenvector of
the true transition matrix over using the raw, on-the-fly
count matrix. Thus, the resulting macrostates are more
kinetically relevant. We also observe that the results ob-
tained when the number of macrostates is defined by the
kinetic content (1/Car2) do not differ significantly from
what is obtained when a constant number of macrostates

is used (1/Cps1). In some instances, it appears that us-
ing kinetic content slightly hurts the performance of the
adaptive sampling, which may be due to inaccurate esti-
mation of the timescales in the early stages of the simu-
lation.

Finally, we observe that incorporating a reaction co-
ordinate, such as the number of native contacts in the
strategies does indeed significantly improve the sampling
of rare events. The improvement is, in fact, close to the
theoretical maximum that is estimated by t,,:. We also
observe that the addition of the number of non-native
contacts as a second reaction coordinate does not always
improve the performance of the algorithm. In particular,
this is true for the smallest of the protein model consid-
ered (Chignolin), the kinetics of which does not exhibit
any additional slow processes besides folding (see Fig. 2).
For all the other protein models, the introduction of a
second reaction coordinate very marginally improves the
sampling of the folding process. These patterns are con-
sistent across all the proteins and across the number of
parallel trajectories used. The plots for all proteins (in
addition to Fig. 2) can be found in the Supplementary
material.

B. Time to explore 95% of states

Figure 3 shows the average time needed for the differ-
ent adaptive sampling strategies to explore 95% of the
microstates constituting the MSM, by using 100 parallel
trajectories, for three different proteins. In this compar-
ison we exclude the strategies designed to speedup the
sampling of the folding process (such as the native con-
tact based strategies as well as t,,;) because they are
not designed for the purpose of general exploration. The
comparison shows that, in general, the 1/C strategy ex-
plores the configurational space much more efficiently
than plain MD. The speedup obtained by the 1/C' strat-
egy nears the theoretical maximum obtained by the opti-
mal exploration strategy, pes.. Within the macrostate-
based strategies, there is more variance. The strate-
gies using the regular count matrix (1/C¢}) outperform
the strategies that correct for non-equilibrium errors,
(1/CE). This is likely because the correction introduces
a bias towards the sampling of slow processes rather
than general exploration. The non-equilibrium error in
the count matrix based strategies introduces randomness
that helps the sampling of unexplored microstates. Ad-
ditionally, for some proteins the optimization of the num-
ber of macrostates based on the kinetic content (1/Cz,2)
does appear to provide an advantage over the use of a
constant number of macrostates (1/Chs1). The use of
the kinetic content allows for a more accurate estimation
of macrostate counts, which could help to focus the sam-
pling bias towards regions that are less densely sampled.
The patterns shown in Fig. 3 are consistent across all the
proteins and across the number of parallel trajectories
used. The corresponding plots for all the proteins can be
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and 1/Cf5 ,. The 20% and 80% percentiles are shown as
error bars. Similar figures for the other protein models
are reported in the Supplementary material.

FIG. 3: Comparison of the number of steps required to
explore 95% of the configurational space for different
adaptive sampling strategies for three different protein
models, by using 100 parallel trajectories. The 20% and
80% percentiles are shown as the error bars. The results
of the t-test between MD and the individual strategies
for the different proteins are reported in the
Supplementary material.

C. Scaling

Adaptive sampling methods capitalize on the use of
many relatively short parallel trajectories, usually de-
found in the Supplementary material. ployed on massively parallel computers (MPC), to speed



up rare events or explore protein conformational spaces.
In order to better understand the limits of scalability
of adaptive sampling strategies, the measured absolute
folding time for different parallelization is shown in Fig-
ure 4. The absolute folding time indicates the actual
clock time required to record a folding event for a given
protein on MPC with a given adaptive sampling strat-
egy. The different strategies exhibit good scaling below
a parallelization of around 100 and moderate scalability
up to 1000 parallel trajectories. The scalability differs
only slightly between different strategies, confirming that
adaptive sampling generally scales well. Similar scaling
is observed for all protein models. The time to explore
95% of microstates in Figure 4 scales to a higher paral-
lelization than the time to fold the protein. In addition
to Fig. 4, scaling plots for the other protein models are
available in the Supplementary material.

D. Speedup for different proteins

The speedup in simulating the folding process achieved
by using adaptive sampling in Figure 2 varies for different
proteins as each protein has different dynamic properties.
In order to better understand the factors determining
the speedup reachable with adaptive sampling strategies,
we compare different properties over the different protein
models.

Figure 5 shows that, despite the small sample size and
large error bars, there is a significant correlation between
the theoretical maximum speedup in folding reachable
with adaptive sampling (t,,;) and the folding time of
a protein model (as measured by the mean first pas-
sage time). Similar correlations appear for the speedup
achieved by using an adaptive sampling strategy based
on the number of macrostates explored upon correction
for non-equilibrium effect (1/Chs,2), and also when a re-
action coordinate is used to guide the adaptive sampling
(Qy). That is, for slower folding proteins the efficiency of
adaptive sampling strategies in accelerating the folding
rare event increases. This result is very encouraging for
the use of adaptive sampling strategies to sample slow
processes, as adaptive sampling seems to perform better
as the processes become slower. The large error bars are
caused by the stochastic nature of the trajectories. No
significant correlation is observed between the speedup
achieved in folding and additional properties such as the
size of the protein (Figures in Supplementary material).

IV. CONCLUSION

We have presented a systematic analysis of the perfor-
mance of different adaptive sampling strategies by using
as test systems 8 different discrete protein models defined
from long all-atom MD simulations. We have shown that
different adaptive sampling strategies are optimal for dif-
ferent goals. In particular, if the goal of adaptive sam-
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FIG. 5: The relationship between the speedup of the
folding time with ¢,,:, @ or 1/CE , vs. mean first
passage time for the 8 proteins. Results are reported for
a parallelization of 100, and the 20% and 80%
percentiles are shown as error bars. The speedup
increases with longer MD folding time, the linear fit
lines are drawn to guide the eye. The Pearson
correlation coeflicient is for ¢,,; 0.93, for @, 0.95 and
for l/C’]\Ifl)2 0.82.

pling is to speedup the simulation of a rare event (such
as a protein folding process), it is important to be able
to analyze the explored space on-the-fly and extract a
few metastable states from which new simulations can
be restarted. In the data analysis, it is also important to
take into account the effect of non-equilibrium sampling.
Indeed, our results show that a more accurate estimation
of an equilibrium MSM from short non-equilibrium sim-
ulations, that can be obtained by using corrections based



on the estimation of the Koopman operator [51-56], sig-
nificantly improve the adaptive sampling of a protein
folding process with respect to a simple estimation of the
MSM directly from non-equilibrium transition counts.

Different considerations are important if the goal of
adaptive sampling is to speedup the exploration of any
new regions of the configurational space of a protein sys-
tem. In this case, it appears that the most efficient adap-
tive sampling strategy is based on the on-the-fly identifi-
cation of a large number of kinetic microstates from the
simulations already performed, and corrections for non-
equilibrium effects do not appear relevant. These results
suggest that different strategies could be used in differ-
ent stages of investigation of a given biophysical process.
For instance, the sampling of rare events could be opti-
mized in a first stage to discover slow processes in a new
system of interest, followed by a second stage where the
different metastable regions in the conformational space
can be better sampled by an adaptive sampling strategy
optimized for fast exploration.

We have compared the speedup achieved with the dif-
ferent adaptive sampling strategies with theoretically op-
timal benchmark strategies for these two different goals,
Desc and tope, respectively. The gap between the speedup
of the theoretically optimal strategies and the best per-
formers among the strategies presented suggest that
there could be even faster adaptive sampling methods
and further investigation in this direction is underway.

We have also shown that, if there is a priori knowledge
about the process under investigation, as for example
a reaction coordinate, then adaptive sampling strategies
for the sampling of rare events can be designed to achieve
a speedup close to the theoretical maximum benchmark.
In particular, we have shown that using the number of
native (and non-native) contacts to guide the sampling,
a significant improvement in the adaptive sampling of
the folding process is obtained with respect to adaptive
sampling strategies that do not use a priori knowledge of
the system.

The adaptive sampling strategies reported here scale
well with parallelization up to about 1000 for the investi-
gated systems. This result generalizes what was reported
in [12] for different proteins.

Although the best performing adaptive sampling
strategies presented here show a robust speedup over
plain MD over a number of different protein models, a
significant variation in performance is observed. Inter-
estingly, the speedup obtained with the best performing
adaptive sampling strategies for the sampling of the fold-
ing process for different protein models correlates with

the folding time as measured with plain MD simulations.
Instead, the size of the proteins or the height of the fold-
ing free energy barrier for the different proteins do not
appear to be a strong determinant for the speedup ob-
tainable by adaptive sampling. A cautious extrapolation
of the correlation between the adaptive sampling perfor-
mance and the timescale of the folding rare event en-
courages the application of these methods for the char-
acterization of slower processes, beyond the fast-folding
proteins considered here. Due to the limited number
of investigated proteins and the discrete nature of the
models used, the upper limit of the speedup achievable
with adaptive sampling methods for the sampling of rare
events cannot be directly estimated from what is pre-
sented here.

V. SUPPLEMENTARY MATERIALS

See Supplementary material for complete results for
all 8 proteins and the parameter for generating the MSM
objects.
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