


ii

ABSTRACT

Robot Manipulation Planning Under Linear Temporal Logic Specifications

by

Keliang He

Automated planning for high-level manipulation tasks is highly desirable, because

it enables robot manipulators to be used by non-robotics experts. This thesis presents

one approach to solving manipulation planning for tasks expressed in linear temporal

logic (ltl). This approach is based on earlier work on the synergistic framework

for motion planning from ltl specifications, which provides probabilistic complete-

ness guarantees. Even though the synergistic framework was shown to work well for

planning for ltl tasks in the navigation domain, it lacks an abstraction that can

capture the high dimensionality of manipulation. This thesis enables manipulation

planning using the synergistic framework by introducing a manipulation abstraction

and modifying the interaction between task and motion planning in the framework.

The modified framework is shown to be effective in case studies in both simulation

and physical systems. The case studies also show that the synergistic framework

solves manipulation problems more effectively using the manipulation abstraction in

comparison with a naive abstraction.
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Chapter 1

Introduction

Traditionally, robot manipulators have found applications in repeating a single task

in highly structured environments, such as factories and warehouses. For example,

industrial manipulators such as the Kuka arm are used to move parts between con-

veyor belts on an assembly line. The assumptions made about the environment enable

engineers to pre-program a fixed path for the task.

As robotic systems developed through the decades, an increasing number of robot

manipulators have entered environments that are less structured, while tasks for

robots become more variant. For example, the Baxter robot by Rethink Robotics

was designed for factories where the robot manipulator would be working alongside

human workers. Robochef announced by Moley robotics is designed to prepare meals

in people’s kitchens.

In these scenarios, pre-computing paths is no longer a feasible approach. To start,

it is computationally infeasible to enumerate all possible tasks the robot needs to

perform. Moreover, any pre-computed path may become infeasible due to the changes

in the environment caused by other agents in the environment. This makes automated

planning for manipulation systems highly desirable. In automated planning, the robot

is given a task that must be achieved, and the planner reasons over a model of the
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world with the task given, and automatically finds continuous trajectories and/or

controllers to execute to achieve the task. The automated planning system must

answer the following two questions.

1. What sequence of actions needs to be performed in order to achieve the task?

The answer to this first question involves reasoning about discrete actions. For

example, if Robochef is asked to make pasta, should the robot first add water to the

pot or get the spaghetti box? Often times this information is not spelled out by the

user, and it is up to the planner to pick one of many potential sequences of actions

to implement. The strategy for solving these problems is called task planning.

2. How to operate the robot to achieve each desired action?

The answer to the second question involves reasoning about continuous motion.

For example, what is the sequence of joint angles for the arm to reach the frying pan?

The strategy for solving these problems is called motion planning.

One natural approach to solving the automated planning question, then, is by

integrating task and motion planning (TMP). Various works [1–18] have been devel-

oped to address different cases of the TMP problem, including manipulation plan-

ning [1,5–18]. One of the very successful approaches in the navigation domain is the

synergistic framework presented in [4], and later improved in [3]. The framework in [3]

approaches the TMP problem by first decomposing the robot configuration space us-

ing an abstraction to separate the problem into a high-level discrete task planning

problem and many low-level continuous motion planning problems. Then the over-
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all problem is solved through a synergistic layer that allows for effective information

passing between task and motion planning. This framework has guarantees for prob-

abilistic completeness, and has been shown to be effective in navigation domains [4].

However, when the synergistic framework is directly applied to the manipulation

domain, a few challenges arise. First, the configuration space of a manipulation

problem is the joint configuration space of the robot as well as all the objects. This

configuration space is very high dimensional. The poor scalability of the abstraction

thus makes directly applying this framework to manipulation problems impractical.

More importantly, a naive decomposition of the configuration space does not capture

the interaction between the object and the robot. For example, two states that share

the same robot state but different object states may seem close to each other in the

joint configuration space, as it only requires the object to move. In actual execution,

however, these states could be far apart, for it requires moving the robot arm to

handle the object, as objects cannot move themselves.

1.1 Contributions

The contributions of this thesis are:

• a manipulation abstraction that captures the manipulation domain,

• modifications to the synergistic framework that work with the manipulation

abstraction to perform manipulation planning,
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• experimental results on applying this modified framework to plan for the PR2

robot and the Baxter robot.

1.2 Organization

The remainder of this thesis will be structured as follows. Chapter 2 will define

the manipulation planning problem, along with our formulation of a manipulation

task. Chapter 3 will discuss the background information on motion planning, task

planning, and the synergistic framework. Chapter 4 will present the manipulation

abstraction and the modifications made to the synergistic framework to accommodate

the new abstraction. Chapter 5 will show the experimental results from the modified

framework. And finally Chapter 6 will discuss several key observations, and point to

the directions for our future work.



5

Chapter 2

Problem Formulation

This chapter will formulate the central problem discussed in this thesis: manipula-

tion planning for tasks specified using linear temporal logic. Section 2.1 will discuss

the formulation of manipulation tasks using linear temporal logic. Section 2.2 will

formalize the manipulation planning problem for these manipulation tasks.

2.1 The Manipulation Task

In order to discuss automated planning for manipulation tasks, we must first formal-

ize what is a manipulation task. Unlike other robotics domains such as navigation or

mapping, the focal point of a manipulation task is not on the robot itself, but rather

on the objects being manipulated. For example, if a Baxter industrial robot is tasked

with assembling a part, the task can be expressed by only specifying the resulting

configuration of the components, without even mentioning the Baxter. Thus, a ma-

nipulation task is not expressed in terms of the behavior of the robot, but in terms

of the objects being manipulated. Formally, we define the atomic propositions of a

manipulation task as follows.

Definition 2.1

Given a scenario with a finite set of objects obj, a finite set of labels L, and a finite
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set of locations L, with a function L → L that maps each location with its labels,

the atomic propositions of this scenario are the elements of obj× L. The element

(o, l) can be interpreted as “Object o is in a location with label l.”

Note that we only consider a finite set of possible locations to place the objects.

The location to place an object is described by the full configuration of the object when

placed at that location. By doing this, we have discretized the set of possible ways

to place objects in the environment. This assumption is often made in manipulation

planning to simplify the problem [5–10, 12, 13, 15–18], and the study of discretizing

space into suitable locations for objects is not the focus of this thesis.

The atomic propositions are the building blocks of a manipulation task. To for-

mulate a manipulation task, it is reasonable to expect the following to be expressible.

1. an atomic proposition is true,

2. a boolean combination of atomic propositions is true,

3. a property will eventually be true,

4. a property will hold (true for every time step) until another property becomes

true.

With such properties, the user could specify tasks such as “All (conjunction) of the

objects should eventually be in the box, and the box should remain in the packing

area until the objects are packed.”
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There are many different ways to compose the atomic propositions to express the

tasks above [19,20], many of which could be translated into one another. For many of

the equivalent representations, the choice of which method to use largely depends on

the succinctness of the language for the tasks desired, how well the language meshes

with the framework, as well as personal preference. The specification language used

in this thesis is called Linear Temporal Logic [19].

2.1.1 Linear Temporal Logic

Though first introduced to specify program properties in formal verification, linear

temporal logic (ltl) has recently found many applications as the specification lan-

guage for robotic tasks [21–27].

Definition 2.2

Given a set of atomic propositions Π, the syntax for linear temporal logic formulas is

recursively defined as

1. p, where p ∈ Π,

2. ¬ϕ (negation), ϕ ∧ ψ (conjunction), where ϕ and ψ are also ltl formulas,

3. Xϕ (next), ϕ Uψ (until), where ϕ and ψ are also ltl formulas.

Points 1 and 2 represent the syntax for boolean logic. We may include additional

boolean operators such as True, False, ϕ ∨ ψ (disjunction), ϕ → ψ (implication),

ϕ↔ ψ (equivalence), and additional temporal operators such as Fϕ (eventually) and

Gϕ (globally).
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The semantics of ltl is defined over words. A word w = (l0, l1, . . .) is an infinite

sequence over letters from the set 2Π. Each letter represents the set of atomic propo-

sitions that are valid for the current state of the world. A word, then, describes how

the state of the world evolves through time. We use wi to denote the suffix of the

word w beginning from time step i, i.e. wi = (li, li+1, . . .). Naturally, w = w0. We say

that a word w satisfies an ltl formula ϕ, denoted by w |= ϕ if one of the following is

true.

1. ϕ is an atomic proposition, and ϕ ∈ l0.

2. ϕ = ¬ψ, and w does not satisfy ψ.

3. ϕ = ψ1 ∧ ψ2, w |= ψ1, and w |= ψ2.

4. ϕ = Xψ, and w1 |= ψ.

5. ϕ = ψ1Uψ2, and there exists k such that for all 0 ≤ i < k, wi |= ψ1, and lk |= ψ2.

For the additional operators, each of the following pairs are equivalent.

1. True and p ∧ (¬q), for any atomic proposition p.

2. False and ¬True.

3. ϕ ∨ ψ and ¬((¬ϕ) ∨ (¬ψ)).

4. ϕ→ ψ and (¬ϕ) ∨ ψ.

5. ϕ↔ ψ and (ϕ ∧ ψ) ∨ ((¬ϕ) ∧ (¬ψ)).
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6. Fϕ and True Uϕ.

7. Gϕ and ¬(F(¬ϕ)).

For example, imagine a scenario where a robot is serving customers at a bar. The

formula F(odrink, lcus 2) expresses the task of “deliver the drink to customer 2,” while

the formula (osnack, lcus 3) U(otip, lcus 3) expresses the task “keep the snacks in front of

customer 3 until the tip jar is presented to her.”

In practice, many interesting tasks that we wish for the robot to achieve must be

achieved in a finite amount of time. Thus we only consider ltl formulas that can

be satisfied by considering a finite prefix of the word. This fragment of ltl is called

cosafe ltl [28]. Syntactically, cosafe ltl is equivalent to the fragment of ltlwhere

the negation operator is only allowed over the boolean sub-formulas, but not over the

temporal formulas. This also disallows the globally (G) operator, as it is defined to

be ¬(F(¬ϕ)). The semantics of co-safe ltl remains the same as ltl.

Using cosafe ltl prevents us from expressing tasks that execute infinitely, such

as surveillance tasks. For these tasks, full ltl is used. If the task involves the robot

reacting to environment changes, often GR(1) [21] is used. All the example tasks

we have discussed so far must be accomplished within a finite time bound, thus the

cosafe fragment of ltl is sufficient.
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2.2 Problem Definition

As discussed previously, the atomic propositions Π of the ltl formulas are of the form

“Object o is at a location with label l.” For each moment in the robot’s execution of

the manipulation task, we can retrieve the atomic propositions that hold by observing

the location of the objects, and the labelling of those locations. Thus from each

moment in the execution, a letter from 2Π can be generated. We call this mapping

from the states of the world to the letters the labelling function.

By writing down the letter each time the output of the labelling function changes,

we can generate a word that corresponds to the execution. Then for a given task

expressed in cosafe ltl, the goal of the manipulation planning problem is to find a

finite execution that will generate a word that satisfies the ltl task.

Definition 2.3

Given a robot arm with configuration space CR, a set of objects O with configuration

space CO, a set of atomic propositions Π, a labelling function L : CO → 2Π, and a

cosafe ltl formula ϕ over Π, find a path P : [0, 1] → CR × CO such that the word

generated by P through L satisfies ϕ, and physical constraints are respected.

Note that though it is certainly the case that many robotic systems have more

than one arm to manipulate objects, we consider only using a single arm in this thesis.

Thus in this case, the location of the end effector of the robot can be regarded as

the location of the robot, as the robot must act upon objects through its only end

effector. The topic of using multiple arms to cooperate in order to achieve tasks is a
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topic for future work.

There may be many different physical constraints depending on the system being

considered. One constraint is that the robot must not be in collision with the objects

not being manipulated. Another is that the objects must remain stationary unless

acted upon by the robot. For example, in the task previously discussed, “deliver the

drink to customer 2,” (F(odrink, lcus 2) ) the planner must find continuous trajectories

to grasp the drink, and move it to a location labelled customer 2, while avoiding

collision with any obstacles. If a collision with another object is unavoidable, then

the planner must also find continuous trajectories to remove them before serving the

drink.
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Chapter 3

Background and Related Work

This chapter will provide the background necessary for this thesis. Section 3.1 and 3.2

will discuss the problem of task planning and motion planning, respectively. Section

3.3 will introduce the original synergistic framework [3,4] designed for task and motion

planning, along with a brief comparison with other approaches for solving similar

problems.

3.1 Discrete Task Planning

To find a solution to the manipulation planning problem, we must find a sequence

of actions to achieve the task. Task planning solves this problem by considering a

discrete model of the world and the task. Formally, the planner is given a finite

discrete set of state S, and a set of actions A. The planner is also given a transition

function γ : S×A→ 2S, which tells us given a state and the action performed, which

states are possible successors. In our formulation, we will consider the actions to be

deterministic, so γ is a function from S ×A to S. The task planning problem is then

formulated as follows [29].

Definition 3.1

Given S, A, γ, a starting state s0, and an evaluation function T that tells us whether
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a sequence of states (s0, s1, . . .) satisfy the goal, find a sequence of actions (a0, a1, . . .)

such that γ(si, ai) = si+1, and T (s0, s1, . . .) returns true.

For a given continuous problem, there are many different ways the problem can

be discretized. For example, in manipulation planning, one could define each state to

describe the location of all the objects that are considered for manipulation. Other

formulations may include the location and/or behavior of the robot. Each of these

formulation would incurs a different task planning formulation. The choice of this

discretization is an important one, and will be discussed in the following chapter.

In artificial intelligence, one popular way to describe a task planning problem

is through the planning domain description language (PDDL). PDDL was initially

designed for the international planning competition (IPC), and therefore is general

enough to accommodate many different planning domains and instances. It has since

become the standard format for describing describing planning domains.

PDDL [30] uses domain file and instance files. The domain file describes the

predicates of the system. The set of predicates that hold would determine the state

of the system. By not representing the states explicitly, PDDL domains are more

compact than an explicit representation of the problem. The domain file also contains

the actions of the system. Each action contains the precondition that must be satisfied

for the action to be applied, and the effect of the action. The instance file describes

the objects available in the environment, as well as the goal of the task.
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For manipulation domains, the problem can often be express using predicates for

locations of the objects and the manipulator, and a few actions that represent picking,

placing, and arm moving. In manipulation planning literature that uses PDDL, much

work has focused on goals that only specify a target set of states to reach. However,

the goal for these works can be extended to incorporate some ltl tasks by state

trajectory constraints introduced in PDDL3.0 [31]. Generally, a common strategy

used for planning for tasks with these state trajectory constraints is by converting

them into a deterministic finite automaton, and incorporating the automaton state

as a predicate in the domain [32].

In the robotics domain, the planning problem is often represented using an ab-

straction to describe the domain along with a logical formula to describe the task.

The abstractions may involve partitions of the space according to areas of inter-

est [3, 21, 22], or decompositions of the workspace [23, 25–27]. The task description

ranges from full ltlto its fragments such as GR(1) [21] and co-safe ltl [3]. In some

cases, these abstractions can be equivalently represented using PDDL domain specifi-

cations, and in many cases, the logical formulas can also translated into PDDL goals.

As discussed in Chapter 2, the choice of representation depends on many factors in-

cluding the particulars of the framework being used. For this thesis, ltl formulas will

be used to represent the problem.

Two of the most popular approaches for solving task planning problems currently

are SAT-based planning and search-based planning. These two approaches have ex-
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perienced much success in the planning competitions [31], and have been receiving

much attention for their competitive runtime. Both approaches are applicable to ma-

nipulation task planning. The following subsections will highlight the key ideas of

each approach, and their benefits.

3.1.1 SAT-Based Task Planning

SAT-based planners convert the domain and the task into a boolean satisfiability

(SAT) formula, and use existing SAT solvers to find solutions [33–35]. For the in-

terested reader, [29] provides a more detailed discussion on this topic. First, the

planner uses a combination of different predicates to describe all the states S. Then

the combination of all the actions in the domain is translated into a boolean formula

relating the predicates of the previous time step to the predicates of the next time

step. The planner begins planning by checking if the predicates at the initial state

satisfy the goal. If not, the planner asserts the predicates at the initial state, and the

transition between the initial (zeroth) time step and the first time step, and that the

goal is reached in the first step. If these assertions can hold at the same time, then

a solution is found. Otherwise, the planner continues to deepen this search, until a

solution is found, or some limit on the number of steps is reached.

SAT-based planners are successful because instead of considering one state at a

time, a boolean formula captures a large set of states, and this set of states can

be explored at the same time. SAT-based planners can also take advantage of the
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improvement in SAT solving [29], improving its performance simply by using a newer

and better SAT solver.

3.1.2 Search-Based Task Planning

Search-based planners [36–38] view the domain as a graph over all states in S. The

edges of this graph are instantiations of the actions A allowed in the domain. The

task is converted into goal states on the graph. Then the planner uses graph search

techniques such as Dijkstra’s or A∗ to find a solution path to the goal states.

One of the main advantages of search-based planners is that additional infor-

mation could be incorporated via heuristics, most notably the FastForward [37] and

FastDownward [38] planners. There are domain independent heuristics that can speed

up the search in general, as well as domain specific ones if more information is known

about the particular domain. Because the underlying structure reasoned over is a

graph, weights over the nodes and edges can be incorporated in these techniques to

further guide the search in a desired direction. This is useful in task and motion plan-

ning, as the weights can be adjusted according to the results from motion planning.

In this thesis, task planning is performed using search-based planning. The study of

task planning strategy for task and motion planning is not a focus of this thesis, but

is an important topic for future research.
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3.2 Continuous Motion Planning

The other component of manipulation planning is motion planning. Given the state

of the environment, motion planning considers the question of finding a continuous

robot trajectory from an initial configuration to a desired target, without colliding

with the environment. For manipulation, both moving the arm toward a grasp and

transferring an object (by considering the transferred object as a part of the arm)

can be considered as instances of this problem.

More precisely, we define a configuration to contain the information necessary to

fully describe the state of the robot. We call the space of all such configurations the

configuration space C. Let the portion of C that is collision free with the environment

Cfree, then we formally define the motion planning problem as follows [39].

Definition 3.2

Given configuration space C, the free space Cfree, a start configuration q0 ∈ C and

goal set G ⊂ C, find a path P : [0, 1] → Cfree such that P (0) = q0, and P (q) ∈ G.

3.2.1 Sampling-Based Motion Planning

One of the most popular approaches used for motion planning for manipulators is

the sampling-based approach [40–45]. Many other popular approaches, such as space

decomposition-based and optimization-based approaches, do not scale well into the

manipulation domain, where the manipulators generally have at least 6 degrees of

freedom.
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In their simplest form, sampling-based motion planners maintain a graph of con-

figurations called the roadmap that initially contains q0. Then the planner samples a

random configuration q in C, and adds q to the graph or uses q to find other config-

urations to add to the graph. This process is repeated until a point g in G is added

to the graph. Then, a graph search algorithm such as Dijkstra’s algorithm or A∗ is

used to find a path from start to q0 to q.

For manipulation problems, especially cases where only a single plan is needed,

the graph is often a tree rooted at q0 [41–45]. In these cases, inverse traversal of the

tree can be used instead of graph search, speeding up the search process.

Most sampling-based motion planners guarantee probabilistic completeness [46].

This means that if a solution from q0 to G exists in Cfree, the probability that the

planner will find a solution in time t goes to 1 as t approaches infinity. On the

other hand, if no solution is available, a sampling-based planner will continue to add

configurations to the graph, and never confirm that no solution exists.

3.3 Synergistic Framework for Task and Motion Planning

The synergistic framework, proposed in [4], is a planning framework designed for

motion planning. It has been shown to be very successful in the navigation domain,

where the dynamics of the system are complex. This framework uses discrete reason-

ing to guide exploration of the continuous space. The framework was expanded in [3]

to plan for navigation tasks under ltl specifications. This thesis will build on the
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Figure 3.1 : An overview of the synergistic framework. The communication between
task and motion planning is performed by a synergistic layer.

work in [3, 4] for a task and motion planning framework for manipulation problems.

Figure 3.1 shows the general structure of the synergistic framework in [3] when

applied to the TMP problem in navigation. The framework first converts the ltltask

into a deterministic finite automaton (DFA), and uses triangulation to decompose

the robot workspace. The framework then takes a product of the DFA with the

decomposition, and uses search-based task planning techniques to find a discrete

plan called the guide. The framework then uses a sampling-based motion planner to

explore along this guide for some time. If motion plans are found for all segments of

the guide, then the plan is returned. Otherwise, information regarding the exploration

done by the motion planner is used to generate weights for the discrete task planning

problem. Task planning is performed again with the updated weighted to guide the
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search toward under-explored regions. Then the new guide produced is explored

using the motion planner. Through this interleaving of task and motion planning,

the synergistic framework eventually finds a motion plan, if one exists.

3.3.1 Converting LTL to DFA

The original synergistic framework considered only navigation domains [3, 4], where

the atomic propositions only specify if the robot is in certain propositional regions.

ltl is used to compose the atomic propositions. ltl formulas can be converted to an

automaton which can be more easily considered. For a formula with atomic propo-

sitions Π, an automaton can be constructed such that the labels on the edges are

sets of letters from 22
Π

, and any accepting word of the automaton would be an ac-

cepting word of the ltl formula. Thus the automaton would be equivalent to the

ltl specification [47]. Because only finite tasks written in cosafe ltl are used for the

robot tasks, the automaton generated is always a finite automaton. The synergistic

framework uses spot [48] to perform this conversion from ltl to DFA.

3.3.2 Workspace Decomposition

The synergistic framework also introduced a workspace decomposition technique in

the navigation domain to guide the search. The decomposition is achieved by tri-

angulating the workspace of the robot, while ensuring that each decomposition cell

lies in the same region. This decomposition is then recorded as a graph, where the

nodes are the cells of the decomposition, and neighboring cells have edges between
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them. The cells contained in propositional regions are labelled with the corresponding

labels. The workspace decomposition serves two purposes. First, it captures which

propositional regions each physical location lies. Second, the decomposition captures

the connectivity of the space, guiding the motion planner to search in more relevant

areas.

3.3.3 Planning Layers

The DFA and the workspace decomposition are then passed to the three planning

layers, shown in Figure 3.1. The task planning layer finds a discrete sequence of

transitions between decomposition regions, called a guide, to satisfy the task. The

motion planning layer explores the continuous space to find motion to achieve these

transitions. The synergy layer coordinates the task and motion planning layers by

feeding the motion planner with segments of the guide, and adjusting weights to steer

the task planner.

The task planner first takes a product between the DFA and the workspace de-

composition, combining them into a product graph. Each node in the product graph

is a pair (v, z) where v is the decomposition cell and z is the automaton state. An edge

from (v, z) to (v′, z′) exists if v and v′ are connected in the decomposition, and the

propositional label of v′ is a letter in the edge from z to z′. Intuitively, the transition

from a product node to the next is possible, if the cells are adjacent, and the label

of the new cell enables the corresponding transition of the DFA. Dijkstra’s algorithm
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is used to find a path from (v0, z0), where v0 is the cell of the initial configuration of

the robot and z0 is the starting state of the DFA, to any node whose DFA state is

accepting. If Dijkstra’s algorithm terminates without returning a path, then the task

is unachievable. Otherwise, this path, called the guide, is passed to the synergistic

layer.

The synergistic layer then divides the guide into motion planning queries that

are passed to a sampling-based motion planner. Initially, only the initial state of

the robot is available to the motion planner, so search starts from v0 to the next

decomposition cell in the guide. In time, more cells in the guide are reached, so the

synergistic layer would also invoke the motion planner to explore those cells. The

selection of a cell to explore in the guide is weighted so that later part of the guide

is encouraged. Doing this helps the framework to work on regions at the frontier of

exploration that are close to finding a complete solution. After a given amount of

time, if no solution is found, the synergistic layer gathers information on the amount

of exploration done in each of the cells. For cells that have been heavily explored

with no success, their weights are increased in the decomposition graph to indicate

the difficulty in searching through these cells. Thus in future searches of the product

graph, these cells are discouraged, while cells that are under-explored are more likely

to be involved in a guide. This process continues until a solution is found in the

continuous space from the initial state to achieve the ltl task.
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3.3.4 Probabilistic Completeness

The synergistic framework as described in [4] is probabilistically complete. The intu-

ition behind the proof is that if a solution in the continuous space exists, then it must

pass through some sequence of decomposition cells. This induces a valid guide. If the

synergistic framework does not find a solution, it will continue to try each guide, and

increase the weights. Thus if given enough time, the framework will consider each

possible guide infinitely often, and each cell will be considered by the motion planner

infinitely often. Because the motion planner is probabilistically complete, this makes

the framework probabilistically complete for finding continuous executions to achieve

the ltl task. Later chapters of the thesis will show that this result can be extended

to the manipulation domain.

3.3.5 Comparison with Other TMP Frameworks

There are a number of other approaches [1, 2, 5–18] for solving various cases of the

TMP problem. One approach is decoupled planning [14, 15]. In decoupled planners,

all motion plans that might potentially be needed are computed first, by providing

each planning query a set amount of time. Then the task planner is called to select

motions from the queries that returned with success. Another approach is hierarchical

planning [5–13, 17, 18], where the task planner is first called to find a sequence of

desirable actions. Then the motion planner is given some time to find a continuous

implementation for each action. If an action is not found, then the task planner is
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called again with that instance of the action removed.

In both of these approaches, each motion planning query is only considered once.

If the underlying motion planner is not complete, as is the case with sampling-based

motion planners, then these frameworks may rule out an achievable action due to not

giving the motion planner enough time, causing the framework to miss a solution.

Some frameworks [17] can guarantee probabilistic completeness in the case where

no dead-end states exist and the actions follow uniformity requirements. However,

in the general case, these frameworks cannot provide the probabilistic completeness

guarantee proven for the synergistic framework.

Traditional manipulation planning frameworks such as aSyMov [1, 11] solve the

manipulation problem (using possibly multiple robots) by first constructing a roadmap

in the continuous space for each robot as well as the objects. Then the planner com-

poses these roadmaps, and looks for a path on this composite roadmap to reach the

goal. If no path to goal is found, the planner picks a roadmap to extend upon, and

search is performed again. These frameworks are probabilistically complete. However,

when the number of objects and robots increase, composing the roadmaps becomes

expensive. This prevents the framework from expanding to larger problems.
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Chapter 4

Manipulation Planning with the Synergistic

Framework

Though the synergistic framework had much success in the navigation domain, it

cannot be directly applied to manipulation problems. The biggest problem is that

the decomposition employed is no longer suitable for manipulation problems. The

workspace decomposition worked well for navigation problems because it captured

where the propositional regions are through the labelling of the decomposition cells,

and the connectivity of the space through the decomposition. In manipulation, how-

ever, using such workspace decomposition presents a problem. The atomic proposi-

tions are no longer over the location of the robot, so decomposing the workspace does

not reveal the location of the atomic propositions.

One may suggest that instead of decomposing the robot workspace, decomposing

the joint configuration space of the robot and the objects could be considered. By

including the objects, this decomposition would capture the atomic propositions.

However, such decompositions would still fail to capture the connectivity of the space.

Even if two decomposition cells are adjacent, we could not say that the two cells are

connected. For example, if two cells correspond to the the same robot states, but

slightly different object configurations, transitioning between these two cells could in
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fact be very difficult, as complex motion for the manipulator could be required to

move the object.

Thus to use the synergistic framework for manipulation problems, we need a new

abstraction, one that could capture the atomic propositions of manipulation prob-

lems, as well as capture the connectivity of manipulation domains. This chapter will

detail a novel manipulation abstraction to handle this problem (Section 4.1), as well

as modifications to the synergistic framework to accommodate this new abstraction

(Section 4.2). This work was presented at ICRA 2015 [49], and is our first effort to

task and motion planning for manipulation problems. Potential improvements and

future work will be discussed in Chapter 6.

4.1 The Manipulation Abstraction

Similar to the workspace decomposition, the manipulation abstraction is also a graph,

with nodes labelled with the atomic proposition true that those nodes. However, each

manipulation abstraction node contains more information than the workspace decom-

position. A manipulation node is a tuple (obj1Loc, obj2Loc, . . . , eeLoc, grpObj, action).

1. objiLoc, location of the ith object. The location of each object in a node can

be either one of the locations of interest L, or inside the gripper.

2. eeLoc, location of robot end effector. As discussed in Chapter 2, we will only

be considering a single manipulator arm, so only a single variable is used for

the end effector location. The robot end effector can be one of any nodes in the
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location graph, including the locations of interest L. The location graph used in

our case studies is shown in Figure 4.1. In this location graph, the locations of

interests are connected by a single intermediate area. Note that because objects

could only be placed in the locations of interest, the intermediate area never

contains a label. In general, the location graph could be expanded to better

capture the locality of the space.

3. grpObj, object in the end effector. The abstraction node also records the object

in the robot end effector. Though this information could be inferred from the

locations of all objects, in practice it saves time to record this information rather

than search through the object to find which, if any, object is in the gripper.

4. action, the action being performed. The abstraction node also maintains the

action being performed. In the current framework, there are four actions. The

grasp and place actions represent picking up an object from a location and

dropping an object down at a location. The hold and move actions represent

moving the robot arm with and without an object in the gripper, respectively.

The four actions form an action graph, as seen in Figure 4.2. The action graph

follows the general intuition of manipulation that if a robot has just picked up an

object with a grasp, then the robot can hold the object to another place, and

afterwards can continue to hold , or place it down at another location, etc. From

the action graph, we find the edges of the manipulation abstraction. Each edge

(v, v′) in the abstraction must satisfy that (v.action, v′.action) is an action in the
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Figure 4.1 : An example of the location graph used in this thesis. The locations
are connected through a single intermediate area. As mentioned in Section 2.1, each
location has a set of labels associated with it.

Figure 4.2 : The action graph used in this thesis. Each case for transition in the
abstraction relates to an edge on the action graph.
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action graph. In addition, for the edge in the action graph, the induced edge in the

abstraction must satisfy the following, where unmentioned variables remain the same.

1. v.action = grasp, v′.action = hold. In this case, there must be some i such

that v.objiLoc = v.eeLoc. This would result in v′.grpObj = i and v′.objiLoc is

the gripper.

2. v.action = hold, v′.action = hold. In this case, all variables remain the same,

except for v′.eeLoc, which could take any value adjacent to that of v.eeLoc in

the location graph.

3. v.action = hold, v′.action = place. This edge exists as long as v.eeLoc is in

one of the locations of interest.

4. v.action = place, v′.action = move. In this case, v′.grpObj will be empty. Let

i be the object such that v.grpObj = i, then v.objjLoc must not be v.eeLoc for

any j 6= i. Finally, v′.objiLoc = v.eeLoc.

5. v.action = move, v′.action = move. In this case, all variables remain the same,

except for v′.eeLoc, which could take any value adjacent to that of v.eeLoc in

the location graph.

6. v.action = move, v′.action = grasp, This edge exists as long as v.eeLoc is in

one of the locations of interest.

Figure 4.3 shows a fragment of a possible manipulation abstraction, where only

one object is being considered. We see that from the grasp node, because the robot
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Figure 4.3 : A portion of an example manipulation abstraction. There is only one
object in the scene. In practice, this abstraction is stored as an implicit graph, and
the task planner generates the abstraction nodes as needed.
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end effector is at the same place with the object, we can transition into a hold node,

where the object is in the gripper. From that point, we could go into a place node

to drop the object back down, or transfer the object elsewhere by continuing with

other hold nodes.

Note that the abstraction graph itself does not guarantee that each node is con-

sistent. One could potentially construct an abstraction node that violates physical

constraints. For example, if v.objiLoc is not the gripper, but v.grpObj = i, this causes

a conflict in the physical space, as the object must either be in the gripper or not in

the gripper. However, if one starts with a physically consistent node, by following

the edges, a physically inconsistent node will never be reached. By maintaining the

abstraction as an implicit graph, as long as the initial node is consistent, we ensure

that all the nodes that we consider are also consistent.

By using this new abstraction, we can capture the atomic propositions of the

manipulation problem. Recall that the atomic propositions reason over whether a

given object is at a location with a given label. Using the abstraction graph, the

atomic propositions that hold in any given node can be found by examining the

labels of the location of each object. We also capture the connectivity of the space.

The manipulation abstraction as a graph encodes all the possible ways the robot can

manipulate the objects, so that a path on the abstraction corresponds to a potential

execution in the physical space.
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4.2 Modifications to the Synergistic Framework

By replacing the workspace decomposition with the manipulation abstraction in the

synergistic framework, we can now attempt to plan for manipulation problems. How-

ever, the synergistic framework was designed for navigation problems that used the

workspace decomposition. Recall from Section 3.3 that the task planner produced a

guide, which is a sequence of decomposition cell-DFA state pairs (v, z), such that if

the robot traverses the cells v, the task would be accomplished. With the manipu-

lation abstraction, the guide is now a sequence of abstraction node-DFA state pairs.

Thus continuous motion plans must be found for achieving the actions encoded by

the sequence of abstraction nodes. In order to do this, we must modify the planning

layers to find continuous motion plans for the abstraction nodes.

4.2.1 Precomputed Grasp and Place

One assumption we make in the manipulation domain relates to the actions grasp

and place. These actions raise two problems in continuous execution. First, grasping

and placing are very difficult to plan continuous trajectories for, as they require the

system to reach a goal state that is very close to collision. In the case of grasp, the

robot end effector must be able to close on the object without previously colliding

with the object, and in the case of place, the same must be true between the object

and the supporting surface. Additionally, even if a plan is found, the uncertainties in

execution often cause the trajectory not to be executed perfectly, resulting in collision
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before grasp and place could be fully performed.

In robotic systems, this problem is often dealt with by using designated controllers

for grasping and placing of objects. These controllers may involve encoder, visual,

or force feedback to be robust enough to handle uncertainties in the physical space.

These controllers generally do not consider a model of the global environment, so they

could not be invoked locally when the end effector is close to the desired location.

However, if the end effector is within some proximity of the object, generally known

as the pre-grasp, or pre-image, then the controller can reliably perform the desired

motion, and end in a configuration known as the post-image.

In general, finding such controllers is a manageable task. This thesis used the

Baxter robotic system for experiments, and visual servoing was used to perform the

grasp and place actions near the goal position. Chapter 5 will demonstrate the

efficacy of these controllers through experiments performed on the physical Baxter.

For the PR2 robot in simulation, we assume the objects attach to the gripper perfectly.

4.2.2 Packaging Motion Planning Queries

If controllers already exist for the grasp and place nodes, all that remains to be

found are continuous executions for the hold and move actions. After receiving the

guide from the task planning layer, the synergistic layer first extracts the segments

that consist of only hold and move nodes. For each such segment, the synergistic

layer creates a motion planning query from the post-image of the previous action, to
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the pre-image of the next action. This is reasonable as in the location graph, all the

locations are connected through an intermediate area. Thus, any motion through the

space respects the abstraction, so long as the start and goal configuration are in the

designated regions.

In the original synergistic framework, even if a cell has already been explored,

and solutions have already been found to transition to the next cell, this transition

may be reconsidered in further explorations. This is because navigation problems

involve complex dynamics, therefore finding new ways to move between cells provides

diversity in possible future moves. In the manipulation setting, however, because the

grasp and place controllers would cause the robot to always end in the same post-

image, finding multiple solutions for a sequence of hold or move does not affect the

starting state of the next segment. Therefore, in the manipulation setting, we query

the motion planner with the hold and move segments in their order in the guide.

When a solution is found, the segment is stored, so that if the segment reappears in

a future guide, the plan can be recalled rather than replanned for.

4.2.3 A Different Weighing Scheme

As explained in the previous section, in the manipulation setting, it is no longer

beneficial to reconsider segments that are already solved. Therefore, the weighing

system in the synergistic framework needs to be reconsidered. Initially, we set the

transitions involving grasp and place nodes to be 0, and all other segments to be 1.
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If a segment has been queried, but the motion planner timed out on finding a solution,

then the segment is likely to be very difficult to plan for, or even infeasible. In this

case, we increase the weight (cost) in the abstraction for all transitions involved in

that segment, proportional to the amount of time spent on the segment by the motion

planner. On the other hand, if a motion plan is successfully found, the weights for

all transitions in that segment are reduced to 0.

Intuitively, by setting the weight of grasp and place to 0 and reducing the

weight of abstraction transitions already found, the task planner considers taking

these actions to be free in future iterations of planning. By doing this, the task

planner is encouraged to take advantage of these already found plans if possible,

to quickly find a solution. One could consider the total weight of a path to be an

estimation on the amount of effort remaining that is required to find a continuous

implementation for the entire guide.

4.2.4 Probabilistic Completeness

Similar to the original synergistic framework, the new manipulation planning frame-

work still considers and invokes the motion planner for all the transitions in the

abstraction graph infinitely often, if a solution has not been found. For completeness,

however, because the grasp and place actions are precomputed, we assume that the

grasp and place actions capture all possible ways to grasp and place the objects.

The assumption on grasp and place is an important one. To assume grasp and



36

place capture all possible ways to perform the corresponding actions, two properties

must be ensured. The first property is that if the grasping of an object could be

performed from any grasp configuration, it could be performed using the precomputed

grasp action. This property could potentially be violated if an object is oddly

shaped, and requires being manipulated from a certain direction that the precomputed

action does not capture. The second property is that all possible configurations of

the robot after the placement of an object are connected in the configuration space.

This ensures that the precomputed place action does not cause a situation where

the placement of the object restricts the set of possible locations for the robot to

reach in the following action.

Given this assumption, we guarantee that as long as a solution has not been

found, the framework will reconsider every possible move and hold action. Because

the motion planners are probabilistically complete, and the grasp and place ac-

tions capture all the ways to grasp and place the objects, the new framework for

manipulation remains probabilistically complete.
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Chapter 5

Experimental Results

5.1 Implementation

The modified synergistic framework was implemented as a part of the open mo-

tion planning library (OMPL) [50]. The conversion from the ltl task to DFA was

performed using spot [48]. Motion planning was performed using the KPIECE plan-

ner [45] implemented in OMPL, through the ROS MoveIt! package [51]. We con-

structed two scenarios to test the modified framework.

5.2 Case Study: PR2 in Simulation

The first scenario studied was a PR2 robot in simulation, presented in [49]. In this

scenario, the robot is tasked with serving customers at a bar. The scene involved

locations and labels for a preparation area, as well as for an adjustable number of

customers. The scene contains a number of objects: cups for drinks, a snack box,

and a tip jar.

Figure 5.1 shows one example in this case study. In this experiment, three cus-

tomer regions are present, marked by the flat boxes at the edge of the bar. The robot

is allowed to use only its right arm. Because the bar scene is very long, the robot
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(a) (b)

Figure 5.1 : The PR2 case study. (a) Experimental setup. The customer locations
are marked with a horizontal bar. Initially, both serving locations for customer 1 are
occupied. (b) The robot intelligently chooses to remove the snack box to make way
for the drink.

must move its base to reach different portions of the workspace. In order to quickly

plan for these motions, we first use sampling based motion planning to move the base

into the vicinity of the location the end effector needs to reach, and then plan for the

arm to grasp or place the object. Since this scenario is in simulation, the grasp and

place actions are performed simply by making calls to the planning environment to

attach and detach objects to the manipulator. The tasks examined were

Serve customer 1 with drink number 1.

ϕ1 = F(odrink1, lcus 1)

Though this is a simple task, we complicated the problem by setting the initial

location of the other objects to occupy all serving locations labelled with customer

1, as seen in Figure 5.1(a). The robot execution is shown in Figure 5.1(b). Even
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though no extra information was given to instruct the planner of the need to do so,

the planning framework is able to, through task and motion planning, recognize that

the locations for customer 1 are occupied, and chooses to first remove an object in

order to achieve the task.

Note that often times the robot has a choice in the order to achieve the task. In

this following example, the robot is asked to perform the following task.

Serve customer 2 with drink 1, and remove the empty drink 2. Then, offer snacks

to each customer, and ask for tip from those served.

ϕ2 = F((odrink1, lcus 2) ∧ (odrink2, lprep)
k
∧

i=1

F
(

(osnack, lcus i) ∧ F(otipjar, lcus i)
)

)

For this task, the robot has a choice as to the order the objective is completed.

After serving the drinks, the robot could offer snacks to each customer, and after all

customers get snacks, the robot will get the tip. Alternatively, the robot could offer

snacks to one customer, and immediately ask for tip, then go on to the next customer.

Through task and motion planning, the framework realizes that the latter is difficult,

as the room in front of customer 2 is limited due to the presence of drink 2. We can

see in Figure 5.2, that the robot picks the former order to achieve the task.

Finally, we ask the planner to plan for the following task.
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(a)

(b)

(c)

Figure 5.2 : The second PR2 task ϕ2. The starting configuration is identical to
Figure 5.1(a). (a) The robot first serves drink 1 and retrieves drink 2 back to the
preparation area. (b) The robot decides to first serve snacks to all customers. (c)
The robot finishes the task by presenting the tip jar to all customers.
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Serve snacks to all customers.

ϕ3 =
k
∧

i=1

F
(

osnack, lcus i

)

For this task, we vary the number of customers. Each time a new customer is

added, two new locations and an extra label are added for that customer. The added

number of locations causes an increase in the size of the abstraction, while the added

number of labels causes in increase in the size of the specification. Note that the

geometries of this scene are constructed differently from the previous examples, to

facilitate the addition of new locations. The runtime results of this example will be

shown in Section 5.4.

5.3 Case Study: Baxter Robot

The second scenario studied is the Baxter robotic system. This environment involved

6 locations with 3 different labels: two labels for two customers and one for a trash

area, as seen in Figure 5.3. The task performed is

Trash the empty can, then serve the snack to both customers, and ask for tip from

those served.

ϕ4 = F((ocan, ltrash) ∧ F
(

(osnack, lcus 1) ∧ F(otipjar, lcus 1)
)

∧F
(

(osnack, lcus 2) ∧ F(otipjar, lcus 2)
)

)
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.3 : Baxter performing task ϕ4. (a) Experimental setup. The Black can in
front is the empty can to be trashed. Green jar on the left is the snack box. Shorter
orange jar in the back is the tip jar. Area A is for customer 1. Area B is for customer
2. Box labelled with C is the trash box. (b) The robot starts by reaching for the
can. (c) Robot drops the can in the trash area. (d,e) Snacks are being brought to
customer 2, then customer 1. (f) Robot grabs the tip jar. (g,h) Tip jar shown to
customer 1, then 2, completing the task.
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(a) Pre-image (b) Grasping (c) Post-image

Figure 5.4 : Baxter performing a grasp action to pick up a can. The tags on the
robot gripper and object are used for visual feedback control.

which is similar to the second PR2 task. Figure 5.3 shows screenshots from an

actual execution. Similar to the PR2, the robot is restricted to using its right arm

only. Because the Baxter does not have a mobile base, motion planning is directly

performed on the manipulator chain from the shoulder of the robot to the gripper.

The robot successfully achieves the given task, by first trashing the can, then offering

snacks to both customers, and finally presenting the tip jar to both customers.

Figure 5.4 shows an instance of the the robot using the assumed controller for

a grasp action. Recall that the framework assumes that for grasp and place

actions, these controllers could secure the grasping and placing of the objects, given

that the end effector is within the pre-image of the controller. Figure 5.4(a) shows

the pre-image of the grasp instance. From that point, the tags on the object and

the end effector are used for visual feedback control to secure the grasp, and finally

the object is grasped, and the end effector moves to a known post-image. Because
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Scenario Task |obj| |L| |Aϕ| |P| Ttask(s) Tmotion(s)
PR2-1 ϕ1 4 8 2 44,100 2.76 12.32
PR2-1 ϕ2 4 8 27 75,511 33.12 31.15
PR2-2 ϕ3, k = 2 4 6 4 30,888 1.56 0.65
PR2-2 ϕ3, k = 3 4 8 8 273,564 17.06 0.87
PR2-2 ϕ3, k = 4 4 10 16 1,692,432 119.46 1.05
Baxter ϕ4 3 6 27 19,370 0.94 0.70

Table 5.1 : Runtime results for the manipulation synergistic framework. The k value
for ϕ3 denotes the number of customers assumed in the scene. |obj| and |L| are the
number of objects and locations, respectively. |Aϕ| is the number of states in the
DFA, used as an indicator of complexity of task. |P| is the number of product graph
nodes generated during task planning. Ttask and Tmotion are the amount of time the
framework used in task and motion planning, respectively. Times are recorded with
two timers run simutaneously to monitor both components. Times are averaged over
50 runs.

the controllers use visual feedback, they are robust enough to account for variations

in the position of the object, even though humans interact with the objects as well.

The move and hold actions are performed by following the trajectories generated

by the motion planner. The robot successfully avoids collision with the environment

by following these trajectories.

5.4 Framework Runtime

Table 5.1 shows the runtime of the algorithm as well as the number of product graph

nodes generated for the set of scenarios created. Even though task planning and

motion planning are interleaved, we measure both times to demonstrate the scalability

of the framework. The number of objects, locations indicate the complexity of the

manipulation domain, while the number of states in the DFA indicates the complexity
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of the task.

The total amount of motion planning time is determined by many factors, includ-

ing the number of actions that require planning, and the complexity of the physical

space, which relates to how frequently motion planning times out. We do see from

Table 5.1 that for the same scenario, when the task is more complex, motion planning

in general takes longer. This is largely due to a higher depth of the solution, i.e., a

larger number of actions required for the solution, which causes the number of mo-

tion planning queries to increase overall. However, comparing across the difference

scenarios, it appears the motion planning time is highly dependent on the physical

space the robot is working within, as a more difficult environment causes the motion

planning queries to take longer to solve, or timeout and return failure.

Task planning, on the other hand, is performed by running Dijkstra’s algorithm

through the product between the abstraction and the DFA generated from the task.

When more objects and locations are added, the number of reachable nodes in the

abstraction and the degree of the abstraction increase significantly. In general, the

number of reachable nodes in the abstraction is

2|L|P
|O|
|L|+1

where |O|, |L| are the number of objects and number of locations, respectively, and

P k
n denotes the number of k-permutations of n elements. This permutation number

is a very fast growing function. As can be seen from the three test cases with ϕ3, the
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number of objects remains the same, while the number of locations and size of the

formula grow linearly. This causes an exponential growth in the number of automaton

states, as well as the size of the reachable portion of the abstraction.

The construction of the product graph is performed on-the-fly, i.e., a product

graph node is constructed only when it is visited. Thus even though the number

of automaton states and the size of the automaton grow very quickly, the size of

the product graph could potentially grow less significantly. In this thesis, Dijkstra’s

algorithm is used to search this product graph, which proceeds in a breadth-first

manner. In the end, as shown in Table 5.1, this causes the product graph to grow

significantly, causing a drastic increase the task planning time. In experiments where

5 customers were used for the ϕ3 example, the planner failed within a 10-minute

timeout, without completing a single iteration of task planning. Therefore, searching

the product graph is currently the bottleneck of scaling the framework to larger

problems. Improving the speed of this search is a key point of future work.

5.5 Manipulation Abstraction vs Naive Abstraction

As runtime is affected by the abstraction, it is important to consider the choice of

abstraction constructed for this problem. In addition to the manipulation abstraction

introduced in Section 3.1, a naive abstraction was also implemented for purposes of

comparison. This naive abstraction was inspired by domain specification languages

such as PDDL. In this abstraction, the nodes only contained information regarding the
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Manip Abstraction Naive Abstraction
|obj| |L| Time (s) |P| Time (s) |P| % Speed Up
3 6 .883 19,370 1.12 8,941 26.8
3 8 2.28 66,164 4.84 31,137 71.6
3 10 7.51 168,966 15.5 80,461 106.4
3 12 16.2 360,800 39.8 173,185 145.7
4 6 4.03 77,246 5.34 35,653 32.5
5 6 12.6 228,540 16.8 105,481 26.8

Table 5.2 : Runtime for a single run of task planner for manipulation and naive
abstractions. The task used is the Baxter task. Average runtime computed over 50
runs. |obj|, |L|, and |P| denotes the number objects, number of locations, and number
of nodes explored in the product graph, respectively.

Figure 5.5 : A portion of a possible the naive abstraction with only one object. This
abstraction is more compact, at the cost of a higher average degree for this graph.
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locations of the objects and the robot, but not the action being performed. Also, this

abstraction does not use a location graph, and thus does not have an intermediate

area. Instead, this abstraction assumes transitions of the robot between any two

locations of interest. A fragment of a possible naive abstraction is shown in Figure

5.5.

Intuitively, this naive abstraction captures the state of the robot and the ob-

jects like the manipulation abstraction, but does not capture the robot action being

performed or any locality of the space. Because the abstraction no longer provides

information on the action being performed, the guide also does not contain this in-

formation. Thus the work of extracting the correct action from the guide is given to

the synergistic layer.

Our experiments show that this abstraction could also be used to plan for manipu-

lation problems. Additionally, by examining the guide generated by the first iteration

of task planning, we found that, when weights are at initial values, we found that the

guide found by the task planning using the two different abstractions corresponded to

the same actions. Thus we focus our comparison on the runtime of the task planner

when the two different planners are used. Table 5.2 shows the number of product

graph nodes generated as well as the average time used by the task planner to find

one guide. The experiments were performed using the task from the Baxter scenario,

where the baseline is 3 objects in 6 locations. Adding locations to the baseline gave

the framework more choices as to intermediate locations to drop objects, which affects
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the size and average degree of the abstraction. Adding objects irrelevant to the task

made the problem more difficult as objects may need to be moved out of the way for

a task, causing the search to be deeper. As we can see, in all cases, the manipulation

abstraction generates more nodes in the product graph, but the search for a guide is

faster.

The manipulation abstraction, by containing more information on the nodes, has

several effects on task planning. First, including more information on the nodes

causes the number of possible nodes to increase, thus the task planner generates more

product graph nodes when using the manipulation abstraction. On the other hand,

by incorporating information regarding the action, it is faster to find the successors

of a given node. Also, because nodes with the same location for the objects and the

gripper but different action are differentiated, and an intermediate region is used, the

average degree of the abstraction graph is less than that of the naive abstraction.

The runtime of Dijkstra’s algorithm depends on the number of nodes expanded,

the number of edges considered, and the cost of evaluating an edge. The combination

of faster computation for successors and less edges considered due to a lower degree

overcomes the higher number of nodes explored, resulting in a faster search for the

manipulation abstraction than a naive abstraction, at the expense of using more

space. This trade off is magnified when the degree of the abstraction is larger, as

shown in Table 5.2, as the speed gain in using the manipulation abstraction is higher

for problems with more locations.



50

As Table 5.2 shows, task planning runtime scales poorly with the number of objects

and locations for both abstractions. To improve the scalability of the framework,

the search technique used and the abstraction need to be reconsidered. This is an

important aspect of future work.
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Chapter 6

Conclusion and Future Work

In this thesis, we present a series of modifications to the synergistic framework to en-

able task and motion planning using this framework. The modifications include the

manipulation abstraction that captures the manipulation problem, as well as modifi-

cations to the weighing system of the synergistic framework. We show through two

case studies that this framework can effectively plan for real manipulation problems.

We also show that the manipulation abstraction outperforms a naive abstraction for

all the cases studied.

A component that could be investigated in the future is the location graph dis-

cussed in Section 4.1. Currently, the location graph only consists of the locations of

interest and a single intermediate area. It remains to be investigated if using addi-

tional areas to partition the workspace will help guide motion planning and reduce

overall planning time. A more complex location graph could also enable a new weigh-

ing scheme that can generalize the difficulty of a particular instance of an action to

other similar actions, by recording the difficulty of motion planning in the location

graph.

One area to investigate is the methods used to search the product graph for

task planning. As discussed in Chapter 4, task planning is currently performed by
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running Dijkstra’s algorithm on the product graph. We see in Section 5.4 that this

causes the task planner to generate a large number of product graph nodes, and is

currently the bottleneck for scaling to solve larger problems. Due to the breadth-first

behavior of Dijkstra’s algorithm, increases in number of objects, number of locations,

and size of specification all directly translate to an exponential increase in runtime.

By employing more advanced techniques discussed in Section 3.1, we hope to avoid

searching in parts of the product graph that are less likely to generate leads. This

could mitigate the growth in the product graph, leading to faster task planning.

In this thesis, the weighing scheme used in the product graph of the synergistic

framework was only studied to the extend of encoding the successfulness of motion

planning queries. The weighing scheme could be improved by encoding more de-

tailed information regarding the exploration data from the motion planner, such as

the coverage of the workspace. This has been implemented for navigation problems

described in [3, 4].

One assumption being made in this thesis is that the robot is considered to be a

single manipulator. In many settings, such the the PR2 robot and Baxter robot pre-

sented here, the robot has more than one manipulator arm. It is desirable to utilize

all possible ways for the robot to manipulate objects. Actions could be performed in

parallel using multiple manipulators, or multiple manipulators could collaborate to

achieve a single action that is previously unachievable. However, it is challenging to

plan for such behaviors, due to the need to coordinate between the different manip-
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ulators. We would like to investigate methods to tackle these challenges and utilize

the full physical capabilities of the robotic platforms.

Even though the planning queries requested by the synergistic layer are different

depending on the action being performed, the queries are still related. The manip-

ulator and the nonmanipulable obstacles are the same for each query. Thus motion

planning data from one query could potentially be used for other queries. One possi-

bility is to reuse the samples from previous planning queries, and lazily evaluate the

validity of the samples and the edges between them. This could potentially speed up

motion planning, especially for scenarios where motion planning is difficult.
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[40] L. E. Kavraki, P. Švestka, J.-C. Latombe, and M. Overmars, “Probabilistic

roadmaps for path planning in high-dimensional configuration spaces,” IEEE

Transactions on Robotics and Automation, vol. 12, pp. 566–580, Aug 1996.



60

[41] S. M. Lavalle, “Rapidly-exploring random trees: A new tool for path planning,”

Tech. Rep. 98-11, Department of Computer Science, Iowa State University, Ames,

IA, 1998.

[42] D. Hsu, J.-C. Latombe, and R. Motwani, “Path planning in expansive config-

uration spaces,” Intl. J. of Computational Geometry and Applications, vol. 9,

no. 4-5, pp. 495–512, 1999.

[43] J. J. Kuffner and S. M. LaValle, “Rrt-connect: An efficient approach to single-

query path planning,” in Int. Conf. on Robotics and Automation, vol. 2, pp. 995–

1001, IEEE, 2000.

[44] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,” Interna-

tional Journal of Robotics and Research, vol. 20, no. 5, pp. 378–400, 2001.
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