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This paper describes a randomized approach for finding in-
variants in a set of flexible ligands (drug molecules) that un-
derlies an integrated software system called RAPID currently
under development. An invariant is a collection of features
embedded in � 3 which is present in one or more of the possi-
ble low-energy conformations of each ligand. Such invariants
of chemically distinct molecules are useful for computational
chemists since they may represent candidate pharmacophores.
A pharmacophore contains the parts of the ligand that are pri-
marily responsible for its interaction and binding with a specific
receptor. It is regarded as an inverse image of a receptor and is
used as a template for building more effective pharmaceutical
drugs. The identification of pharmacophores is crucial in drug
design since the structure of the targeted receptor is frequently
unknown, but a number of molecules that interact with the
receptor have been discovered by experiments. It is expected
that our techniques and the results produced by our system will
prove useful in other applications such as molecular database
screening and comparative molecular field analysis.
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Computational chemists working in the area of structure-based
drug design consider both chemical and geometric properties
of the interacting molecules when developing new pharmaceu-
tical drugs [8, 28, 33]. The underlying assumption is that drug
activity, or pharmacophoric activity, is obtained through the
molecular recognition and binding of one molecule (ligand) to
a pocket of another, usually larger, molecule (receptor). This
assumption is supported by a number of experimental results
showing molecules with geometric and chemical complemen-
tarity in their active, or binding, conformations [11].

When the three-dimensional structure of the receptor is
known, docking methods [10] exploit both the geometric and
the chemical information available. However, the geometric
structures of relatively few molecules have been obtained via
X-ray crystallography or NMR techniques. As a result, com-
putational chemists often try to develop pharmaceutical drugs
for receptors whose structure is unknown [9, 37]. The starting
point in this case is a collection of ligands that have been exper-
imentally discovered to interact with the considered receptor.
By examining the chemical properties and the possible shapes
of these ligands, chemists seek to identify a set of features em-
bedded in � 3 that is contained in some active conformation of
each (or most) of the ligands. This is called the pharmacophore

and it is considered responsible for the observed drug activity.
The features of the pharmacophore interact with features of the
receptor, while the rest of the ligand acts as a scaffold. Once
a pharmacophore has been isolated, it can be used to further
improve the activity of pharmaceutical drugs [23].

This paper considers the following problem: Given a set
of ligands that interact with the same receptor, find geometric
invariants of these ligands, i.e., a set of features embedded in
� 3 that is present in one or more valid conformations of each
of the ligands. We refer to this problem as the pharmacophore
identification problem since the pharmacophore is such an in-
variant. Solving this problem requires dealing efficiently with
large amounts of spatial data and shape information. Ligand
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(a) (b) (c)

Figure 1: 1TMN: (a) space-filling, (b) stick, and (c) set-of-
points models

molecules are very flexible and can assume many distinct po-
tentially valid conformations. A valid conformation is a rigid
spatial realization of the atoms of a molecule whose energy is
below a predefined threshold [11]. It is not known, a priori,
which of the many possible valid conformations of a ligand is
the one that contains the desired pharmacophore.

Besides providing starting points for designing effective
pharmaceutical drugs, there are several important applications
where geometric invariant identification is useful. For ex-
ample, the geometric invariants identified by our system can
help in the formulation of database queries that may retrieve
functionally equivalent, but structurally novel, molecules from
molecular databases [44]. Geometric invariants can also sug-
gest alignments of molecules for input to CoMFA (Compara-
tive Molecular Field Analysis) and other 3D QSAR (Quanti-
tative Structure-Activity Relationship) methods [9, 28]. These
are methods that predict the activity of hypothetical compounds
based on the assayed activity of previously synthesized ones.

This paper describes our efforts to prototype an integrated
software system, called RAPID (RAndomized Pharmacophore
Identification for Drug design), for addressing the pharma-
cophore identification problem. We present briefly the overall
structure of RAPID in Section 2, and outline related work in
Section 3. The two main modules of RAPID, conformational
search and identification of invariants, are described in Sec-
tions 4 and 5. In this paper, we focus on the latter module and
describe in some detail a randomized approach for solving an
abstract geometric problem lying at the core of pharmacophore
identification – the search for common subsets in a collection
of point sets embedded in � 3. Our system attempts to deal
with the numerous complications that arise in real examples.
We report in Section 6 some preliminary experimental results.
Finally, in Section 7, we conclude with a discussion of some
open issues that merit consideration in future work.
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RAPID tries to identify geometric invariants among a collec-
tion of small ligand molecules like the molecule shown in

Figure 1. This ligand is called 1TMN and it is one of the sev-
eral inhibitors of the protease thermolysin. Figure 1(a) shows
the space filling model of 1TMN. In this model a Van der Walls
sphere [11] is considered around each atom center. Figure 1(b)
shows the corresponding stick model in which only chemical
bonds are drawn. The degrees of freedom of ligands include
bond lengths, bond angles (angles between two consecutive
bonds), and dihedral or torsional angles (angles formed by the
first and third of three consecutivebonds, viewed along the axis
of the second bond). In practice, only the torsional degrees of
freedom are considered since these are the ones that exhibit
large variations in their values [11]. Figure 1(c) shows the
conformation of 1TMN of Figure 1(a) as a set of points in � 3 .
These points may represent atom centers or groups of atoms
aggregated to one point endowed with a feature common to
all these atoms (e.g., a rigid benzene ring) [37]. We assume
that once a conformation is given, one can automatically trans-
form it to a unique collection of points. For the purposes of
this paper, a conformation � may represent a valid geometric
embedding of a molecule where bonds are retained, or a set of
points without bond information.

In RAPID, the identification of geometric invariants in a
collection of flexible ligands denoted by ������� 1 � � 2 ��������� ��� �
is treated as a two-stage process1 addressing the two following
problems:

!�"$#&%('�)�*
1 (Conformational Search) Given a collection of

ligands �+�,��� 1 � � 2 ��������� � � � , the degrees of freedom of

each of them, and an energyfunction - , find, for each �/. , a set
of conformations �$�0. 1 � �1. 2 ���$����� �2.43�56� , such that -879�1. :�;=<
THRESHOLD and d 79�0. : � �1.?>@;BA TOLERANCE for CED�GF
and F � C=� 1 ���������IH . � THRESHOLD and TOLERANCE are

pre-specified values, while JK7ML � L ; is a distance function.

!�"$#&%('�)�*
2 (Invariant Identification) Given a collection of

ligands �N�O��� 1 � � 2 ��������� �P��� , where each � . has a set

of conformations QR79� . ;8�S�$� . 1 � � . 2 ��������� � .?3�5 � , determine
a set of labeled points T in � 3 with the property that for allUWV � 1 ���������IX � , there exists some � . : V QR79� . ; such that T is
congruent to some subset of �0. : . A solution T , if it exists, is

called an invariant of � .

Although at this stage the two modules of RAPID work
independently, we plan to support their interaction as the sys-
tem develops. For example, the invariant identification module
will be able to request from the conformational search module
conformations that contain certain features of the molecule in
specified spatial positions. RAPID also needs to deal with a
host of complicating factors. In practice, the input may con-
tain ligands that do not bind firmly to a receptor and do not
contain the pharmacophore. This requires us to consider a

1A third module of RAPID, currently under development, involves
the computation of molecular surfaces (see [20, 27]).
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relaxation of Problem 2 above, where a geometric invariant
need only be present in conformations of some

�
of the �

molecules. Furthermore, an invariant may be perturbed in its
spatial layout in distinct ligands’ conformations, or there may
be a large number of spurious invariants of differing sizes that
do not correspond to a pharmacophore. Each of these con-
tributes to a combinatorial explosion in the search process for
the invariants.

� 
 ��� �
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��

As far as conformational search is concerned, both systematic
and randomized techniques are being investigated [10, 32, 33].
Systematic search methods sample each torsional degree of
freedom of the ligand at regularly spaced intervals and mini-
mize all conformations produced [34]. These techniques can
be prohibitively expensive [32] and several heuristics are em-
ployed to quickly prune away conformations that are “close” to
previously generated conformations [43]. Randomized meth-
ods work as follows: conformations are obtained by apply-
ing random increments to torsional degrees of freedom of
the molecule starting with a user-specified initial conforma-
tion [22], or with a previously discovered low-energy con-
formation [14]. Recent articles, which attempt to compare
different methods, emphasize the superior quality of the re-
sults obtained with randomized methods [22]. Other consid-
ered methods produce low-energy conformations, which obey
distance constraints, using inverse kinematics [36], algebraic
methods [24], or distance geometry techniques [17]. Note that
the protein-folding problem is also a conformational search
problem but its large size prohibits the use of the above tech-
niques (see [18]).

Invariant identification is related to the well-studied prob-
lem in geometric optimization [1, 3, 2, 30] of finding common
point sets. Determining the congruence of two point-sets in
� 3 is tractable [1, 3] in the absence of complications such as
noise. However, invariant identification is more closely re-
lated to the problem of identifying the largest common point
set (LCP). Unfortunately, the LCP problem turns out to ex-
ceedingly difficult; in fact, even for 	 collections of X points
on the real line, the LCP cannot be approximated to within an

X�
 factor unless � �
��� , and only weak positive results are
known [2, 30]. Of course the problem is polynomially solvable
when 	 � 2 [3] but that is not good enough for our purposes.
Also, there are constraints in the molecular structures, but there
are also various complications as discussed earlier.

In the computational chemistry literature, the most pop-
ular algorithms for invariant detection are based on clique-
detection. For instance, DISCO [37] initially considers a pair
of conformations � 1 and � 2 belonging to different molecules
and constructs a “correspondence graph” � . The nodes of �
are all node pairs, and an edge is created if the pairs in each of

the connected nodes can be matched simultaneously. A clique
detection algorithm [13] is then used to find cliques in � . These
correspond to invariants in � 1 and � 2, and thus to candidate
pharmacophores. Maximum clique detection is NP-hard [21],
but this algorithm seems to work well in practice [37, 44]. The
approach has been generalized to X conformations by choosing
a reference conformation and comparing it with the other X�� 1
conformations. Unfortunately, if a large number of conforma-
tions per molecule are to be considered, there is a tremendous
blow-up in the number of primitive operations performed by
such algorithms [9], rendering them impractical. Given this
situation, several new approaches are under development. For
instance, one idea is to start with small invariants (2-3 features)
and gradually expand them [9]. Our approachis fairly different
and involves heavy use of randomized search techniques [39].

���  $� �  
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The goal of conformational search as defined in Problem 1
(Section 2) is to produce a number of distinct low-energy con-
formations of a given ligand. We proceed as follows. Initially
a large number of conformations are generated at random. In
contrast with previous randomized search methods, we obtain
a random conformation by selecting each degree of freedom
from its allowed range according to a user-specified distribu-
tion. This distribution is frequently the uniform distribution.
However, if some a priori information is available about the
preferred values of a particular degree of freedom [31], then the
corresponding values are selected according to a distribution
that reflects the a priori information (i.e. a Gaussian distribu-
tion). An efficient minimizer [12, 40] is then used to obtain
conformations at local energy minima. Minimization is the
most time-consuming step during conformational search, so
we have carefully optimized this procedure.

To obtain a representative set of conformations from our
sample, we partition it into sets that reflect geometric simi-
larity as captured by the distance measure DRMS. We define
DRMS( �1. , �W: ) as the square root of the mean of the squared
distances of the corresponding atoms of � . and � : , after � . is
transformed to � : . This transformation is computed using a
basis of three predefined atoms � 1 , � 2 , and � 3 (see Section 5).
We perform a greedy clustering of the conformations by plac-
ing a given conformation in an existing cluster if its distance
from the “center” of that cluster is less than the predefined
value TOLERANCE. If no such cluster is found, a new cluster
is created. The center of a cluster is the conformation with the
lowest energy in the cluster. We omit further details of the clus-
tering, but note that the implementation employs heuristics for
improving the quality of output, e.g., it is ensured the cluster
center is close to the average cluster conformation and a post-
processing step checks that all cluster centers are sufficiently
far apart. While we obtain reasonable experimental results,
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we are investigating optimizations via algorithms that mini-
mize the maximum intercluster distance [25] and incremental
clustering techniques [15].

Our experience with randomized techniques for searching
high-dimensional spaces has shown that randomized explo-
ration is superior to systematic exploration when the shape of
the underlying space is irregular [29]. The same observation
holds for conformational search: a systematic procedure has
a higher chance of missing the irregularly shaped basins of
attraction of the energy landscape of the molecule (see also
[22]). This has been our main motivation for the development
of the randomized conformational search procedure described
above.

� �'! �
�
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The set of cluster centers, denoted by Q 79��; � QR79� 1 ;�� ����� �
QR79� � ; is the input for the invariant identification module.
Each conformation in Q 79��; is now represented as a set of
labeled points in � 3 (see Section 2). We wish to determine
a structure T that is congruent to a substructure of some con-
formation in every molecule. The congruence relation is with
respect to 3-D rotations and translations that ensure equality of
labels.

Our formulation of the invariant identification problem in
Problem 2 (Section 2) assumes noise-free data, specifically
that all point positions are known exactly . In practice, atom
positions are fuzzy, and it may not be possible to align them
exactly. Therefore, we adopt the convention that two points�

1 and � 2 are said to match when � � 1 � � 2 � <�� , where � is
the point location error. Similarly, two triangles are said to
be congruent if each point in the first triangle is within � of its
corresponding point in the second.

The invariant identification problem is a variant of the
largest common point set problem (LCP) in three dimensions,
which is the following. Given � point sets � 1 � � 2 ��������� �
	 in
� 3, determine the point set of maximum cardinality congruent
to some subset of each point set. For convenience, we assume
that each point set � . has cardinality exactly X . For arbitrary �
and dimension J , LCP is hard to approximate within a factor
of X 
 , for some � A 0 [2]. In the sequel, we consider the
following version of LCP, called LCP- � : determine a point
set T of size � T���
�� X congruent to some subset of each
� . � 1 < U <�� . The motivation for focusing on this subprob-
lem is that it more accurately captures the primary application,
where pharmacophores are desired to have a certain minimum
size.

We begin by focusing on the case �P� 2, and later, in
Section 5.2 indicate how to generalize for any value of s.

��� � � �
�
	I� �����"�
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�	 %'	6��� �
�&� ��%����
In this section, we focus on the invariant identification problem
for two point sets, denoted by MATCH. This problem has been
studied extensively in the literature [41, 42, ?]. For the case
when � � 1, i.e., determining the congruence of two point
sets, an algorithm that runs in time �87 X log X ; in two and three
dimensions was presented in [7]. However, for general � , the
best known algorithms were obtained by [3]. These algorithms
have a worst-case running time of �87 X 4 � 6 ; for unknown � ,
and �87 X 2 � 6 � � 2 ; (randomized) when � is known, for three
dimensions. For two dimensions, the corresponding bounds
obtained are �87 X 3 � 2 ; and �87 X 2 � 2 � �(; . However, these bounds
apply only for the noise-free model of point sets. The noisy
version of the problem was consideredin [5] yielding an �87 X 8 ;
algorithm for the two dimensional version.

In this section, we describe two random-sampling schemes
for solving LCP- � on noisy data. The first is quite natural,
and the second uses more careful random sampling. Note
that in these algorithms, we use the notions of congruence
and matching that incorporate noise. However, the analysis
assumes that the data is exact.

In the sequel, we use the notation � 7 X ;2� ˜�87��R7 X ;M; , where
� and � are functions, to indicate that � 7 X ;2���87��R7 X ; log X ; .
Also note that in three dimensions, a unique transformation  
(upto reflection) between two point sets � 1 and � 2 is deter-
mined by matching three points � �"! , and # in � 1 with three
points � �%$ , and & in � 2. Furthermore, it is known that [19]:

!�"$#(' #()+*-,+*�#(.
1 Given a transformation  from � 1 to � 2,

in time ˜�87 X ; we can determine for each point � V � 1 a

corresponding point �0/ V � 2 such that �  �7 � ; � �(/ � is minimized.

The basic random sampling method is as follows.

1 � � � �32 � �4���
5(6��
For some constant � ,perform 7�� log X ; � � 3

iterations of the following sampling process: sample a triplet
of points 7 � 1 � � 2 � � 3 A randomly from � 1; determine three
points in � 2 congruent to this set; compute the resulting in-
duced transformation and determine the number of points in
� 1 matching corresponding points in � 2; and, if the number
exceeds � X , declare SUCCESS.

8�9()�#&"$)�*
2 Given a common subset T of size � T��:
;� X , the

probability that BASIC-SAMPLE fails to declare SUCCESS is

at most 1 � X .

The proof of this theorem is straightforward. Observe
that the probability of picking three points that belong to the
common substructure is at least � 3 . Applying a Chernoff
bound [39] yields the desired probability.

8�9()�#&"$)�*
3 BASIC-SAMPLE runs in time ˜�87 X 2 � 8 � � 3 ; using

space �87 X 2 ; .
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The running time can be written as  � X � 1 ��� 3

.�� 1
∆ . where

∆ . is the number of candidate transformations generated during
iteration

U
. Let ��� 7 $ ; denote the number of triangles congruent

to $ in point set � (we follow the notation of [3]). Clearly,
∆ .1�	� � 2 7 $ .�; , where $ . is the triangle induced by the triplet
chosen at iteration

U
. In [3], it is shown that �
� 7 $ ; � �87 X 1 � 8 ; .

This yields a bound of ˜�=7 X 2 � 8 � � 3 ; on the running time for
BASIC-SAMPLE.

Run-time profiling revealed that BASIC-SAMPLE exam-
ines many spurious triples (i.e., those that do not yield a large
invariant). We propose the following modification of the ran-
dom sampling procedure to fix the problem.

� ��
�� �
� �?���
2�� �4�P� 5(6 �
For some constant � ,perform � log X

iterations of the following sampling process: randomly select
two subsets � and � of size 1 � � from � 1; also select a subset
� of size 1 � � from � 2; store all distances JK7 � � ! ; , for all � V �
and ! V � 2 � � , in a hash table; for every triangle 7�� ����� � ;
with � V � ��� V � , and � V � � 7�� ��� ; , probe for JK7 � � ��;
and JK7 � ��� ; in the hash table to determine all matching triplets
7�� � � 1 � � 2 ; with � V � and � 1 � � 2

V � 2 � � ; finally, as before,
if the resulting transformation induces a match of more than
� X points, declare SUCCESS.

8�9()�#&"$)�*
4 Given a common subset T of size � T��:
;� X , the

probability that PARTITION-SAMPLE fails to declare SUC-
CESS is at most 1 � X .

Proof: Let the transformation yielding T be  . The follow-
ing statement is clearly true: If T���� D��� and T���� D��� ,then
this trial yields a transformation that finds T with probability
approximately � .

We try all triplets 7�� ����� � ; � � V � ��� V � � � V � 1 � � � � .
Since T is large, at least one of these is a triangle wholly
contained in T . We do not find the corresponding triangle in
� 2 only if � contains the image of � or � under  (which
happens with probability < 1 � X ), or if � does not contain any
point from T , (which happens with probability 7 1 � �(; 1 ��� ).

The probability � that ��� T ��� is at most 7 1 � �(; 1 ��� < "! 1. The probability that a single random trial fails is the
probability that 7��#� T/�$��;&% 7'��� T/�$��;&% 7M7�� 1 � � �� ;(�PT �)�
; . For T 
 4, this probability is bounded by
2 �
* � 2 which is constant. Therefore, by repeating � log X
times, we obtain a probability of error +�< 1 � X .

8�9()�#&"$)�*
5 PARTITION-SAMPLE runs in time ˜�87 X 3 � 4 � � 3 ;

using space �87 X � � 2 ; .
Proof:The number of candidate triangles $ 1 � $ 2 ���������%$ 3 gen-

erated by iteration from � 1 is X L 1 � � L 1 � �/� X � � 2. Given
a triangle $ . , and a point � V � , let �-,� 2

7 $ .�; be the number
of triangles in � 2 incident on � and congruent to $ . . The run-
ning time of the algorithm can now be given by the following
expression:

 �7 X ;+� �87 X � � 2 */.
,�021

3
.
.�� 1

X � ,� 2 7 $ .�;�*
X � � 2 .

,3041
X 2 ; �

The first term is the cost of generating the triangles $ 1 ���������%$ 3 .
To estimate � ,� 2

7 $ . ; , we need to count the number of triangles
in � 2 which share the same point � and are congruent to $ . .
For any such triangle � � � � 1 � � 2 � , let J 1 � � � � � � 1 � � � J 2 �
� � � � � 2 � � � J 3 � � � � 1 � � 2 � � . Let T . be a sphere centered at �
of radius J . � U � 1 � 2. Consider any � � � � 1 � � 2 � congruent to

$ . Without loss of generality, assume that � . V T . � U � 1 � 2.
Now, once we fix � 1 , all such points � 2 lie on the intersection
of T 2 and a circle of radius J 3 centered at � 1. Therefore, the
number of such points (and also the number of congruent tri-
angles fixed at � and � 1 is the number of incidences between
points of � 2 and this fixed–radius circle. Hence, the desired
total number of such triangles fixed at � is merely the maximum
number of incidences between X circles of fixed radius and X
points in � 3. If we choose an arbitrary direction and project
this down to two dimensions, the problem reduces to counting
the number of incidences between X ellipses and X points in
the plane, which is �87 X 1 � 4 ; (from [16]).

Inserting this bound yields:

 �7 X ; � �87 X 3 � � 3 * X .
,�021

3
.
.�� 1

� ,� 2
7 $ .�;M;

� �87 X 3 � � 3 * X 2 � � 3 L X 1 � 4 ;
� �87 X 3 � 4 � � 3 ; �

Although the asymptotic running time of PARTITION-
SAMPLE is worse than that of BASIC-SAMPLE, experiments
(discussed in Section 6) reveal that PARTITION-SAMPLE
consistently outperforms BASIC-SAMPLE, generating far fewer
spurious triples with an improved degree of success. Intu-
itively, the modified partitioning favors “large” solutions over
small ones. Given a solution T of size

�
in � 1, the probability

that each of � � � , and � 1 � � � � contain at least one point
of T increases with

�
.

Additionally, experimental results suggest that the pre-
dicted running times are fairly high. In Section 6 we also
discuss possible reasons for this, in terms of actual distance
distributions among molecules.

6 � % � %����
�&%���� 
 � !$# �
! � ��� �  �'#
�&%' "�
	 �
An invariant search

algorithm could return many solutions that satisfy a contain-
ment relationship with respect to each other. To prevent such
redundant solutions from propagating through the complete
search procedure, we need to prune them. Given invariants T 1

5



and T 2 , we can check if T 1
� T 2 by invoking the algorithm on

these two sets with � set to 1. Clearly, since � is 1, a solution
will be produced only if T 1 is contained in T 2 . Essentially,
this stage induces many instances of geometric pattern match-
ing, where we wish to determine whether a set of points � is
congruent to some subset of a point set � .

���
�
��� # 
 �
��%�� 	 %�� �  ��� #
�&%��:� � ��� � 
�� ��	M�  
 � �
�&%' $�(�
The

module at the core of the substructure search algorithm is the
following: Given points � 1 � � 2 � � 3

V � 1, and �(/1 � �(/2 � �(/3 V � 2,
compute a transformation  from � 1 to � 2 that maps � .�� � /. ,
for
U � 1 � 2 � 3. Such a transformation can be computed in

many different ways. The simplest such way is: (i) align � 1

and ! 1 ; (ii) align the vectors �� 1
�

2 and �! 1 ! 2; and, (iii) align � 3

and ! 3 by a rotation about �� 1
�

2 . This approach over-constrains
the fit between the two triangles.

For our purposes we need to compute a transformation that
preserves this initial set of correspondences (within distance
� ), and matches the largest number of points from � to � .
Since atom locations are noisy, such a transformation may
not be unique, i.e. there may be different transformations
that yield maximal but incomparable common subsets. In
general, if we consider the six-dimensional space of all rigid
transformations in � 3, the set of transformations satisfying the
given correspondences is actually an enclosed volume over
which we must maximize the transformation score.

If we knew the correspondences between points in � 1 and
� 2, then a “balanced” transformation could be obtained by
computing the transformation minimizing DRMS 7�� /1 � � /2 ; � � /1
and � /2 being the subsets of � 1 and � 2 that are matched to
each other [6] (see Section 4 for the definition of DRMS).
This suggests the following refinement: Use the three-point
procedure above to generate a plausible correspondence list,
and then use a DRMS minimizing procedure to compute a
refined transformation.

However, this approach is more time-consuming, and it is
possible that DRMS minimization merely replaces one form
of over-constraining by another. Our implementation employs
various heuristics to minimize the effect of this problem. One
such heuristic is the following: Determine a seed transforma-
tion  by any of the above methods, and then sample three
random pairs from the set of correspondences that  induces,
using these pairs to construct a new transformation. Clearly,
in a perfect world, we will obtain  again. However, given the
inaccuracies in point location, it turns out that some choices
of triplets may yield a larger number of correspondences than
before.
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The previous phase yields methods for solving LCP- � on two
sets. In Phase 2, candidate solutions obtained from the pre-
vious phase are tested against the remaining molecules to de-

termine the invariant. Each MATCH call operates on two
conformations. Since each molecule is represented by many
conformations, we extend MATCH to two molecules by doing
all pair-wise matches between the sets of conformations. Note
that comparing a candidate solution against a new conforma-
tion may result in 0 � 1 � or many solutions, since the solution
may decompose into smaller pieces on comparison.

There are various strategies one could use to process mul-
tiple molecules. A simple strategy does the obvious linear
merging. We take each solution and compare it with the next
molecule. We do this for all current solutions, concatenate and
prune the results, and repeat with a new molecule. Another
approach, which is in some ways less order-sensitive, is a tree-
based merge. Here, we run the two-molecule algorithm on
distinct pairs of molecules, and recursively combine the results
using a binary tree. Both approaches are simple and correct, if
point location error is not considered.

In addition to this, we may wish to find an invariant that
does not exist in all the molecules, but in some fixed number
of them. Our current strategy would fail to do this because
all candidate solutions are compared against every molecule.
We use a modified merging strategy here to keep track of the
number of times an invariant fails to match against a molecule,
and only reject those which exceed the maximum allowed
number of failures.

If an invariant T is contained in a point set � , then a call
to MATCH( T � � ) should return a set of solutions containing
T . This can easily be checked, which means that we can
verify whether an invariant matches against a conformation.
Our marking algorithm associates marks with each candidate
solution. All original conformations are initialized with zero
marks. All invariants that result from a MATCH acquire the
sum of the marks of the input structures. Every time a solution
fails to match against a new molecule (which means that it
fails to match with any conformation of that molecule), we
add a mark to it and continue to propagate it. We reject any
solutions for which the number of marks exceeds the prescribed
maximum.
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This section reports experimental results for the algorithms
described above. All reported timings are on an SGI Indigo2
with a 175 MHz MIPS R8000 processor and 384MB RAM.
Code was written in C/C++, and compiled using SGI CC.

����� #
�+�
In Figure 2, we show four different inhibitors of the

protease thermolysin. These molecules fit into the same cav-
ity of thermolysin and by their presence inhibit the activity
associated with that cavity. This example was chosen be-
cause all the inhibitors have been crystallized with thermolysin
and their active conformations are known and recorded in the
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Figure 2: 1TLP, 4TMN, 5TMN, and 6TMN are inhibitors of
thermolysin.

Figure 3: Different clusters of 1TLP.

PDB database (a database of three-dimensional protein struc-
tures stored at the Brookhaven National Laboratory). Note
that 1TLP has 69 atoms and 10 torsional degrees of freedom,
4TMN has 68 atoms and 15 degrees of freedom, 5TMN has
64 atoms and 13 degrees of freedom, and 6TMN has 63 atoms
and 12 degrees of freedom.

�  "�
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Each of the molecules in Fig-

ure 2 was run through our conformational search software. A
THRESHOLD value of 20 Kcals/mol was used for the energy
of the valid conformations. It took 4.3 hours to to produce4000
valid conformations for each molecule and reduce these to a set
of representatives. The timings reported are very reasonable
if one takes into account that 10, 15, 13, and 12 dimensional
spaces are searched. The number of representatives produced
was 850, 1192, 1024, and 955 for 1TLP, 4TMN, 5TMN, and
6TMN, respectively. The TOLERANCE value was set to 1.23
˚� for all runs. A few clusters of 1TLP are shown in Figure 3.
Since we know the active conformations of all the molecules,
we performed a consistencycheck at the end of conformational
search and we confirmed that the active conformations were
close to one of the produced representatives.

An important issue in conformational search is to decide
the number of valid conformations to produce. At this stage,
this number is determined experimentally: we stop producing
new conformations when these fall into existing clusters and
do not increase significantly the overall number of clusters.

�'! �
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To find the invariants in these

four molecules, the conformations produced by the first stage
were given as input to the search algorithm described in Sec-
tion 5. For these tests, we considered each non-hydrogen atom

Parameter Search Value Prune Value

� 1 � 3 3 � 5
�

0 � 5 1 � 0
� 0 � 3 1 � 0

Table 1: Parameters for invariant search trials.

to be a separate feature or point. Thus, each conformation had
approximately 30 features drawn from 6 feature classes (the
feature classes here being the atom types). We define the “so-
lution” to be the overlapping portions of the molecules when
aligned as shown in Figure 4. This is the upper right hand
T-shaped portion of this diagram. The entire invariant consists
of roughly 7 atoms and an additional 7 atoms of “scaffolding,”
or connecting atoms with no pharmacophore functionality.

Table 1 details the parameters used for invariant identifica-
tion. The parameters � , �

, and � are as described in Section 5.
We set at 5 the number of times the MATCH algorithm is run
per comparison, or the maximum number of invariants found
per MATCH. These parameters were chosen by experimenta-
tion. For example,

�
was selected to be much lower than � .

We found that higher values of
�

increased the running time
without improving the quality of the solution.

For the sake of brevity, we omit detailed experimental anal-
ysis of variants of Multiple Search and use a linear search to
compute invariants, with no failures in matching invariants
permitted.

In Figure 6, we compare the two schemes experimentally.
The running time of the two algorithms (measured in terms of
the number of transformations produced) is plotted against �
for varying � . We see that as � gets smaller, PARTITION-
SAMPLE clearly performs far better than BASIC-SAMPLE.
At higher values, their behavior is more alike.

We also present in Table 2 a comparison between the
two schemes on large data sets, where we vary the number
of conformations per molecule. We include the active con-
formation in our sets. In all cases, the quality of solutions
(in terms of the largest solution found) is comparable, and
PARTITION-SAMPLE consistently runs faster than BASIC-
SAMPLE. When the number of conformations increases, more
invariants are produced because some of the added confor-
mations have additional “scaffolding” which also could be
matched. Yet, in every case, the invariant of the largest size
is the “correct solution.” Many non-trivial solutions of size
8 � 14 are also produced.

Although we prove worst-case running times for invariant
search that are quite high, the algorithms run very quickly in
practice. One source of discrepancy is in the analysis of the
algorithms, where we use the best-known combinatorial upper

7



Figure 4: 1TLP, 4TMN, 5TMN, and 6TMN overlapped in their
active conformations.

bounds on the multiplicity of a fixed triangles induced by a set
of points in � 3. However, these boundsare not tight, and actual
molecules tend not to exhibit worst case behavior. In Figure 5,
we plot the distribution of inter-atom distances in four of the
molecules with which we experimented. For each molecule,
the upper-most graph indicated the complete inter-point dis-
tance distribution. The lower graphs plot the distributions
induced by the points chosen during random sampling (for
various values of � . Not surprisingly, the distribution becomes
flatter as � increases. What is also interesting is that the figures
indicate that all these molecules have a bounded diameter, and
that the distribution is quite similar to a Poisson distribution.
These facts indicate that a more careful analysis incorporating
this information might lead to a better running time prediction
for the algorithms, and possibly better algorithms.

� ��%'	�� #�	�	�%' $�

Our goal is to optimize the modules of the system to perform
experiments that involve 5-20 ligands and a large number of
conformations per ligand. As far as conformational search is
concerned, we are investigating dynamic clustering techniques.
By looking at the relative changes in the number of clusters
found, we hope that we will be able to automatically end the
conformational search stage. For the invariant identification
stage, we will try to reduce the dependence of the implemen-
tation on the ordering of the input, a phenomenon observed
in the current system. Our short-term plans also include the
implementation of an algorithm that will extract features from
conformations in the way that the computational chemists un-
derstand them. Currently, each atom gives rise to a feature that
bears as a label the corresponding atom type. Computational
chemists, however, have rules to group atoms into features that
describe the chemical behavior of parts of the molecule, e.g.,
hydrophobic parts and positively charged parts. Features will
reduce the number of points we consider per conformation and
will hopefully help us deal with larger examples.

In Section 5 we mentioned certain combinatorial properties

0

100

200

300

400

500

600

700

800

0.1 0.15 0.2 0.25 0.3 0.35 0.4

N
um

be
r 

of
 tr

an
sf

or
m

at
io

ns
 g

en
er

at
ed

Alpha (fraction contained in the common substructure)

Comparison of the two schemes

BASIC-SAMPLE
TWO-SET

Figure 6: Relative performance of BASIC-SAMPLE and
PARTITION-SAMPLE.

of point sets in two and three dimensions. Most of these
properties are well understood for exact models i.e models in
which all point locations are known perfectly. It would be
interesting to determine analogous properties for noisy data
sets. These would contribute directly to improving the worst
case running time of the algorithms we have presented. In
addition, it would be instructive to examine the average case
behavior of these algorithms in the light of the remarks made
previously about distance distributions in molecules.

��� ��� �� �	 � � !�� ���8� ���&	
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