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Abstract

The binding of peptides to class-I Major Histocompability Complex (MHC) receptors
and their subsequent recognition downstream by T-cell Receptors are crucial processes
for our bodies to be able to fight various diseases. Thus, the identification of peptide
antigens that can elicit an immune response is of immense importance for developing
successful therapies for bacterial and viral infections, even cancer. Recently, studies
have demonstrated the importance of peptide-MHC (pMHC) structural analysis, with
pMHC structural modeling methods gradually becoming more popular in peptide
antigen identification workflows. Most of the pMHC structural modeling tools provide
an ensemble of candidate peptide poses in the MHC-I cleft, each associated with a score
stemming from a scoring function, with the top scoring pose assumed to be the better
representative of the ensemble. However, identifying the binding mode, that is, the
peptide pose from the ensemble that is closer to a hypothetical native structure, is not
trivial, and oftentimes the peptide poses characterized as best by a protein-ligand
scoring function are not the ones that are the closest to the native structure. In this
work, we framed the peptide binding pose identification problem as a Learning-to-Rank
(LTR) problem. We developed RankMHC, an LTR-based pMHC binding mode
identification function, which is specifically trained in predicting the most accurate
ranking of an ensemble of pMHC conformations. RankMHC outperforms classical
peptide-ligand scoring functions, as well as previous Machine Learning (ML)-based
binding pose predictors. We further demonstrate that RankMHC can be potentially
used in many pMHC structural modeling tools that use different structural modeling
protocols. RankMHC is publicly available at [insert github link here].

Introduction

Identifying which peptide antigens bind to class-I Major Histocompability Complexes
(MHCs) and further elicit an immune response after being presented to T-cell receptors
has been a longstanding problem in computational immunology [1, 2]. In recent years,
great strides have been made in the task of peptide antigen identification, facilitated by
the development of high-throughput mass-spectrometry experiments [3, 4], which
generate big datasets of amino acid sequences of MHC-bound peptides. These
sequence-based datasets have in turn been used by Machine Learning (ML)-based tools,
which are trained to predict pMHC binding [5, 6]. However, it is already known that
there is an inherent structural component that plays a crucial role in the peptide-MHC
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(pMHC) interaction [7–9]. Many experimental studies have illustrated structural effects
and properties in the pMHC binding interface, such as important intermolecular bonds,
or the resulting solvent accessible surface, that are certain determinants of stronger
MHC binding, better stability, or T-cell recognition [10–15]. Protein structure databases
such as the Protein Data Bank (PDB) [16], or the IMGT-3D database [17,18] are
ever-increasing in size, with more and more experimentally determined structures being
uploaded on a daily basis [19,20]. This, along with recent successes in peptide-ligand
docking tools [21,22] and protein structural modeling methods such as
Alphafold [23–26], have created an immediate need for developing successful and
accurate pMHC structural modeling methodologies.

The field of pMHC structural modeling has started booming recently, following the
increase in available pMHC structures in the PDB [16,19], with multiple pMHC
modeling tools and methodologies appearing in the last few years [27]. Even though
pMHC structural modeling approaches are quite varied in regards to the methodologies
that are being employed, most tools fall under the paradigm of sampling and
scoring [28]. Specifically, given a pMHC as an input, many peptide binding poses are
being generated as solutions in the output, and they are subsequently ranked with a
scoring function that prioritizes energetically-feasible conformations. The binding mode
identification and ranking of different generated ligand poses in a receptor is a very
well-studied problem [29] and scoring functions are the most common way to rank an
ensemble of ligand conformations [30]. Typically, scoring functions are split in three
categories: (a) physics-based scoring functions that involve force fields [31], solvation
models [32], and quantum mechanics [33], (b) empirical scoring functions that use a
linear combination of hydrogen bond, hydrophobicity, and potential steric clashes
information to determine the energy of a protein-ligand conformation [34], and (c)
knowledge-based scoring functions that employ statistical potentials [35]. Most of the
pMHC structural modeling tools in the literature employ such types of protein-ligand
scoring functions. Specifically, Docktope [36], a web-based tool that uses molecular
docking/energy minimization approach to pMHC structural modeling, is using
Autodock Vina [37], a molecular docking tool with an empirical scoring function, in
order to dock, refine, and score pMHC models. Similarly, APE-Gen [38], as well as its
successor APE-Gen2.0 [39], which are two pMHC modeling tools that use a rapid
pMHC structural modeling protocol, also employ empirical scoring functions such as
Vina [37] and Vinardo [40] for refinement and scoring of the resulting pMHC models.
PANDORA, a homology modeling-based pMHC modeling tool [41], employs the
MODELLER [42] objective scoring function, molPDF, for ranking the different peptide
loops that were refined by MODELLER. Lastly, pMHC structural modeling efforts that
are based on the Rosetta modeling suite [43] have used different Rosetta-based scoring
functions for evaluation, such as the Score12 [44], talaris2014 [45] and the newest
ref2015 scoring function [46].

During the last few years, a new category of ML-based protein-ligand scoring
functions has emerged [47]. Such ML-based scoring functions depend on large training
datasets of protein-ligand structures and utilize non-linearity, in regards to both
activation functions and feature associations, to improve protein-ligand scoring and
ranking. ML-based approaches have found much success in molecular docking [48–50],
as well as in the related tasks of protein-ligand binding mode identification [51–53],
protein-ligand binding affinity prediction [54–56] and virtual screening
applications [57–59]. In regards to ML-based scoring functions for pMHC structural
models, there has been a plethora of pMHC specific scoring functions designed for
predicting pMHC binding affinity [60,61], performing pMHC virtual screening [62], even
for protein deimmunization [63]. Focusing on the peptide binding mode identification
task, GradDock [64] was one of the first pMHC structural modeling tools that
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incorporated a pMHC-specific pose ranking module. The pose ranking function is based
on a linear programming approach, where the weights are optimized on the following
main condition: all the generated pMHC structural models must have a higher overall
energy than the ground-truth native structure. However, GradDock performs only the
aforementioned native structure to pMHC model comparison, and does not perform
pMHC model to pMHC model comparisons, not using the relative pMHC structural
model ranking information during the optimization process. Keller et al. [65] have also
created a pMHC-specific linear scoring function. They achieve this by optimizing
Rosetta-derived energy terms on the Ligand Root Mean Squared Deviation (LRMSD)
labels stemming from the distance between the peptide conformations from a pMHC
structural model and the ground truth crystal structure. Their model of choice was a
linearSVR, which exhibited better performance over other linear and non-linear
regression models that were tested [65]. However, their resulting pMHC scoring function
is only limited to the HLA-A*02:01 MHC allele, and only to nonamer peptides. The
same linearSVR paradigm was also followed by Gupta et al. [66], one key difference
being that instead of using the LRMSD, the authors use the D-score to construct their
labels, a metric based on the ψ and ϕ dihedral angles [67]. While their model has shown
to generalize to non-A*02:01 alleles, it is still limited to nonamer peptides.

In this work, we present a new pMHC-specific binding mode identification scoring
function, RankMHC, trained to identify which pMHC binding pose from a pMHC
conformational ensemble is the closest to the native structure. Inspired by the
Learning-to-Rank (LTR) literature [68], we formulate the pMHC binding mode
prediction identification task as a LTR problem. We demonstrate that, by using an
LTR formulation, we obtain increased accuracy and better performance in regards to
binding mode identification. Even though LTR has been previously employed in
different structural protein-ligand related tasks such as virtual screening [69,70] or
prediction of allosteric sites [71], to our knowledge, this is the first work that applies
LTR to pMHC structures specifically. RankMHC outperforms classical protein-ligand
scoring functions, as well as pMHC-specific scoring functions, on different dataset splits,
on unseen MHC alleles, and can accurately rank peptides of different lengths. We
further show that RankMHC exhibits good generalization capabilities, and can
accurately rank pMHC structural models stemming from different pMHC structural
modeling tools. RankMHC is open source, and publicly available at [insert github link].

Materials and methods

pMHC crystal structure dataset

Experimental pMHC structures were downloaded from the PDB [16]. We follow the
same process of pMHC structure collection as previously reported [39,41]. Specifically,
we removed from consideration any pMHC crystal structures that (i) resulted in parsing
errors, (ii) exhibited missing residues on the peptide, and (iii) contained foreign
molecules other than the bound peptide close to the MHC binding cleft. This filtering
resulted in 566 pMHC structures that were used for structural modeling downstream.
We refer to this crystal structure dataset as Q in the sections that will follow.

Modeling pMHC structures with APE-Gen2.0

For each pMHC structure we collected, we performed cross-docking for that particular
pMHC pair using APE-Gen2.0 [39]. We assumed the MHC to be rigid during the
modeling process, as this previously resulted in better pMHC structures that were closer
to the native structure [39]. We used Vinardo [40] to locally optimize and score the
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peptide conformations, and we also opted in using the optional openMM [72] energy
minimization step, as this has proved to result in more feasible and “protein-like”
pMHC structures [39]. Lastly, we set the maximum number of pMHC conformations
that APE-Gen2.0 would generate to be 100, even though, in practice, some of the
pMHC conformations are filtered out mainly to anchor constraint violations. As a result
of the pMHC structural modeling process, for each pMHC native structure qi ∈ Q, we
have a set of pMHC conformations of number Li - the subscript i in L referring to the
fact that for each qi, we might a have a different number of pMHC conformations -,
each one being closer or further away in regards to closeness to the native structure.

We noticed that some pMHC conformations generated by APE-Gen2.0 were very
close to each other in regards to LRMSD. This, from a structural point of view, results
in redundancy. From a ML point of view, this would result in very similar data points,
with very similar features, and very similar LRMSD labels. To assess whether such
redundancy - or lack thereof - would affect our results downstream, we created different
instances of the structure dataset Q: one with redundant structures included, and one
with redundant structures excluded. To automatically identify redundant pMHC
structures, we developed and applied the following protocol: for each PDB code found
in our crystal structure database, we (a) calculated the maximum per-residue peptide
LRMSD for each pair of pMHC models, ending up in a distance matrix of LRMSD
values reflecting maximum per-residue LRMSD residues for all combinations of pMHC
pairs, (b) used this distance matrix to cluster the pMHC models using the HDBSCAN
algorithm [73], and (c) for each cluster, we randomly selected a representative
conformation. With the above process, we filter out conformations that are grouped in
the same clusters, removing redundancy in the process.

Learning to Rank approaches for ranking pMHC conformations

Inspired by the LTR literature, we frame the pMHC binding mode identification
problem as an LTR problem. Specifically, assume a training dataset comprising |Q|
pMHC instances in total. Each pMHC instance i comprises a native structure qi ∈ Q
and Li pMHC structural models corresponding to qi. Each structural model qij - with
j = 1, ..., Li - is defined by a set of features xij and a label yij that denotes its closeness
to a native structure. Assume here that a smaller value yij is associated with a better
model that is closer to the native structure (which is true for LRMSD values), but the
same holds for the opposite case, without loss of generality.

The goal of LTR here is to learn a ranking function f so that, given a pMHC native
structure qi and a set of features xij derived from pMHC modeled conformations, the
function f would provide a ranking prediction ŷij for each conformation:

f(xij) = ŷij (1)

Predictions stemming from the ranking function f should accurately rank the pMHC
models in regards to closeness to the native structure qi. During inference and testing,
when the native structure qi is not known, the ranking function f is expected to
accurately rank pMHC models to a hypothetical native structure.

The way the ranking function f is learned is by specifying a loss function L, which
itself defines the training objective. The LTR literature is rich with different ways and
approaches for training the ranking function f , but they can all be categorized in the
following three approaches:

• Pointwise approach: In the pointwise approach, the ranking problem is typically
converted to a surrogate regression/classification problem. Emphasizing on
ranking pMHC models, a pointwise approach would try to predict closeness from
model qij to the native structure qi directly using a regression-based loss. The
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most widely used loss function for regression objectives is the Mean Squared Error
loss:

LMSE(ŷij , yij ; qi) =
1

Li

Li∑
j=1

(ŷij − yij)
2 (2)

The pointwise approach, even though it can be used as a proxy for ranking,
optimizes on predicting the label yij itself, which is not the actual goal of
accurately ranking pMHC conformations. Additionally, pointwise approaches do
not exploit information or optimize in regards to the relationship between
different objects, for example, the relative ranking order of pMHC models. It is
also worth noting here that some of the previous ML-based approaches for pMHC
model scoring and ranking, namely, the works by Keller et al. [65] and Gupta et
al. [66] are pointwise approaches, in that, their ranking functions are trained to
directly predict LRMSD/D-scores to the native structure.

• Pairwise approach: In contrast to pointwise approaches, pairwise approaches
compare and contrast objects j and j′ directly – in our case, pMHC models – by
exploiting their relative closeness to the native structure:

LPairwise(ŷij , ŷij′ , yij , yij′ ; qi) =

Li∑
j=1

Li∑
j′=1

I[yij<yij′ ]
ϕ(ŷij − ŷij′) (3)

where I[yij<yij′ ]
is a indicator function that equals to 1 when pMHC model j is

closer to the native structure than j′ (or zero otherwise), and ϕ is a function
designed to penalize the model when the opposite holds true for the predictions,
that is, ŷij > ŷij′ . There are many choices in regards to the selection of ϕ, with
different pairwise LTR models using different ϕ functions. For example,
RankSVM [74] employs the Hinge loss, whereas RankNet employs the Logistic
loss [75]. Specifically, RankNet’s loss function would be:

LRankNet(ŷij , yij ; qi) =

Li∑
j=1

Li∑
j′=1

I[yij<yij′ ]
log(1 + e−σ(ŷij′−ŷij)) (4)

where σ is a parameter that determines the sigmoid function.

It is worth noting here that the pMHC-specific ranking function developed by
GradDock [64] employs a variation of a pairwise approach. GradDock’s objective
function is a pairwise ranking function, where the objective is that the predicted
energy of a pMHC model must be equal or greater than the one from the native
structure. Still, information in regards to the relationship of different pMHC
models, namely, their relative rankings in the list, are not taken into account.

While an improvement over the pointwise approaches, pairwise approaches do not
solve all the issues related to LTR. For example, the ranking accuracy of the
higher scored pMHC conformations is of greater interest that the ranking accuracy
of the lower scored pMHC conformations, and a pairwise approach would equally
penalize inaccuracies in both cases. Studies have shown however that pairwise
approaches can oftentimes be the best performing approaches, showcasing that the
objective function selection is data-dependant and problem-dependant [76].

• Listwise approach: Listwise approaches define loss functions that operate on the
whole list of objects simultaneously, instead of using successive pairwise
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comparisons. There are many listwise approaches in the literature, such as
ListNet [77], ListMLE [78], and SoftRank [79], among others [80], with each
approach employing different algorithms and loss functions to optimize on the
whole ranked list.

LambdaRank [81], a variation of RankNet, although a pairwise approach at heart,
modifies RankNet so that it is list-aware, approximating this way listwise ranking
functions [68,82]. It does so by dynamically scaling RankNet’s training loss with
list-aware ranking metrics:

LLambdaRank(ŷij , yij ; qi) =

Li∑
j=1

Li∑
j′=1

I[yij<yij′ ]
log(1 + e−σ(ŷij′−ŷij))|∆Zjj′ | (5)

where |∆Zjj′ | is the scaling factor. The scaling factor denotes the difference
between scores of the ranking metric of choice if pMHC models j and j′ were to
be swapped in the ranked list. In practice, the typical ranking metric of choice for
scaling in LambdaRank is the Normalized Discounted Cumulative Gain (NDCG)
(see definition of NDCG below), as such, |∆Zjj′ | = |∆NDCG(j, j′)| (|∆Zjj′ | = 1
in RankNet, where no such scaling is applied).

RankMHC

RankMHC is a ML-based model, exhibiting a LTR-inspired architecture, and is trained
and designed to rank pMHC conformations by their closeness to a native structure. An
illustration of RankMHC is presented in Figure 1. As an input, RankMHC receives a
geometrical ensemble of peptide conformations that are bound in the MHC binding
cleft. Through the featurization of the aforementioned conformations, and the ranking
module that we have developed, RankMHC is able to provide a score for each
conformation, and a ranking of the ensemble. The conformation that has the best score
is classified as the identified binding mode. In the following two sections, we will present
an in-depth description of the two main components of RankMHC: the featurization
module, and the ranking module.

Featurization module

A necessary step in the RankMHC workflow is the featurization of our pMHC modeled
structures, in order to provide an vectorized input to the ML architecture. We used the
Rosetta modeling suite [43] to extract energy-based terms for each pMHC model.
Similar to previous works on pMHC-specific binding mode predictors [65,66] and
structure-based binding affinity predictors in the literature [61], we extracted per-amino
acid energy terms for each amino acid in the peptide. These energy terms are the
features to be given as an input to the ranking module of RankMHC. The energy
function that was used in calculating and extracting the per-amino acid energy terms is
the ref2015 scoring function, which is the default, and the latest scoring function in the
Rosetta modeling suite [43]. Additionally, inspired by GradDock [64], which extracts a
larger set of Rosetta-based energy terms, we also choose to extract an expanded set of
energy terms that are not used in ref2015 by default. Finally, in addition to the
Rosetta-derived features, we also used NACCESS 2.1.1 [83] to extract the solvent
accessible surface area (SASA), as well as the relative surface area (RSA) per residue.
The default parameters of NACCESS, as well as a standard 1.4 Å radius probe for
SASA/RSA calculation were used, and in general, we used protocols as previously
described in [39] for the calculation of SASA and RSA. Taking the full set of features
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Fig 1. The RankMHC workflow. RankMHC receives as an input an ensemble of
bound peptide conformations in the binding cleft, and provides a ranking in the output,
with the top conformation being the most favorable one.

into account, while removing features that exhibit the same value for each conformation
in the ensemble, the end result is a total of 776 features per structural model. The list
of energy terms (either global or per residue features), with the accompanying
description for each energy term, are shown in Table S1.

It is important to underline here that one of the goals of RankMHC is to expand
ML-based binding mode prediction on arbitrary peptide lengths, as previous ML-based
approaches in the task of pMHC binding mode identification - with the exeption of
GradDock [64] - focused solely on nonamer peptides [65, 66]. As RankMHC uses an ML
architecture [84] which expects input features of a fixed length (see the ranking module
section below for more details on the architecture of RankMHC), we need a
transformation that will convert peptides of different lengths to fixed-length vector
inputs. Given the fact that nonamers are the most prevalent class of peptides that bind
to class-I MHCs [85], we transform each peptide to a nonamer.

To convert each peptide to a nonamer, we perform a custom average pooling process.
An illustration of this process is found in Figure S1. The proposed pooling works as
follows: first, we perform a structural alignment of the peptide in question with a
canonical nonamer pMHC template deposited in the APE-Gen2.0 template
database [39]. The template selection follows protocols described in APE-Gen2.0;
namely, we choose a nonamer template from the same MHC allele if possible, and as
close to the peptide in question from a sequence identity perspective [39]. After the
nonamer template choice and the structural alignment is performed, we match the
residues of the peptide in question to the nonamer peptide distance-wise (see Figure
S1). More specifically, we view this process as an assignment problem. We are given a
set of amino acids A from the peptide in question and a set of amino acids from the
nonamer template T , along with a weight function C : A× T ⇒ R reflecting the
Euclidean distance between two amino acid pairs. We are then trying to find a bijection
f : A⇒ T such as the total cost function:

Ctotal =
∑
a∈A

Ca,f(a)

is minimized. As added constraints to the assignment problem, each amino acid a ∈ A
is matched to exactly one amino acid f(a) ∈ T (in order to avoid multiple matches),
and conversely, each amino acid t ∈ T is matched to at least one amino acid a ∈ A. The
assignment problem can also be seen as a integer linear program. Assuming a distance
matrix C (corresponding to the bijection as define above), and a bipartite adjancency
matrix X, where each variable xa,t assumes either 0 or 1, it follows that the assignment

7/29



problem can be formulated as:

minimize
∑

(a,t)∈A×T

Ca,t xa,t

subject to
∑
a∈A

xa,t = 1, t ∈ T∑
t∈T

xa,t ≥ 1, a ∈ A

0 ≤ xa,t ≤ 1, (a, t) ∈ A× T
xa,t ∈ Z, (a, t) ∈ A× T

To solve the linear integer problem for each peptide instance, we are using the SCIP
solver [86] as provided in ortools [87]. As a result, we would have something as depicted
in the top of Figure S1. Certain amino acids would be grouped together in nine bins,
corresponding to a specific residue from the nonamer template. To finally then convert
the peptide in question to a nonamer peptide, we perform an average pooling operation
on the features of the amino acid groups in each of the nine bins, which will result in
nine distinct feature groups. These groups are then concatenated to form the final
feature vector.

We wanted to assess the effectiveness of our proposed custom average pooling
operation, especially in comparison to other approaches in the literature. Amino acid
sequence-based binding affinity predictors either identify the nonamer binding core of
the peptide, converting all peptides to 9-mers in the process [5], employ a form of
padding with a neutral amino acid ‘X’ to bring every peptide to the same length [88], or
use a deep learning architecture that allows for peptide/feature inputs of variable
length [89]. To assess the effectiveness of our custom average pooling operation, we
employed neutral amino acid ‘X’ padding as previously described and used in
MHCFlurry [88]. For the neutral amino acid, we set all per residue energies to 0. Such
padding does convert the peptide to the same length, but it is worth noting that the
feature space ends up being larger due to the padding, which makes the model more
difficult and computationally intensive to train in the process.

Finally, as an additional ablation study, we wanted to assess the performance of
feature-based variants of the baseline RankMHC feature set. More specifically, we
created three additional models: (a) one that considers solely the ref2015 terms as
previously used [61,65,66] and not the expanded feature set as seen in Table S1 (b) one
that also includes energy terms from selected residues of the MHC - previously defined
as the MHC pseudosequence -, as done in state-of-the-art pMHC binding affinity
prediction models [5, 6], and (c) one that considers, instead of per amino-acid energy
terms, the energy terms stemming from the intramolecular interactions between the
peptide and the MHC directly. For this last case, to find the set of intramolecular
interactions that are occurring between the peptide and the MHC, we calculated the set
of intramolecular interactions from our crystal structure database. Namely, following
the work in [90], for each pMHC crystal structure with a nonamer peptide, we
calculated all the intramolecular interactions between the peptide and the MHC residues
that are within 4.0 Å of each other. We filtered out the intramolecular interactions that
are happening rarely, namely, we deleted the interactions that are happening less than
10% of the time in the crystal structures. The resulting contact map largely resembles
the one found in the study of Nielsen et al. [90], and as such, we used the energy terms
stemming from these interactions to featurize our pMHC structures.
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Ranking module

As previously mentioned, RankMHC is based on LTR methodologies. More specifically,
we use the LambdaMART algorithm [91] as the backbone of RankMHC. LambdaMART
combines RankNet/LambdaRank [81] (see also above), with MART [92], a gradient
boosting framework that uses regression trees and employs gradient descent during
training. Even though different metrics can be used for training LambdaMART as
scaling factors |∆Z|, we opted in either using |∆Zjj′ | = 1, ∀(j, j′) for training purely on
pairwise comparisons, or the NDCG metric (|∆Zjj′ | = |∆NDCG(j, j′)|) for listwise
awareness, the latter being on par with the original LambdaMART publication [91].
Finally we used the XGBoost framework and package [84] for RankMHC, as it offers an
efficient implementation of LambdaMART.

To train RankMHC, we used the previously mentioned pMHC database Q. We
follow a nested Cross Validation (CV) approach as previously described [93].
Specifically, for the model evaluation step, we partition the dataset into train/test splits
using a 6-fold CV. For the hyperparameter tuning/model selection step, we further
partition the 6 train portions into train/validation splits in an internal 5-fold CV. The
XGBoost hyperparameters that were chosen for optimization, as well as the
hyperparameter values that were tested can be found in Table S2. After choosing the
optimal hyperparameters that lead to the best performance on the validation sets, the
models are evaluated on the left-out test sets, leading this way to an unbiased
evaluation. As the external CV is a 6-fold CV, the final model is an ensemble of 6
different XGBoost instances having trained on different subsets of Q.

Based on the factor that determines the external and internal splits, one can test
different aspects of the generalizability of a model. For testing different generalizability
aspects of RankMHC, we opted in using different nested CV schemes. The number of
partitions and splits are kept the same for all different nested CV schemes. The
proposed nested CV schemes are as follows:

• Leave-K-PDBs-Out Cross Validation (LKPO-CV): The LKPO-CV split refers to
random external/internal splits of the dataset, making sure that no PDB code is
found in both the train and test splits at the same time. This corresponds to the
most realistic scenario of testing RankMHC to MHC alleles and peptide lengths
that are previously seen in the training dataset.

• Leave-K-Alleles-Out Cross Validation (LKAO-CV): Here, we perform the
external/internal CV splits so that no MHC alleles from the test sets are found in
the external/nested training sets. This corresponds to a scenario where RankMHC
encounters a previously unseen MHC allele when trying to identify the correct
peptide binding mode. This particular scenario is intentionally pursued, as
previous studies have demonstrated loss of generalization for unseen MHC
alleles [65].

• Leave-One-Length-Out Cross Validation (LKPO-CV): Most previous ML-based
approaches for pMHC binding mode identification focus specifically on nonamer
peptides [65, 66], as they are the most abundant in the pMHC repertoire [85], and
the most abundant in regards to public datasets. RankMHC on the other hand is
designed for peptides of arbitrary length. Therefore, to test the generalization
capabilities of RankMHC in regards to peptide lengths that have not been
encountered during training, we perform the nested CV validation so that, for
each split, the external test datasets contain one of the 6 available lengths (from 8
to 13 residues, and the main motivation behind the proposed external 6-fold CV),
while the external training splits contain all the rest. The same paradigm applies
also to the internal 5-fold CV split.
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Modeling pMHC structures with PANDORA

We sought to also prove that the trained RankMHC model can also be used, not just on
APE-Gen2.0-generated pMHC models, but also, on generated models stemming from a
different tool. To this end, we modeled the same collected set of pMHC structures Q
with PANDORA [41]. We used the defaults parameters of PANDORA during modeling,
with the maximum set of generated conformations to be 20 in total. We excluded
pMHC pairs that PANDORA could not model due to allele name mismatches. In total,
405 pMHC structures were modeled using PANDORA, with a resulting 20 pMHC
models for each pMHC structure.

We subsequently used RankMHC to score and rank the 20 models for each pMHC
structure. It is worth noting that, to avoid data leakage, we used the RankMHC model
instance from the LKPO experiment that had not seen the pMHC pair to be scored
previously during training. As such, our scoring of PANDORA pMHC models with
RankMHC is unbiased.

Evaluation metrics

To assess the effectiveness of RankMHC over different scoring functions that have been
employed in pMHC binding mode identification, we consider several evaluation metrics,
each one emphasizing different performance characteristics. Specifically, the intersection
of molecular docking and scoring and information retrieval methodologies that
characterize RankMHC prompted us to combine different evaluation metrics from the
two fields. Below we describe these evaluation metrics in more detail, emphasizing on
their different characteristics and goals:

Top-1 Ligand Root Mean Squared Deviation (LRMSD@1)

Evaluating pMHC structural models using the LRMSD to the native pMHC structure is
commonplace in the pMHC structural modeling literature [36,38, 41]. As such, we also
adopt the LRMSD formulation to evaluate how close to the native crystal structure is
the top-ranked pMHC conformation as ranked by the scoring function at hand.
Specifically, the LRMSD is defined as follows:

LRMSD =

√√√√ 1

N

N∑
i=1

di

where N denotes the number of atoms in the peptide bound to the MHC cleft, and di is
the 3D Euclidean distance between an atom from the peptide found in the pMHC
structural model and the same exact atom found in the native structure. Here, we
consider the full-atom LRMSD, including the atoms found in the side-chains of the
peptide residues.

Most pMHC structural modeling tools emphasize the top scoring conformation as
the representative and most accurate peptide binding mode. As such, we consider the
LRMSD to the native structure only from the top-scoring conformation (@1). Finally,
as in our crystal structure dataset we have many pMHC structures qi, the average
LRMSD@1 of the whole dataset is calculated, in order to assess the accuracy and
efficacy of a scoring function.

Mean Reciprocal Rank (MRR)

The reciprocal rank denotes the inverse rank of the best pMHC model of the ensemble -
best here denoting the closest model to the native structure qi in terms of LMRSD - in
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the ranked pMHC conformation list. As an example, if the scoring function of choice
places the actual best conformation as second best, then it’s reciprocal rank would be
1/2. The best value for the reciprocal rank is 1 (where the best scored conformation is
the actual best), with 1

Li
being the worst reciprocal rank value when the best

conformation receives the worst score.
The Mean Reciprocal Rank (MRR) is then calculated by simple aggregation through

the crystal structure dataset Q and calculation of the mean:

MRR =
1

|Q|

|Q|∑
i=1

1

ranki
(6)

Top-1 Precision (P@1)

The Top-1 Precision (P@1) is an indicator function, returning 1 when the top ranked
pMHC conformation is the actual best, and 0 otherwise. As such, the average top-1
precision is a number between 0 and 1 denoting the likelihood of the best pMHC
conformation being identified by the scoring function of choice.

Spearman’s correlation co-efficient (ρ)

So far, the three previous evaluation measures that were introduced are operating on
binary levels of relevance, meaning that they consider only the top ranked conformation
to be relevant. However, for some cases, information about the correctness of whole
ranked list can also be relevant.

The Spearman’s correlation co-efficient (ρ) measures the monotonicity of the
relationship between two variables, defined as the Pearson’s correlation coefficient
between ranks [94]:

ρ =
cov(R(X), R(Y ))

σR(X)σR(Y )
(7)

where R(X), R(Y ) are the ranks of variables X,Y , cov denotes the covariance between
the ranks, and σ denotes the standard deviation of the ranks. Specific to ranking
pMHC conformations, ρ can be employed to assess whether the scoring function is able
to properly rank the whole ensemble of conformations.

As before, we are calculating the average ρ stemming from the different ρ’s we are
obtaining for different qi ∈ Q. However, considering the average of correlations has
proven to lead to underestimation [95]. Therefore, we apply the following correction
G(ρ) as found in Olkin and Pratt [96]:

G(ρ)

ρ
= 1 +

1− ρ2

2(n− 3)
, n > 4 (8)

where n equals to the sample size. Even though the transformation refers to Pearson
correlation coefficients, treating ρ’s as Pearson correlation coefficients before
transformations is considered robust [97]. Finally, as the aforementioned transformation
has a sample size requirement, we omit qi datapoints for calculation of ρ when Li ≤ 4 .

Normalized Discounted Cumulative Gain (NDCG)

The ρ metric assesses the correctness of the ranking taking into account all the pMHC
conformations from the ensemble. However, many application, such as virtual screening,
consider the top-k results of a ranked list of different targets [98]. In such tasks, the
weight falls mostly on the top-k ranking conformations. pMHC conformational scoring
and ranking is no different, as emphasis is mostly given on the top scoring
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conformations for downstream tasks. The Discounted Cumulative Gain (DCG) [99] is a
metric that pays more attention to the ranking efficacy of higher ranked objects by
introducing a logarithmic factor that reduces relevance according to an object’s rank:

DCG =

Li∑
j=1

relj
log(j + 1)

(9)

where relj is the graded relevance of the object at position j. The Normalized
Discounted Cumulative Gain (NDCG) is simply a normalized version of DCG:

NDCG =
DCG

maxDCG
(10)

where the denominator is the ideal, maximum DCG that one can get by perfectly
ranking a set of objects by their relevance.

Normally, relevance values in ranking tasks are integer values ranging from 1 to 5,
with higher relevance being better [68]. For the task of pMHC binding mode
identification, we use the full-atom LRMSD values directly as relevance values. As
LRMSD values closer to zero are better, we reverse the sign of LRMSDs to negative so
that higher LRMSD is better. However, negatives relevance labels end in NDCG being
unbounded. For this reason, we apply the following normalization as proposed in [100]:

NDCG =
DCG−minDCG

maxDCG−minDCG
(11)

This normalization of NDCG works with negative labels, and results in a bounded, 0 to
1 NDCG value, without sacrificing its statistical power. Additionally, as before, as we
have many qi ∈ Q pMHC instances, the average NDCG is considered in order to
compare scoring functions.

Results

RankMHC outperforms other scoring functions on pMHC pose
ranking

The workflow of RankMHC can be seen in Figure 1. As an input to RankMHC, an
ensemble of pMHC conformations are given. The conformations are subsequently
transformed into fixed-length feature vectors comprising global and per-residue energy
terms. These features pass through the ranking module of RankMHC, which, based on
the feature content, ranks the conformations in regards to LRMSD-based closeness to a
hypothetical native structure. To achieve this, RankMHC was trained on a set of
pMHC crystal structures and pMHC structural models created using APE-Gen2.0, a
rapid pMHC structural modeling tool [39]. As an output, RankMHC provides a ranking
of the peptide conformational ensemble, with the top conformation assumed to be the
correct peptide binding mode from the provided ensemble.

We trained and evaluated the performance of RankMHC using different nested CV
schemes that exhibit different generalization aspects of RankMHC: (A) LKPO-CV that
reflects the performance of RankMHC when the MHC allele type and the peptide
length has been previously seen in the training data, (B) LKAO-CV, that reflects the
performance of RankMHC when an MHC allele is encountered that has not been
previously seen during training, and (C) LOLO-CV that reflects the performance of
RankMHC for a peptide length that has not been previously seen during training. We
benchmarked the performance of RankMHC in these different nested CV schemes with
different types of scoring functions that have been previously used for ranking ensembles
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Table 1. Benchmark of different scoring functions on pMHC binding mode identification.
Methods are categorized into three parts: pMHC specific scoring functions that operate on auxiliary tasks
that are correlated to the task of binding mode identification, general protein-ligand scoring functions that
are not pMHC-specific, and pMHC-specific binding mode identification functions. Higher ρ, MRR, P@1 and
NDCG, as well as lower LRMSD@1, denote better performance. The best performing method is depicted in
bold, while the second best performing method is underlined.

LKPO-CV LKAO-CV LOLO-CV

Methods ρ MRR P@1 NDCG LRMSD@1 ρ MRR P@1 NDCG LRMSD@1 ρ MRR P@1 NDCG LRMSD@1

Abella et al. -0.049 0.402 0.254 0.422 2.440 -0.049 0.402 0.254 0.422 2.440 -0.049 0.402 0.254 0.422 2.440
3pHLA 0.010 0.474 0.187 0.510 2.563 0.010 0.474 0.187 0.510 2.563 0.010 0.474 0.187 0.510 2.563
ref2015 0.394 0.604 0.512 0.756 1.930 0.394 0.604 0.512 0.756 1.930 0.394 0.604 0.512 0.756 1.930
molPDF 0.095 0.498 0.251 0.580 2.428 0.095 0.498 0.251 0.580 2.428 0.095 0.498 0.251 0.580 2.428
vina 0.429 0.634 0.519 0.797 1.910 0.429 0.634 0.519 0.797 1.910 0.429 0.634 0.519 0.797 1.910

vinardo 0.426 0.622 0.516 0.776 1.945 0.426 0.622 0.516 0.776 1.945 0.426 0.622 0.516 0.776 1.945
GradDock 0.277 0.565 0.327 0.690 2.276 0.277 0.565 0.327 0.690 2.276 0.277 0.565 0.327 0.690 2.276
LinearSVR 0.473 0.641 0.516 0.791 1.904 0.465 0.632 0.516 0.786 1.915 0.448 0.634 0.514 0.782 1.926
RankMHC 0.552 0.679 0.555 0.817 1.860 0.494 0.663 0.571 0.807 1.888 0.483 0.630 0.539 0.795 1.893

of pMHC conformations: the ref2015 scoring function stems from the Rosetta modeling
suite [43], and has been previously used in ranking Rosetta-based pMHC structural
models [46]; MODELLER’s [42] objective function, molPDF, is the scoring function
used in PANDORA [41], a homology-based pMHC structural modeling tool;
APE-Gen2.0 uses vina [37] and vinardo [40] to rank the generated ensemble of pMHC
structural models [39]. We also benchmarked RankMHC with other ML-based pMHC
ranking functions, namely, the one offered by GradDock [64], as well as the linearSVR
ranking functions developed by Keller et al. [65] and Gupta et al. [66]. For the later
ones, as the training datasets were substantially different, we opted in developing our
own linearSVR, which was on the same dataset and following the same protocols as
RankMHC. Specifically, the 6-fold nested CV protocol was used to tune the
regularization hyperparameter C, as described in Keller et al. [65]. We found a large
agreement in the optimal values of C with the Keller et al. study [65] (data not shown).
Finally, we also include in our benchmark the structure-based pMHC binding affinity
predictor 3pHLA [61], as well as the structure-based random forest model for pMHC
virtual screening developed by Abella et. al [62]. This was done in order to assess how
ML-based scoring functions, that have not been explicitly trained in the task of pMHC
binding mode identification but in surrogate and correlated tasks of pMHC
binding/pMHC affinity prediction, can perform in the task of pMHC binding mode
identification.

The results of the full benchmark can be seen in Table 1. The first observation is that
ML-based approaches, such as 3pHLA [61] and the random forest by Abella et al. [62],
which are not explicitly trained in the task of pMHC binding mode identification, but
on a related task, are not effective in ranking pMHC models. This is evident by the very
close to zero ρ. As far as classical, protein-ligand scoring functions are concerned, vina,
used in APE-Gen2.0, is the most efficient in ranking pMHC structural models.
Surprisingly, exluding molPDF, all general protein-ligand scoring functions surpass
GradDock, which is a pMHC-specific ranking function. The LinearSVR scoring function
outperforms general protein-ligand scoring functions on most metrics in the LKPO-CV,
consistent with findings in [65,66]. However, when looking at LKAO-CV and LOLO-CV
performances, the LinearSVR regressor loses a fair amount of generalization capability.
This is also something that was observed in [65] when the authors applied their
LinearSVR on alleles other than the HLA-A*02:01. In contrast to other approaches,
RankMHC retains the top performance in almost all evaluation metrics and all nested
CV schemes. This highlights the efficacy of the LTR training regime, showcasing that
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LTR is a much more natural fit for ranking-specific tasks.
It is worth noting that the results shown in Table 1 do not include redundant pMHC

structures as these were filtered out during evaluation (see Methods for more
information). Results including redundant structures can be seen in Table S3. Even
though P@1 and MRR are significantly reduced for all methods, ρ, NDCG and
LMRSD@1 all remain similar to the non-redundant test set. We hypothesize that this
happens because many of the methods identify a binding mode which is very close to
the best one in regards to LRMSD, but not the actual best, due to the existence of
redundant structures. However, the relative comparisons between methods remain the
same, with RankMHC retaining the top performance throughout different metrics and
nested CV schemes.

Ablation/Interpretability studies

Given the success of RankMHC on the main benchmark as seen in Table 1, we sought
to answer what are the determining features and design choices that contributed to such
performance. To this end, we performed specific ablation studies that demonstrate the
increases/decreases in the performance of RankMHC given the existence/absense of
specific features/design choices. The full results of the ablation studies can be seen in
Figure 2A.

To begin with, in regards to the training set content, we wanted to test whether
introducing/excluding redundancy affects the performance of RankMHC. Removing
redundant structures from the dataset (denoted as RankMHC - redundant structures in
Figure 2A) reduces performance of RankMHC in all metrics. Even though data
augmentation has proven to be beneficial in the field of ML, overloading the dataset
with augmented data that exhibit a specific pattern could always lead to a ML model
overfitting a particular pattern, hampering performance and accuracy as a result.
However, RankMHC handles the augmented pMHC models well, without loss of
generalization. Additionally, instead of the proposed average pooling approach that
reduces peptides of different lengths to nonamer peptides (see Methods), we wanted to
see whether feature padding with the neutral amino acid ’X’ as previously proposed [88]
could result in better performance (see Methods on how the padding is performed).
When introducing padding, RankMHC exhibits slightly worse performance in three of
the five employed metrics (see Figure 2A). Padding in this case results in a bigger
feature space and a longer training process that does not necessarily lead to better
performance downstream.

We also employed different feature sets to assess whether RankMHC benefits in the
existence/absence of certain features. First, we created an instance of RankMHC where
the features that are used are only the ones that stem from the ref2015 scoring function
from the Rosetta suite, excluding the additional features as seen in Table S1 (denoted as
RankMHC - additional features in Figure 2A). This is consistent with other works in the
literature that have developed pMHC-specific binding mode identification
functions [65,66]. This however resulted in subpar performance across all five metrics
(see Figure 2A), demonstrating that the augmented set of Rosetta-derived features (see
Table S1 and [64]) contributes to the good performance of RankMHC. Secondly, in
addition to the per peptide position feature set, we also include features from the MHC
residues, specifically, the residues derived from the previously defined MHC
pseudosequence [5] (denoted as RankMHC + MHC features in Figure 2A). This resulted
in worse performance in three out of five metrics, meaning that MHC residue features
are not crucial to the performance of RankMHC. Finally, instead of per peptide residue
or per MHC residue features, we attempted to introduce the pairwise features (denoted
as RankMHC + pairwise features in Figure 2A) stemming directly from the pairwise
interactions between the peptide residues and the MHC residues in the peptide-MHC
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A

B

Fig 2. Ablation/Interpretability studies. (A) Comparison of the baseline
RankMHC model to other RankMHC instances across five different metrics. The x-axis
enumerates the different RankMHC instances, while the y-axis shows the difference
between the baseline RankMHC performance and the performance of a particular
RankMHC instance. Any bars extending below the y = 0 dashed line means that the
baseline RankMHC is better, and vice versa. (B) Feature Importance for difference
features employed by RankMHC. The x-axis denotes different features (including the
particular residue position, or the keyword global if it realtes to the entire pMHC
complex). Feature names are directly taken from the Rosetta suite [43]. The y-axis
denotes the importance gain derived from calculating by taking each feature’s
contribution for each tree in RankMHC. Only the twenty-five most important features
are shown.
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binding cleft (see Methods). The resulting feature set exhibits better performance than
the baseline RankMHC in three metrics. As such, if a user is interested in employing
the top-k pMHC conformations from the RankMHC ranking, using the pairwise features
might result in a more accurate top-k ranking, given the better NDCG and MRR scores
when compared to the baseline RankMHC. However, interestingly enough, pairwise
features also exhibit the worst LRMSD@1 performance out of all the models that we
created for the ablation study (see Figure 2A), making the model not particularly
suitable if one is interested in the top-1 conformation only. All of the aforementioned
RankMHC instances will be provided to the user and can be found in the RankMHC
repo [insert repo here]. Depending on the metric that the user is interested in, they can
choose which model is the most appropriate for their downstream tasks.

We also experimented with altering the loss function of our XGBoost models.
Specifically, we used a pointwise loss function that attempts to directly predict the
LRMSD to the native structure, the pairwise approach of RankMHC, and a pairwise,
but list-aware loss function, akin to LambdaRank [81]. This way, we tried to cover all
three facets of LTR (see Methods for a detailed description for each of the three
approaches). Results are shown in Supplementary Table 4. Adopting a list-aware loss
function does not result in better performance, with the pairwise approach exhibiting
the better results. While initially this seems counter-intuitive (as list-aware approaches
use additional information from the whole ranked list), such results have been
demonstrated before [76], hinting that the choice of the loss function in LTR is highly
dependant on the downstream task, as well as the dataset that is used. More, what is
also interesting is that the pointwise XGBoost is outperformed by classical scoring
functions on the LKAO-CV and LOLO-CV, even by the LinearSVR, which is the linear
version of pointwise RankMHC. We hypothesize that this is due to the model overfitting
to LRMSD values, instead of focusing on the ranking task. Pairwise and listwise
approaches are able to partly circumvent this issue, by not emphasizing in accurately
predicting LRMSD values, but the relative ranking of pMHC model pairs or lists.

We wanted to also inspect which features RankMHC deems as important for the task
of pMHC binding mode identification. The feature importance (gain) for the twenty-five
most important features can be seen in Figure 2B. To begin with, we observe that, for
many features, attention is given to peptide residues that have been previously
identified as anchor positions (positions 2 and 9), or residues that are near such anchor
positions (position 1, 3 and 8). Features stemming from the middle portion of the
peptide (such as RSA values in position 7) are present in the top features, but only
slightly. This is surprising, as, for the majority of the pMHC models, anchor positions
have mostly fixed geometries in the pMHC system, and are generally easier to predict
(see Supplementary Figure 2). Investigating further, we trained a version of RankMHC
where features stemming from positions 1, 2 and 9 are omitted. We choose to omit
these positions in particular, as the mean RMSD to the native structure for these
positions was less than 1.5 Å (see Supplementary Figure 2). Results show that omitting
such features affects negatively the performance of the model (see Supplementary Table
5). We additionally trained a version of RankMHC where we included only the anchor
positions. On the average case, we also saw diminished performance. Comparing and
contrasting results using the different proposed metrics, we hypothesize that the anchor
positions are needed as a first layer to filter out bad anchor placements, as well as to
bias the set of geometries that should be expected, while the middle positions seem to
further refine the whole ranking, which shows in the comparatively increased ρ (see
Supplementary Table 5). As such, the baseline RankMHC which includes all positions
has the best performance on average. Additionally, the per-position ref2015 score
(denoted as total score in Figure 2B) proves to be a very important feature for many
anchor and non-anchor peptide residues. We suspect that the linear feature weighting as
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developed in ref2015 is already robust, particularly for the pMHC system, and provides
a good basis for further fine-tuning the per-position weights. This is also proven by
Rosetta’s widespread use in the pMHC literature [15,45,61,65,66].

RankMHC performance on different pMHC tools

All training and evaluation for RankMHC has been specifically on pMHC models
generated by APE-Gen2.0. However, training on APE-Gen2.0-based models does not
guarantee good generalization on pMHC models derived from different pMHC
structural modeling methods. As such, in order for RankMHC to be widely adopted, it
is imperative that it is tested on different pMHC structural modeling tools. We sought
to evaluate the performance of RankMHC on modeled structures generated by
PANDORA, a homology modeling-based method [41]. We made sure to not include
PANDORA generated pMHC models in our training datasets, to ensure that RankMHC
has been exposed to only APE-Gen2.0-generated pMHC models. We were also careful
to avoid data leakage, so that a specific instance of the XGBoost ensemble of RankMHC
does not predict previously seen PDB codes (see Methods for more information in
regards to the datasets used). For this benchmark, we focused on specifically comparing
against classical protein-ligand scoring functions, including molPDF, the default scoring
function of PANDORA [41].

LKPO-CV performance can be seen in Figure 3. The first row depicts the results for
the five evaluation metrics as describes in the Methods. RankMHC exhibits slightly
better ρ on average than other methods. In other metrics however, it is outperformed
by the simpler ref2015 scoring function from the Rosetta modeling suite, and
surprisingly, exhibiting the worst MRR out of all the scoring functions. We hypothesize
that this is due to the nature of the PANDORA-generated pMHC models. More
specifically, PANDORA uses MODELLER for both homology modeling and peptide
loop refinement. This is fundamentally different to how APE-Gen2.0 generates the
structures. Specifically, APE-Gen2.0-generated pMHC models include hydrogen
placement in the peptide, while PANDORA-generated structures do not. Moreover,
APE-Gen2.0, as a final step to the modeling process, uses openMM [101] for a
relaxation step. This has proven to result in better MolProbity scores [102] when
compared to PANDORA-generated pMHC models [39]. The fact that PANDORA
exhibits worse MolProbity scores might be a result of steric clashes, Ramachandran
outliers or unfavorable side-chain rotamers [102]. As RankMHC has seen only pMHC
models that have been relaxed through the APE-Gen2.0 protocol, we assume
introducing a pMHC model with no hydrogen content and no relaxation will result in
an out-of-distribution feature set that reflects this.

To test this, we performed a post-processing step on the PANDORA-generated
pMHC models. We performed hydrogen atom addition through PDBFixer [101], and
perform an energy minimization step with protocols as previously described in [39].
Re-scoring the energy minimized structures with the same scoring functions results in
RankMHC outperforming all other scoring functions in the benchmark (see bottom row
of Figure 3). Interestingly enough, the performance of other scoring functions is not
better, and is in fact slightly reduced when compared to the top-row experiments. This
effect however has also been previously reported in previous protein-ligand docking
benchmark studies [103].

Discussion

Identifying the binding mode of a ligand that is bound to a receptor is a very
well-studied problem, and one of the main goals of molecular docking [29]. The

17/29



Fig 3. LKPO-CV RankMHC performance on PANDORA-generated pMHC
models. The x-axis for each plot depicts different scoring functions, while the y-axis
depicts the value for each metric (shown as the title of each subplot). The first row
depicts the results of scoring functions on the vanilla PANDORA pMHC models. The
second row depicts the results of PANDORA pMHC models with added hydrogens that
have also underwent an energy minimization process. Higher ρ, MRR, P@1 and NDCG,
as well as lower LRMSD@1, denote better performance.

literature is rich with general protein-ligand scoring functions, which can be applied to
many biological systems. The reason for this is that these scoring functions comprise of
well-founded theories and principles related to biophysics. However, such scoring
functions do not inherently focus on characteristics that define a particular biological
domain, and as such, cannot utilize, without modifications, specific domain knowledge
that is crucial in identifying a protein ligand binding mode or predict the binding
affinity of a ligand to a protein. ML-based scoring functions excel on exactly these two
things: (i) specificity to the desired domain of application (or, in other words, specificity
to particular biological systems) [56], and (ii) the ability to not be constrained to a
classical scoring function’s predetermined functional form, to which many biological
systems do not necessarily conform to [47]. The last two points are quite important,
especially for protein-ligand interactions which are typically unconventional, or exhibit
specific domain knowledge that can be utilized downstream, such as the pMHC system.
Specifically, the anchor placement of the peptide residues in the MHC cleft is typically
known, and the possible search space of peptide conformations is biased towards certain
geometries. As such, there is a clear motivation on utilizing ML to advance pMHC
binding mode identification.

This evidence is not new to the pMHC literature, with many approaches utilizing
ML for better performance in the task of pMHC binding mode identification [64–66].
However, such approaches focus on direct, pointwise predictions of measures that define
the distance of a pMHC model to a native structure, or they do not take into account
information about the contrastive aspect of the problem, that is, that a pMHC model is
closer to a native structure than another. Turning into the LTR literature that is very
rich with methodologies that relate to such problems, such as RankNet [75],

18/29



LambdaRank [81] and LambdaMART [91], we created RankMHC, a new pMHC-specific
binding mode identification function. RankMHC outperforms both classical
peptide-ligand scoring functions, as well as other ML-based approaches in the literature
(see Table 1). Results demonstrate that RankMHC can take advantage of both the
domain specificity of the pMHC system, as well as taking advantage of the pairwise,
contrastive learning approach to focus on the crux of the problem, which is the relative
ranking of pMHC models, rather than directly predicting LRMSD values, which is a
much harder problem. Using a pairwise learning approach, we instead focus on the
relative differences between conformations, instead of absolute LRMSD values,
circumventing this problem altogether. Such an approach helps in improving
performance and with potential overfitting (see Supplementary Table 4).

Another improvement of RankMHC over other approaches in the literature is that it
is generalizable to multiple alleles and peptide lengths, contrary to other approaches
that mostly focus on the HLA-A*02:01 allele and nonamer peptides [65,66]. In regards
to peptide length, RankMHC achieves generalization by using a novel average pooling
operation that converts any peptide to a nonamer with structural awareness (see
Supplementary Figure 1). As a result, RankMHC can adequately generalize to
unseen peptide lengths (see Table 1 and the LOLO-CV results), and showing slightly
better performance than using simple padding (see Figure 2). This demonstrates that
RankMHC can be as effective performance-wise with a reduced feature space that is
smaller than a padded one, while being more efficient during training. We are curious to
see whether such structure-aware padding can be helpful in other systems that perform
srtucture-based pMHC binding affinity prediction [61], or even help purely
sequence-based methods that either rely on padding [88] or completely pruning amino
acids out of the peptide sequence [5]. We will also consider different ways of combining
residues - average pooling being the simplest approach - and adopt more sophisticated
pooling methodologies in the future, such as max pooling, or even pooling that is
attention-based [104] and, in general, a pooling operation that can be learned in a
task-specific manner.

It is imperative however that we acknowledge some limitations of RankMHC. In
regards to RankMHC being used by modeling tools other than APE-Gen2.0, RankMHC
demonstrates the best results when compared to other scoring functions on a dataset of
PANDORA-generated pMHC models (see bottom half of Figure 3). However, this is
only true when a specific post-processing step to the pMHC models is applied, namely,
the addition of hydrogen atoms and the energy minimization of the whole pMHC
complex. Indeed, when RankMHC is used on the vanilla PANDORA-generated pMHC
models, performance is subpar (see top half of Figure 3). We hypothesize that this is
due to the different characteristics of PANDORA-generated pMHC models. Specifically,
PANDORA-generated models exhibit lower MolProbity scores than
APE-Gen2.0-generated models [39], meaning that the PANDORA-generated models
might contain steric clashes, Ramachandran outliers or unfavorable side-chain
rotamers [102]. This, in turn, can radically change the feature content of such pMHC
models so much that they could be considered as out-of-distribution data points for
RankMHC, which explains the subpar performance. Explicitly providing pMHC models
with added hydrogens that have also underwent an energy minimization process, solving
potential steric clashes and other issues in the process, can be a catalyst for good
RankMHC performance. As a future work, to avoid potential out-of-distribution issues,
we plan to expand the training dataset of RankMHC, using pMHC models generated by
different pMHC structural modeling that employ different methodologies. As such
methodologies search the peptide conformational space in different ways, the geometries
across different pMHC tools may vary, and such variety in the training data can be
beneficial for RankMHC performance.
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It also needs to be underlined that RankMHC is - apart from a domain-specific
function - a task-specific function, namely, one that is specialized in pMHC binding
mode identification. It is not designed for auxiliary but correlated tasks such as pMHC
binding affinity prediction or virtual screening applications. The seminal work by
Ashtawy and Mahapatra expands more on this topic, showing through benchmarks that
task-specific, but even more general scoring functions cannot generalize equally well to
different tasks [105]. In our experiments, we also observed similar behaviour with
3pHLA [61] and the random forest model by Abella et al. [62] not being able to properly
rank peptide conformations. However, the work by Ashtawy and Mahapatra also
proposes as a solution a multi-task approach, where there is one system that shares
information for three different tasks - in the paper, the authors discuss molecular
docking, virtual screening and binding mode identification - which are correlated with
one another [105]. This notion of multi-task learning has been adopted by other
ML-based scoring functions, such as GNINA, which is trained on both protein-ligand
binding affinity labels, as well as labels related to the appropriate binding
mode [50,106]. Therefore, future work will also focus on combining knowledge from
RankMHC and our previously developed structural pMHC tools for binding affinity
prediction [61] and virtual screening [62]. We will consider building a pMHC multi-task
system that shares structural information between different tasks in order to improve
performance, as the tasks of pMHC binding affinity prediction, binding mode
identification and virtual screening are, to an extend, correlated.

Supporting information

S1 Fig. Structure-aware average pooling. Example of how a 13-mer (PDB code:
2AK4 ) is converted into a nonamer, using a canonical nonamer template (PDB code:
1DUZ ). The result of areas to be pooled is shown at the top.

S2 Fig. Per-position LRMSD distribution The x-axis depicts the nine different
peptide residue positions. On the y-axis, the mean + standard deviation LRMSD for
each position is shown.

S1 Table. Full list of features used in RankMHC.

S2 Table. Set of hyperparameters that all XGBoost-LambdaMART models
were optimized on. The best performing method is depicted in bold, while the second
best performing method is underlined.

S3 Table. Benchmark of different scoring functions on pMHC binding
mode identification (redundant structures included). The best performing
method is depicted in bold, while the second best performing method is underlined.

S4 Table. Benchmark of different LTR-based loss functions
(vina/LinearSVR are included as reference). The best performing method is
depicted in bold, while the second best performing method is underlined.

S5 Table. Contributions of peptide residues 1, 2 and 9 to the performance
of RankMHC (vina is included as reference). The best performing method is
depicted in bold, while the second best performing method is underlined.
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