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Monitoring hydrogen/deuterium exchange (HDX) undergone by a protein in solution

produces experimental data that translates into valuable information about the protein’s

structure. Data produced by HDX experiments is often interpreted using a crystal

structure of the protein, when available. However, it has been shown that the

correspondence between experimental HDX data and crystal structures is often not

satisfactory. This creates difficulties when trying to perform a structural analysis of

the HDX data. In this paper, we evaluate several strategies to obtain a conformation

providing a good fit to the experimental HDX data, which is a premise of an accurate

structural analysis. We show that performing molecular dynamics simulations can be

inadequate to obtain such conformations, andwe propose a novel methodology involving

a coarse-grained conformational sampling approach instead. By extensively exploring

the intrinsic flexibility of a protein with this approach, we produce a conformational

ensemble from which we extract a single conformation providing a good fit to the

experimental HDX data. We successfully demonstrate the applicability of our method

to four small and medium-sized proteins.

Keywords: protein conformational sampling, coarse-grained conformational sampling, molecular dynamics,

experimental data fitting, hydrogen/deuterium exchange, mass spectrometry, nuclear magnetic resonance

spectroscopy, X-ray crystallography

1. INTRODUCTION

Hydrogen/deuterium exchange (HDX) is a chemical phenomenon in which hydrogen atoms
of molecules are exchanged with deuterium atoms of the solvent (Engen et al., 2011).
Contrary to other structural biology techniques, such as nuclear magnetic resonance (NMR)
spectroscopy or X-ray crystallography, HDX experiments cannot reveal the three-dimensional
structure of a molecule, but they can provide valuable structural information (Huang and
Chen, 2014). This has led to numerous applications for the analysis of protein structure and
conformational changes, as well as protein folding and interactions (Pirrone et al., 2015). As
they monitor HDX over time (see Section 2.1), HDX detected by mass spectrometry (HDX-MS)
experiments also allow studying protein dynamics (Wei et al., 2013). HDX-MS has benefited
from the development of various computational tools (Claesen and Burzykowski, 2016), and has
proven useful in the study of challenging systems, such as molecular complexes or membrane
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FIGURE 3 | Analysis of the native state of C3d. Conformations of C3d are depicted using the ribbon model: the conformation reported in the PDB, in green, and

the conformation generated by SIMS which provides estimates of deuterium-uptake curves that best fit the experimental HDX data, in red. The plot shows differences

between the experimentally-observed and structurally-derived deuterium-uptake curves, for all peptides, when deriving this data from the PDB conformation (green),

the MD conformation (blue) or the SIMS conformation (red). The legend also includes the average differences across all peptides.

can be very different. In practice, it is thus more convenient to
generate many conformations and select the one providing the
best estimates than to find the best conformational ensemble.

The fact that numerous conformations have to be generated
in order to obtain good estimates of experimental HDX data,
and that a PDB conformation is not enough, is also linked to

weaknesses of the HDX prediction model based on Equation
(1). The first limitation of this model is its lack of robustness:
it is very sensitive to small variations in the protein structure.
As well illustrated by the case of CI2, two conformations that
are very similar at the backbone level and present differences
only in their side-chain conformations can produce very different
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HDX estimates. The second limitation of this model is that
it only partially reflects the mechanisms underlying hydrogen
exchange. For example, it does not consider any dynamic aspect
of proteins. Therefore, it could be interesting to develop a
more accurate model by accounting for additional structural
and dynamic properties of proteins (Skinner et al., 2012a). Since
such a model has not been proposed yet, we believe it is best
to compensate for the weaknesses of the current model by
performing conformational sampling.

6. CONCLUSION

When performing a structural analysis of HDX data collected
for a protein, a premise to an accurate analysis is to use a
conformation that matches this data. Several studies, including
ours, show that crystal structures reported in the PDB are not
a good choice because they often provide bad estimates of
experimental HDX data. Because HDX data reflects the inherent
flexibility of a protein, a conformational ensemble should ideally
provide better estimates than a single conformation. However,
our work has shown that this is not always the case with
a conformational ensemble produced by an MD simulation.
Therefore, it is perfectly justified to try and fit experimental HDX
data using a single conformation. In this paper, we have shown
that this can be done using a coarse-grained conformational
sampling tool to explore a protein’s conformational space. The
specific tool we used, called SIMS, yields a conformational
ensemble from which one can extract a conformation providing
a good fit to the experimental HDX data. Note that we do
not claim that a conformation produced by SIMS is a better
representation of a protein’s state than its crystal structure.
Besides the improved accuracy, another advantage of using
SIMS is its efficiency: a conformation providing a good fit to
experimental HDX data can be obtained at a fraction of the
computational cost of running a traditional MD simulation.
Finally, we believe that other conformational sampling methods
could produce similar results, in terms of accuracy and efficiency.
The achievement of our study mostly consists of revealing the
technicalities that must be addressed for such methods to be
successful.

Our methodology relies on the use of an HDX prediction
model defining how to derive HDX data from a protein’s
structure. This model is based on a phenomenological
approximation of the protection factors of a protein’s residues.
Despite its limitations, this model enables our methodology to
successfully produce a conformation fitting the experimental
HDX data. Another interesting benefit of this model is that,
besides the validation of experimental HDX data, in the case of
HDX-MS experiments, it offers the possibility to refine the HDX
data from the peptide level to the residue level (Radou et al.,
2014; Devaurs et al., 2016). This has the potential to enhance
applications of the HDX-MS technique (Pirrone et al., 2015).

As part of our future work, we intend to apply our
methodology to larger proteins, to evaluate its scalability. Since
coarse-grained conformational sampling scales better than MD,
we expect our methodology to be even more beneficial with
large proteins. Additionally, we plan to investigate several useful
applications of this work. First, as demonstrated with Im7, our
method can be used to obtain a structural model of a non-native
state of a protein when only its native state is described in the
PDB and only HDX data is available for this non-native state.
Second, although we applied our method only to cases where
the experimental HDX data was expected to characterize a single
protein conformation because a single conformer was assumed to
be present in solution, it could be applied to more complex cases,
where several conformers are involved. Indeed, if structurally-
derived HDX data better fits experimentally-observed HDX
data when deriving it from a small set of structurally-different
conformations (i.e., two or three, or a handful of conformations)
than when deriving it from a single conformation, we can suspect
that several protein conformers are present together in solution.
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