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Abstract— In this paper, we consider the problem of motion
planning for mobile robots with nonlinear hybrid dynamics, and
high-level temporal goals. We use a multi-layered synergistic
framework that has been proposed recently for solving planning
problems involving hybrid systems and high-level temporal
goals. In that framework, a high-level planner employs a user-
defined discrete abstraction of the hybrid system as well as
exploration information to suggest high-level plans. A low-level
sampling-based planner uses the dynamics of the hybrid system
and the suggested high-level plans to explore the state-space
for feasible solutions. In previous work, we have proposed a
geometry-based approach for the construction of the discrete
abstraction for the case when the robot is modeled as a
continuous system. Here, we extend the approach for the
construction of the discrete abstraction to the case when the
robot is modeled as nonlinear hybrid system. To use the
resulting abstraction more efficiently, we also propose a lazy-
search approach for high-level planning that reduces the size
of the search space by reusing previously constructed high-
level plans for initializing the search. Our proposed techniques
result in computational speedups of close to 10 times over other
possible approaches for second-order nonlinear hybrid robot
models in challenging workspace environments with obstacles
and for a variety of temporal logic specifications.

I. INTRODUCTION

The problem of constructing motion plans for robots has
traditionally involved the task of taking a robot from a
given initial state to a state in a goal region while avoiding
obstacles. A class of algorithms that have been particularly
successful in solving such problems for robot models with
differential constraints are the sampling-based algorithms [1],
[2]. Such algorithms typically construct a tree of feasible
trajectories for the system using an incremental simulator for
the dynamics. The geometric constraints arising due to finite
geometry of the robot and the obstacles in the workspace,
are handled using a collision-detection scheme in the search
procedure. The algorithms relax strong completeness guaran-
tees to efficiently solve problem instances involving complex
robot dynamics and workspace environments. The algorithms
impose very few constraints on the dynamics, and extensions
of such algorithms have also been used for solving plan-
ning and verification problems involving hybrid systems and
reachability-based goals [3]–[9].

The focus of this paper is motion planning problems,
involving, mobile robots with nonlinear hybrid dynamics,
and high-level temporal goals. The problem instances involve
geometric constraints arising due to the finite geometry of
the robot and the presence of obstacles in the workspace.
The high-level temporal goals are described using a subset
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Fig. 1: Multi-layered synergistic approach for planning

of Linear Temporal Logic (LTL) formulas that are known
as syntactically co-safe LTL formulas [10]. Researchers
have advocated the use of LTL for describing temporal
properties [11]. LTL has been widely used in model checking
of discrete systems in software and hardware systems [12].
LTL has also been used recently as a framework to describe
complex high-level goals in planning problems [13]–[19].

The work presented in this paper, as well as [19] use
the multi-layered synergistic framework proposed in [16].
Our instantiation of the framework is shown in Figure 11

and consists of three main layers: a) The high-level search
layer that uses a discrete abstraction for the robot model,
the specifications, and the exploration information from the
low-level search layer to construct high-level plans, b) The
low-level sampling-based search layer that uses the hybrid
robot model and the suggested high-level plans to explore
the state-space for solution trajectories, and, c) The synergy
layer, that facilitates the synergistic interaction between the
high-level and the low-level search layers.

The contributions of this paper are twofold. First, we
generalize our recently proposed geometry-based approach
for the construction of the discrete abstraction [19] to the case
when the robot model involves hybrid dynamics. Second,
we propose an improved high-level search technique that
lets us realize the benefits of using geometry-based discrete
abstraction more effectively. As in [19], we follow a more
general approach to construct the discrete traces, which
includes the class of traces considered in [16] as a subset.

Our proposed approach shows computational speedup of
close to 10 times over other possible approaches for challeng-
ing benchmark problems involving second-order nonlinear
hybrid robot models with finite geometry moving in complex
workspace environments with obstacles.

II. MATHEMATICAL FRAMEWORK

Robot model We use the hybrid automata model [20] to
describe the hybrid robot dynamics in this paper. A hybrid

1For viewing the figures in this paper, we recommend the online version.
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automata is a tuple H = (S, s0, INV, E, GUARD, JUMP, U ,
FLOW) (we are using notation similar to [16]). S = Q×X
is the product of discrete state-space Q and the set of
continuous state-spaces X = {Xq ⊆ Rnq : q ∈ Q}. A
pair s = (q, x) ∈ S denotes a hybrid state of the system
and each q ∈ Q is called a mode. s0 ∈ S is the initial state.
INV = {INVq : q ∈ Q}, is the set of invariants, where INVq :
Xq → {⊤,⊥}. E ⊆ Q × Q describes discrete transitions
between different discrete modes. GUARD = {GUARDqi,qj :
(qi, qj) ∈ E}, where GUARDqi,qj : Xqi → {⊤,⊥} is
the guard function. JUMP = {JUMPqi,qj : (qi, qj) ∈ E},
where JUMPqi,qj : Xqi → Xqj is the jump function. In this
paper, the guards and invariants are assumed to be defined
as polyhedra (possibly non convex), and the jump functions
are assumed to be linear. GUARD is a function of only the
discrete transition e ∈ E and the position of the robot. JUMP
keeps the position of the robot the same and resets other
components of the state x ∈ X to 0. U = {Uq ⊂ Rmq : q ∈
Q} is the set of input spaces. FLOW = {FLOWq : q ∈ Q},
where FLOWq : Xq×Uq×R≥0 → Xq is the flow function that
describes the continuous dynamics of the robot through a set
of differential equations. FLOWq(x, u, t) gives the continuous
state of the robot when the input u is applied for t time
units starting from state x. A trajectory s̃ of the robot can be
described as a concatenation of a finite number of continuous
trajectories, interleaved with discrete transitions (cf. [16]).
Pr(A) denotes projection of a Euclidean set A onto R2.

The first two components of a continuous state x ∈ Xq

denote the position of the robot. W = {(q,Wq) : Wq =
Pr(Xq), q ∈ Q} denotes the workspace for the robot. For a
given discrete state q, Wq,free =Wq \Wq,obs denotes the set
of collision-free positions for the robot and Wq,obs denotes
the set of (polygonal) obstacles in the workspace. Wfree =
{(q,Wq,free) : q ∈ Q} and Wobs = {(q,Wq,obs) : q ∈ Q}.
hH : S → W maps each state s = (q, x) ∈ S to the the
workspace W . Given a w ∈ W , we define h−1

H (w) = {s ∈
S : hH(s) = w}. We use the notation hH , h

−1
H for their

natural extensions to sets in state-space and workspace as
well. For a given discrete state q, Gq,q′ denotes the projection
of GUARD−1

q,q′(⊤) on Wq and JGq′,q denotes the projection
of JUMP(GUARD−1

q′,q(⊤)) on Wq .
Linear temporal logic Let Π = {π1, π2, . . . , πN} be

a set of boolean atomic propositions. The semantics are
defined over infinite traces of a given system (see Appendix
and [12]). Let σ = {τi}∞i=0, with τi ∈ 2Π and let σi =
τi, τi+1, . . . and σi = τ0, τ1, . . . , τi−1. σi is a prefix of the
trace σ. σ |= φ indicates that σ satisfies the formula φ.
The focus of this paper is motion planning problems over
a finite time horizon. Hence, we use syntactically co-safe
LTL formulas for describing specifications (see Appendix
and [10]).

Given a set of atomic propositions Π, and a syntacti-
cally co-safe LTL formula φ, a Non-deterministic Finite
Automaton (NFA) Aφ describing all the good prefixes for
φ can be constructed [10]. Aφ is given by the tuple Aφ =
(Z,Σ, δ, z0, Zacc). Z is the set of automaton states, Σ = 2Π

is the input alphabet, δ : Z × Σ → 2Z is the transition
relation. z0 ∈ Z is the initial state and Zacc ⊆ Z is the set
of accepting final states for the automaton. The set of states
on which Aφ ends when run on a trace σ = τ0, τ1, . . . , τk,

is given by:

Aφ(σ) =

{
δ(z0, τ0), if k = 0,
∪z∈Aφ(σk)δ(z, τk), if k > 0.

It has been shown recently that using a minimized De-
terministic Finite Automaton (DFA) for an NFA can offer
significant computational speedups for model checking and
falsification of temporal specifications for hybrid systems
(cf. [16], [21]). Hence, we use minimized DFA in our work.

Specifications and simulation issues Let Π =
{p0, p1, p2, . . . , pN} denote the set of boolean atomic propo-
sitions. Γ : Wfree → 2Π maps each point w ∈ Wfree

to the set of propositions that hold there and is referred
to as the observation map. p0 is a proposition that holds
true for all w ∈ Wfree \ ⋃

i=1,...,N

Γ−1(pi). For a given

atomic proposition p ∈ Π, ¬p holds true for all points
w ∈ Wfree \ Γ−1(p). To interpret an LTL formula over a
hybrid-system trajectory, we need an appropriate notion of
traces generated by such trajectories. Numerical techniques
for incrementally simulating dynamics of a continuous-time
system essentially discretize the continuous dynamics (unless
arbitrary-precision arithmetic is used, which can be pro-
hibitively expensive) such that the resulting discretization can
be implemented efficiently [2]. A practical and universally
adopted approach to numerically simulate the dynamics is
to consider a discrete-time approximation of the continuous
dynamics with respect to a time-step ∆t and use constant
inputs over the time-step ∆t [2], [4]–[7], [9], [16], [22].
The constraints of invariants and guards are enforced only at
sampling instants c∆t, c ∈ N. We use a similar discrete-
time approximation, denoted as H∆t, in our work. The
discretization can result in spurious trajectories, but this
is unavoidable if numerical techniques are used. In fact,
undecidability of the reachability problem [20] shows that
this is unavoidable. A practical approach to address this issue
is to use additional knowledge of the system for selecting
∆t, and to test the specifications for a set of discrete-time
approximations, each corresponding to a different ∆t.

A trace is defined to be a sequence of propositional assign-
ments, where every element of the sequence corresponds to a
state of H∆t. In [16], repeated elements of the sequence are
dropped, to obtain a sequence where every two neighboring
elements are distinct, whereas in our work we do not impose
this requirement. Given a trajectory ŝ for H∆t, starting
from s0, under the effect of control sequence u1, u2 . . . uk,
the sequence of states ŝ = ŝ(0), ŝ(1), ŝ(2), . . . ŝ(k) induces
a trace σ(ŝ) = τ0, τ1, . . . , τk, τi = Γ(hH(ŝ(i))). The
LTL semantics is defined with respect to the finite traces
generated by H∆t. These traces are finite, but, under the co-
safety restriction, the satisfaction of an LTL formula can be
interpreted over finite traces as follows. Given a trajectory ŝ
of H∆t, and a co-safe LTL formula φ, we say that ŝ satisfies
the formula, denoted as ŝ |=H∆t φ, if Aφ(σ(ŝ)) contains an
accepting state.

Motion planning problem Given a robot model H ,
a sampling interval ∆t, and a syntactically co-safe LTL
formula φ, construct a trajectory ŝ for the model H∆t, such
that ŝ |=H∆t

φ.
A hybrid robotic system benchmark Throughout this

paper, we use the following hybrid robotic system as our



(a) Mode 1 (b) Mode 2 (c) Mode 3 (d) Mode 4
Fig. 2: A workspace with 4 modes, 12 guards and 7 propositions. Sets corresponding to discrete transitions are marked in
purple, obstacles in brown and propositions in blue color. We refer to Section II for the notation.

test benchmark (shown in Figure 2). The model has four
discrete modes and three guard sets in each discrete mode.
For each mode, the robot is modeled as either a second-
order car, a unicycle or a differential drive with finite
geometry. These models are rich enough to capture the key
aspects of the dynamics and have been extensively used
for benchmarking motion-planning and safety-falsification
algorithms (see Appendix and [9], [16], [23]). Furthermore,
to make the problem instances even more challenging, we
introduce obstacles in the workspace of the robot and model
the robot with finite geometry. Such geometric constraints
were not present in problem instances considered in [16].

III. SYNERGISTIC MOTION PLANNING

We now discuss our instantiation of the multi-layered
synergistic framework (Figure 1), while addressing the issue
of the construction of the discrete abstraction, and suggest-
ing improvements to the high-level search technique. The
framework consists of three main layers: a high-level search
layer, a low-level search layer, and a synergy layer that
facilitates the interaction between the high-level and the low-
level search layer.

High-level search layer This is the layer that handles most
of the discrete nature of the problem. This layer comprises
of three key components: a discrete abstraction D of the
hybrid robot model H , an automaton Aφ corresponding to
the specification φ, and the high-level search technique.

a) Discrete abstraction: One of the main reasons for
using a discrete abstract model for solving the problem is to
make a quick guess of a possible solution using the discrete
abstraction and then explore its feasibility for the hybrid
model in the low-level search layer. In [16], the discrete ab-
straction was treated as a user-supplied input. The benchmark
problems considered did not involve geometric constraints,
and the problem was set up such that the abstraction was
easy to construct. In this paper, we propose an approach
to construct the discrete abstraction that uses the geometry
of the specifications2 and the discrete structure of the hybrid
dynamics3. We utilize the geometry and the discrete structure
in a manner such that the overall performance of the multi-
layered synergistic framework improves significantly. Note
that in our previous work [19], we have explored the issue of

2The geometry of specifications is described by the sets describing the
invariants, guards, obstacles, and the propositions.

3The discrete structure of hybrid dynamics is described by the set of
possible discrete transitions (refer to Section II) between different modes.

the construction of the discrete abstraction for the case when
the robot dynamics are continuous. The abstractions used
in [17], [24] need to satisfy the bisimilarity property [25],
while in the multi-layered synergistic framework (shown in
Figure 1), this is not required.

In our work, we use a discrete abstraction that is induced
by a decomposition of the workspace of the robot and
the discrete structure of hybrid dynamics. A decomposition
D = ∪ND

i=0Di is a partition of workspace W into number of
equivalence classes defined by the map ΥD :W → D. Every
equivalence class corresponds to a single discrete mode.
For every d ∈ D, let Υ−1

D (d) = (q × r) (called as the
concretization of d), where r ⊆Wq and ΥD(q × r) = d.

Given the functions GUARD, JUMP and the observation
map Γ, there is more than one way to decompose the
workspace W . A minimalistic approach towards computing
such a decomposition is as follows. We refer to such a
decomposition as (hs) geometry ignoring4. In this decom-
position, the set of states corresponding to the sets Gq,q′

and JGq′,q are represented as a single abstract state in
the abstraction. Similarly, every nonempty set of states
h−1
H (Γ−1(pi)) ∩ INV−1

q (⊤) corresponding to a proposition
pi, and discrete mode q, is represented as a single state
in the abstraction. For the robotic benchmark described
in Section II, the (hs) geometry-ignoring decomposition is
shown in Figure 3 and has 35 elements.

Even though the (hs) geometry-ignoring decomposition is
simple to construct, we show through experiments that the
performance of the overall approach improves significantly
if geometry of the specifications is also used. Such a decom-
position is called as (hs) geometry-using decomposition. To
decompose the workspace using geometry, we triangulate the
workspace in each discrete mode. Each Wq, q ∈ Q, is given
as a Planar Straight Line Graph (PSLG) to a mesh generation
package (we use the Triangle package [26]). A PSLG is
made of vertices and segments. Segments are edges whose
endpoints are vertices in the PSLG, and whose presence
in any mesh generated from the PSLG is enforced. Holes
correspond to the regions that cannot be triangulated. The
sets describing propositions are given as segments. We do
not triangulate the sets Gq,q′ or the sets JGq′,q (defined in
Section II), but rather specify them as holes. Each of these
sets is then added later to the decomposition. Wq,obs is given
as a set of holes. One such decomposition for the example

4(HS) is used to indicate that the discrete structure of hybrid dynamics
is also being used.



(a) Mode 1 (b) Mode 2 (c) Mode 3 (d) Mode 4
Fig. 3: (HS) Geometry-ignoring decomposition of workspace shown in Figure 2. The decomposition has 35 elements.

(a) Mode 1 (b) Mode 2 (c) Mode 3 (d) Mode 4
Fig. 4: (HS) Geometry-using decomposition of workspace shown in Figure 2. The decomposition has 706 elements.

considered in Figure 2 is shown in Figure 4 and has 706
elements. Note that the geoemtry-based approach proposed
here is one of several alternatives to construct the discrete
abstraction. For example, it is also possible to use grid-based
decompositions as in [23].

Given a hybrid system H , M = (D, d0,→D, hD) denotes
a discrete abstraction of the system5. Here D is a set of
states, d0 ∈ D is the initial state of the abstraction, and
→D⊆ D×D is the transition relation. Each element d ∈ D
of the decomposition is used as a state for the abstraction. We
add a transition between di, dj if there is a discrete transition
between their concretizations, or if their concretizations share
an edge in the low-dimensional triangulation. hD : D → Π
is the observation map for the abstraction that identifies the
set of propositions from Π that is true in a given abstract
state d ∈ D and is defined as hD(d) = Γ(Υ−1

D (d))6.
We wish to remark here that the idea of using a

triangulation-based decomposition has been used before for
continuous robot models (cf. [17], [24]). However, the ab-
stractions used in [17], [24] need to satisfy the bisimilarity
property [25], while in our work, this is not required.

b) Discrete search: To construct high-level plans, the
product of Aφ and M is checked for feasible runs. Existence
of a feasible run on Aφ × M implies that the abstraction
M can satisfy the specification φ [27]. The idea of using
the product Aφ.Z × M.D for discrete planning has also
been used before [14], [17], [28]. An important difference
in our approach is that the vertices and edges in the graph
representation of Aφ.Z ×M.D are assigned weights. These
are used to synergistically convey the low-level exploration

5The abstraction is called as (hs) geometry ignoring or (hs) geometry
using, depending on the kind of decomposition used.

6With slight abuse of notation, we define Γ(Υ−1
D (d)) = Γ(w), where

d = Υ(w), w ∈ W .

information to the high-level layer.
A pair (z, d) ∈ Aφ.Z × M.D is called a high-level

state. A high-level plan ζ is a sequence of high-level states
(zi, di)

k
i=1 such that di →D di+1, ∀i ∈ [1, k − 1], and zi ∈

δ(zi−1, hD(di)) and zk satisfies the acceptance condition of
the automaton Aφ. Every high-level state (z, d) is assigned
a weight ρ(z, d) (explained as part of the synergy layer). An
edge e((zi, di), (zj , dj)) connecting high-level states (zi, di)
and (zj , dj) is assigned a weight (ρ(zi, di)∗ρ(zj , dj))−1. The
high-level layer constructs a high-level plan as the shortest
path from a given abstract state to the set of (abstract)
accepting states using Dijkstra’s algorithm. To account for
the fact that the weights are an estimate of feasibility, the
planner also computes a random path occasionally, which
need not be the shortest one.

The high-level search technique proposed in [16] (referred
to as reinitialized-search technique) always starts the search
from (z0, d0). This can be expensive for the cases when
the size of search space (Aφ.Z × M.D) is big. In this
paper, we use a lazy-search technique that starts the search
from (z0, d0) only when other candidate high-level states
that have been used previously do not look promising.
Instead of reinitializing the search from (z0, d0) every time
a new high-level plan is being constructed, the lazy-search
initializes search from previously explored high-level states.
This effectively means that portions of previously explored
plans are reused. The selection of a high-level state (z, d)
from the high-level states of a previously explored high-level
plan ζ is made using the weight function ρ. Further details
are discussed as part of the algorithm description.

Low-level search layer A high-level plan ζ is checked
for feasibility incrementally at the low-level search layer, by
exploring the hybrid state-space S = Q×X . The suggested
high-level plan ζ is used to bias the search such that the



resulting exploration of S improves the chances of finding a
feasible trajectory satisfying the specification φ. The search
is done for a predetermined exploration time texplore, using
highly successful sampling-based algorithms [2] that build
an exploration tree T in S while keeping estimates for
the coverage of S. Note that we use the sampling-based
algorithm used in [16], but others [4]–[6], [8], [22] could also
be used. The low-level search layer passes the exploration
information to the synergy layer. The low-level layer also
uses the automaton Aφ as a specification monitor to identify
when a trajectory satisfying φ has been found. The low-
level layer differs from [16] in the fact that we are using a
different approach to generate traces (see Sections I, II), and
we also need to take into account the finite geometry of the
robot, and the presence of obstacles in the workspace, while
constructing feasible trajectories for H∆t.

Synergy layer A high-level plan is based on the for-
mula φ and the abstraction M . A synergistic interaction
between the high-level and the low-level layers is facilitated
by using a feasibility estimate associated with each high-
level state [16]. The feasibility estimates help convey the
information about hybrid dynamics and the low-level explo-
ration systematically from the low-level layer to the high-
level layer. Given a high-level state (z, d), the feasibility
estimate associated with it is given by weight ρ(z, d). The
formula for ρ(z, d) has been derived experimentally and is
similar to one used in [16]. ρ(z, d) is defined as ρ(z, d) =
(cov (z,d)+1)∗vol (hH(Υ−1

D (d)))

ρ3
A(z)∗(nrsel (z,d)+1)2

, where cov (z, d) estimates the
coverage of the set hH(Υ−1

D (d)) from the tree vertices
associated with (z, d), vol (hH(Υ−1

D (d))) is the volume of
the projection of the set r, with (q × r) = Υ−1

D (d) and
nrsel (z, d) is the number of times the high level state (z, d)
has been selected in the past for further exploration. ρA(z)
computes the shortest distance of the state z from the set
of accepting states Zacc (in terms of number of transitions
required) for the automaton Aφ.

If a solution is found, the search stops and the solution is
returned, else the low-level layer continues the exploration
with a new high-level plan suggested by the high-level
layer, based on updates to feasibility estimates from last
iteration. The overall search is conducted for a predetermined
exploration time tmax.

Algorithm The main algorithm (called as ML-LTL-H) is
shown in Figure 5 and the low-level sampling-based search
algorithm (called as EXPLORE-H) is shown in Figure 6. The
ML-LTL-H algorithm has two key differences from the one
used in [16]. First, the discrete abstraction is not treated as
a user-defined input, but instead is constructed as part of the
algorithm (Line:4,5, Figure 5). Second, the high-level search
uses the lazy-search technique (Line:12-17, Figure 5). We
next describe the input, the output and the data-structures
used in the ML-LTL-H algorithm.

Input: The algorithm takes as an input the hybrid model
H , a syntactically co-safe LTL formula φ, a time-step ∆t, the
bound on simulation time tmax and the bound on exploration
time texplore for each call to the low-level search algorithm.

Output: The algorithm returns a boolean variable soln that
is true if a solution is found. If a solution is found, then ŝ
is a trajectory of H∆t whose trace satisfies φ.

Data structures: The search tree T is stored as a directed

ML-LTL-H(H,φ,∆t, texplore , tmax )

1 Aφ ← COMPUTE AUTOMATON(φ) {Compute automaton}
2 H∆t ← COMPUTE DISCRETIZATION(H,∆t) {Compute discrete-time approximation}
3 T ← INIT(H∆t.s0,Aφ ) {Initialize search tree}
4 D ← DECOMPOSE(H∆t,ΥD ) {Compute decomposition}
5 M = G(V,E) ← COMPUTE ABSTRACTION(D) {Construct abstraction}
6 (ρ, ǫ) ← INITIALIZE ESTIMATES(Aφ,M ) {Initialize feasibility estimates}
7 (soln, s̃) ← (⊥, ∅)
8 (zprev, dprev) ← (∅, ∅)
9 σavail ← INITIALIZE AVAIL HIGHLEVEL STATES(Aφ,M )

10 clck ← 0 { Initialize timer}
11 while (clck ≤ tmax ∧ ¬soln) do {Search for solution}
12 (zinit, dinit) ← SELECT HIGHLEVEL STATE(ρ, σavial ) {Select a high-level state}
13 if ((zinit, dinit) = (zprev, dprev) ∨ ρ(zinit, dinit) < ǫ) then
14 (zinit, dinit) ← (Aφ.z0, d0)

15 (zprev, dprev) ← (∅, ∅)
16 else
17 (zprev, dprev) ← (zinit, dinit)

18 ζ ← DISCRETE SEARCH(M,Aφ, ρ, (zinit, dinit)) {Construct high-level plan}
19 (T , ρ, σavail, soln, vacc) ← EXPLORE-H(Aφ ,T ,M ,ρ,ζ,texplore ,H∆t ) {Low-level

search}
20 if (soln) then
21 (ŝ) ← CONSTRUCT TRAJECTORY(T , vacc ) {Construct solution trajectory}
22 return (T , soln, s̃)

Fig. 5: Multi-layered synergistic planning algorithm

graph T = GT (VT , ET ). Each vertex v′ ∈ VT of the tree
T stores a feasible state v′.s of the hybrid model H∆t and
an edge e(v, v′) ∈ ET connecting it to its parent vertex v.
An edge e(v, v′) ∈ ET stores an input u, and time duration
t = ∆t such that v′.s is the resulting state of H∆t. v is called
the parent of the vertex v′ and v′ a child of the vertex v.
D is the computed decomposition and M is the abstraction.
ζ denotes a high-level plan. (zinit, dinit) and (zprev, dprev)
store respectively the high-level state used as initial state
in current iteration and in the last iteration for constructing
the high-level plan. For a given high-level state (z, d), let
(z, d).vertices = {v ∈ VT : z ∈ v.α, v.s ∈ Υ−1

D (d)}.
For a given high-level plan ζ, σavail stores a subset of the
high-level states (zi, di), such that (zi, di).vertices 6= ∅. The
high-level states with a higher index i are favored more for
addition to σavail. With slight abuse of notation, we use ρ
(previously used to denote the feasibility estimate function)
to also denote the data structure holding the feasibility
estimates for each of the high-level states. T (vinit, v) denotes
the sequence of vertices connecting the root vinit of the tree
to the vertex v. Let ŝ(T (vinit, v)) denote the corresponding
sequence of states. v.α = Aφ(σ), stores the state of the
automaton Aφ when run on the trace σ = Γ(ŝ(T (vinit, v))).
vacc is a tree vertex such that vacc.α ∩ Aφ.Zacc 6= ∅.

The lazy-search technique is implemented in
Line:12-17, of the ML-LTL-H algorithm (Figure 5).
SELECT HIGHLEVEL STATE(ρ, σavial) selects a high-level state
(zinit, dinit) from the set of available high-level states σavail
as the starting high-level state for a new high-level plan. A
state (z, d) is selected with probability ρ(z,d)

Σ(z,d)∈σavail
ρ(z,d) .

If the selected high-level state (zinit, dinit) is the same as
the one last selected during previous iteration, or if the
feasibility estimate of (zinit, dinit) < ǫ, then the high-level
planning is reinitialized to start from the high-level state
(z0, d0). If not, then zprev, dprev is updated to (zinit, dinit).
Note that the reinitialized search technique of [16] is
equivalent to setting ǫ = ∞ on Line 6 (Figure 5).

The low-level sampling-based search algorithm
EXPLORE-H is shown in Figure 6. The algorithm is
different from the exploration algorithm proposed in [16]
in two major ways. First, we are using a different approach
to generate discrete traces compared to [16] (Lines:11,15,



Figure 6; see Sections I, II). Second, our problem instances
involve finite geometry of the robot and the presence of
obstacles in workspace. Hence, to guarantee feasibility of
system states, we also need to include collision detection in
the low-level search (Line:11, Figure 6). We next describe
the input, the output and the additional data-structures used
in the EXPLORE-H algorithm.

EXPLORE-H(Aφ ,T ,M ,ρ,ζ,texplore ,H∆t )

1 (soln, vacc, clck) ← (⊥, ∅, 0) {Initialize search}
2 σavail ←SELECT FEASIBLE HIGHLEVEL STATES(ζ,T ) {Select a few feasible high-level states}
3 while (clck < texplore ∧ ¬soln) do

4 (zsel, dsel) ← SELECT HIGHLEVEL STATE(ρ, σavail ) {Select high-level state}
5 vsel ← SELECT VERTEX (ρ, (zsel, dsel)) {Select tree vertex for expansion}
6 s1 ← vsel.s

7 nsteps ← CHOOSE STEPS(H∆t ) {Set number of iterations}
8 for i = 1, . . . , nsteps do
9 u ← CHOOSE INPUT (H∆t.U,T , vsel ) {Select an input}

10 (si+1, vi+1) ←SIMULATE DYNAMICS (H∆t, si, u) {Simulate discrete-time dynamics}
11 if CHECK FEASIBILITY(H∆t,Aφ, vi+1 ) then

12 T ←UPDATE TREE(T , vi+1, u,∆t) {Tree update}
13 σavail ←UPDATE FEASIBLE HIGHLEVEL STATES(ζ, vi+1 ) {Update available states}
14 ρ ← UPDATE FEASBILITY ESTIMATES(ρ, vi+1 ) {Update feasibility estimates}
15 if (vi+1.α ∩ Aφ.Zacc 6= ∅) then {Check for acceptance condition}
16 (soln, vacc) ← (⊤, vi+1)

17 break
18 else
19 break
20 return (T , ρ, soln, vacc, σavail)

Fig. 6: Low-level sampling-based search algorithm

Input: The algorithm takes as an input the automaton
Aφ, search tree T , abstraction M , feasibility estimates ρ,
suggested high-level plan ζ, bound on exploration time
texplore and sampling interval ∆t.

Output: The algorithm returns the boolean variable soln,
the updated feasibility estimates ρ, updated search tree T .
Additionally if solution = ⊤, then vacc is the vertex marked
with an accepting state of the automaton.

Data structures: The following additional data structures
are used by the low-level algorithm. For a given vertex
v, v.nsel stores the number of times the vertex has been
selected for expansion before. Similarly for a given high-
level state (z, d), (z, d).nsel stores the number of times the
state has been selected before for exploration.

IV. EXPERIMENTAL RESULTS

We now discuss the experimental results obtained using
the proposed approach. We also do a comparative analysis
with some of the other possible approaches to highlight the
computational speedups obtained using ideas proposed in this
paper. The focus of comparison is two-fold. First, to evaluate
the advantage of using the geometry of invariants, guards and
propositions while constructing the abstraction. Second, to
evaluate the advantage of doing a lazy search for high-level
plans, which saves the computational effort spent in high-
level search layer by starting the search adaptively from a
previously explored high-level state that need not be (z0, d0).

Implementation and hardware The code developed for
simulations presented in this paper is based on the OOPSMP
library [29] and builds on top of the code developed for [16],
[19]. For computing DFAs for syntactically co-safe LTL
formulas, we have used the tool scheck [30]. For computing
triangulations, we have used the package Triangle [26]. All
the simulations were run on Rice SUG@R cluster. Each
processor used from the cluster is an Intel Xeon processor
running at 2.83 GHz, and can access up to 16 GB RAM.

Each simulation run was run on a single processor with no
parallelism. The time allocated for each simulation tmax was
set to 1200 seconds and the exploration time texplore (for
single call to EXPLORE-H) was set to 0.75 seconds. The
time-step ∆t was set to 0.25 seconds.

LTL formulas We have considered the following LTL
formulas for the experiments. φnop

1 = ∧nop

i=1(Fpi), φ
nop

2 =
F (p1 ∧ F (p2 ∧ F (p3 . . . F (pnop

)))), φnop

3 = F (p1 ∧ ((p0 ∨
p1)U(p2 ∧ ((p0 ∨ p2)U . . . (pnop

)))), where nop ∈ [1, 7] is
the number of temporal operators in the formula. φnop

1 are
usually referred to as coverage formulas, since they can be
used to describe coverage specifications over the workspace
of the robot. φnop

2 are referred to as the sequencing formulas
and these are used to describe sequencing requirements in
the specifications. φnop

3 are the strict sequencing formulas.
They are different from sequencing formulas in the fact that
the order of visits is strict. In Figure 7, the size of minimized
DFA for different kinds of specifications is shown.

nop # of states / # of transitions
Coverage Sequencing Strict sequencing

1 2 / 2 2 / 2 2 / 2
2 4 / 8 3 / 5 3 / 6
3 8 / 26 4 / 9 4 / 12
4 16 / 80 5 / 14 6 / 28
5 32 / 242 6 / 20 10 / 76
6 64 / 728 7 / 27 17 / 209
7 128 / 2186 8 / 35 29 / 569

Fig. 7: Size of minimized DFA for different specifications

Test cases: We have used constrained Delaunay triangu-
lation for computing the geometry-based decomposition. To
avoid generating problem instances where the robot is in
collision with obstacles in initial state, the initial state of the
robot was fixed at s0 = (0, (−0.43, 0.45, 0, 0, 0)T ), which is
a collision-free state for every robot model. The dynamics
in each discrete mode (including the bounds on input) were
chosen using uniform distributions. All the computation
times are reported as mean over 40 test runs. To account
for the number of timeouts in finding a solution, we have
used the value of timeout (1200 seconds) for the test runs
when no solution was found. For every experiment involving
40 test runs, less than 10% of the runs reported a timeout.

Comparative analysis We now discuss the benefits of
using a (hs) geometry-using abstraction and lazy-search tech-
nique in high-level search layer by examining what happens
if one or both of these key ideas are not used. We refer to
Section III for the discussion on different approaches.

Reinitialized search, (hs) geometry ignoring (Figure 8a)
We start by evaluating the performance obtained using (hs)
geometry-ignoring decomposition for the abstraction, and
reinitialized search technique for the high-level search.

Reinitialized search, (hs) geometry using (Figure 8b) We
now consider the improvements obtained by using a (hs)
geometry-using decomposition, but with reinitialized search
for high-level search. The results shown in Figure 8b indicate
an improvement of up to 3-5 times with the coverage
formulas taking the longest. This indicates that an efficient
high-level search strategy is also a key parameter affecting
the overall performance of the approach.

Lazy search, (hs) geometry ignoring (Figure 8c) We
now consider the improvements obtained by using only the
lazy-search technique in high-level search layer, but with



nop Mean computation times (seconds)
Coverage Sequencing Strict sequencing

1 0.4 0.4 0.4
2 28.7 17.8 33.1
3 80.6 80.3 97.9
4 135.2 92.3 131.5
5 219.9 110.4 161.1
6 489.0 173.2 319.3
7 644.9 186.7 358.1

(a) Reinitialized search, (hs) geometry ignoring

nop Mean computation times (seconds)
Coverage Sequencing Strict sequencing

1 0.6 0.6 0.6
2 10.9 6.3 7.5
3 42.1 31.1 25.7
4 74.1 29.0 39.9
5 115.4 35.7 49.4
6 265.9 53.8 69.8
7 519.5 62.5 117.0

(b) Reinitialized search, (hs) geometry using
nop Mean computation times (seconds)

Coverage Sequencing Strict sequencing
1 0.5 0.5 0.5
2 23.0 14.7 28.8
3 58.8 112.7 101.2
4 92.6 138.6 141.4
5 105.9 147.2 223.1
6 246.9 212.0 331.1
7 237.1 247.2 445.2

(c) Lazy search, (hs) geometry ignoring

nop Mean computation times (seconds)
Coverage Sequencing Strict sequencing

1 0.5 0.6 0.6
2 6.4 5.4 6.3
3 24.0 25.9 28.5
4 25.1 24.9 31.7
5 32.5 28.0 40.1
6 61.8 44.6 69.6
7 77.4 53.7 81.8

(d) Lazy search, (hs) geometry using

Fig. 8: Performance comparison of different possible approaches

(hs) geometry-ignoring decomposition of the workspace for
constructing the abstraction. The results indicate that for
coverage formulas, the performance improves significantly.
However, for sequencing and strict-sequencing formulas, the
performance degrades. This indicates that the lazy search is
most useful only when used with meaningful abstractions.

Lazy search, (hs) geometry using (Figure 8d) Finally, we
show the mean computation times when using the approach
proposed in the paper in Figure 8d. Note that our approach
of using (hs) geometry-using abstractions and lazy search
for high-level plans consistently outperforms other possible
approaches considered here by significant margin. In par-
ticular, this approach shows a speedup of 6-8 times when
compared with the approach of using (hs) geometry-ignoring
abstraction and reinitialized search for coverage formulas
involving 5-7 temporal operators.

The results of comparative analysis lead to two important
conclusions. First, systematic decomposition of the state-
space using the geometry of the specifications, and the dis-
crete structure of hybrid dynamics has a profound effect on
computational efficiency of the approach. For example, when
using reinitialized search, the (hs) geometry-using abstraction
yields a speedup of up to 3-4 times for sequencing and strict
sequencing formulas when compared with (hs) geometry-
ignoring abstraction (Figures 8a, 8b).

Second, geometry-based decompositions result in abstrac-
tions of larger size (Figures 3, 4). Hence, to realize the
benefits of such decompositions fully, an efficient high-level
search technique is also required. In fact, the results from
Figure 8 indicate that the best performance is obtained when
geometry-based abstractions are used in combination with
the proposed lazy-search technique. For the case of coverage
formula with 6-7 temporal operators, combining the (hs)
geometry-using abstraction and the lazy-search technique
yields a performance improvement of close to 10 times
(Figures 8a, 8d).

V. CONCLUSIONS

In this paper, we have considered motion planning prob-
lems involving mobile robots with nonlinear hybrid dynamics
and finite geometry, obstacles in the workspace, and high-
level temporal goals. We have proposed an instantiation of
the multi-layered synergistic framework proposed in [16]

while addressing two key issues: the construction of the
discrete abstraction for the case of hybrid dynamics, and
an improved high-level search technique to use the discrete
abstraction more efficiently. For the construction of the
discrete abstraction, we have proposed a geometry-based
approach that extends our previous work [19] to the case
when the robot is modeled as a hybrid system. To utilize such
abstractions more efficiently, we have also proposed a lazy-
search technique that reuses portions of previously explored
high-level plans for constructing new plans. We have shown
through examples that the abstractions constructed using the
geometry of the specifications, and the discrete structure of
hybrid dynamics, improve the computational performance of
the approach significantly. The best performance is obtained
when such abstractions are used together with the lazy-search
technique in the high-level search layer. In the future, we
plan to generalize the framework to a broader class of hybrid
systems, and consider problem instances with larger number
of discrete modes.
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APPENDIX

a) Additional details on hybrid robotic benchmark: We
discuss some of the additional details of the robotic hybrid
benchmark introduced in Section II. We use a normalized
length scale defined according to the relation 1m = 0.05
non-dimensional units. The workspace is chosen as a square
of size 1 for each discrete mode.

The dynamics for second-order car are as follows. The
state is given by x = (x1, x2, θ, v, φ), with ẋ1 = v cos(θ),
ẋ2 = v sin(θ), θ̇ = v tan(φ)/L, v̇ = u1, φ̇ = u2. L is

the distance between front and rear axles. The translational
velocity v is bounded in magnitude by vmax ∈ [1m/s, 3m/s]
and the steering angle φ is bounded in magnitude by φ ∈
[30◦, 70◦]. The linear acceleration is bounded in magnitude
by u1,max ∈ [0.2m/s2, 1.0m/s2] and the steering velocity is
bounded in magnitude by u2,max ∈ [5◦/s, 15◦/s]. We have
used L = 1m and the width of the car as 0.5m.

The dynamics for second-order unicycle are as follows.
The state is given by x = (x1, x2, θ, v, ω), with ẋ1 =
v cos(θ), ẋ2 = v sin(θ), θ̇ = ω, v̇ = u1, ω̇ = u2. The
translations and rotational speeds are bounded by vmax ∈
[3m/s, 10m/s] and ωmax ∈ [30◦/s, 70◦/s] respectively. The
translational and rotational accelerations are bounded in
magnitude by u1,max ∈ [0.2m/s2, 1.0m/s2] and u2,max ∈
[5◦/s, 15◦/s] respectively. The geometric length and width
of the model are fixed as 1, 0.5m respectively.

The dynamics for second-order differential drive are as
follows. The state is given by x = (x1, x2, θ, ωl, ωr), with
ẋ1 = 0.5r(ωl + ωr) cos(θ), ẋ2 = 0.5r(ωl + ωr) sin(θ), θ̇ =
r/L(ωr − ωl), ω̇l = u1, ω̇r = u2. The rotational velocities
wl, wr are bounded in magnitude by wl,max, wr,max ∈
[70◦/s, 90◦/s]. The wheel radius r is set to 0.25m and
the distance L between front and rear axles is set to
1m. The rotational accelerations for left and right wheel
u1, u2 are bounded in magnitude by u1,max, u2,max ∈
[15◦/s2, 30◦/s2].

b) Linear Temporal Logic: Linear temporal logic is a
propositional logic that is used to describe modalities of time
along trajectories of a given system. Given a set of boolean
atomic propositions, Π = {π1, π2, . . . , πN}, the syntax is
defined according to the following grammar: φ := π|¬φ|φ∨
φ|Xφ|φUφ. X and U are temporal operators and ¬,∨ are
boolean operators. Additionally, using the operators specified
above, it is possible to define R (release), F (future) and G
(globally, always) temporal operators as well. The semantics
of LTL are defined over infinite traces of a given system.
Let σ = {τi}∞i=0, with τi ∈ 2Π and let σi = τi, τi+1, . . . and
σi = τ0, τ1, . . . , τi−1. σi is a prefix of the trace σ. For more
details, we refer to [12]. σ |= φ indicates that σ satisfies the
formula φ. σ |= ⊤, σ 2 ⊥, σ |= π if π ∈ τ0, σ |= φ ∨ ψ if
σ |= φ or σ |= ψ. σ |= ¬φ if σ 2 φ. σ |= Xφ if σ1 |= φ;
σ |= φUψ, if ∃k ≥ 0, s.t., σk |= ψ, and ∀i ∈ [0, k), σi |= φ.
Fφ = ⊤Uφ, Gφ = ¬F¬φ, φRψ = ¬(φU¬ψ).

c) Co-safe LTL formulas: A particular class of LTL
formulas called as co-safe LTL formulas can be used to
describe finite horizon specifications of the system [10].
Informally, these are the LTL formulas such that any good
trace satisfying the formula has a finite good prefix. A finite
good prefix for a formula is a finite prefix such that all its
trace extensions satisfy the formula [10]. A class of co-safety
formulas that are easy to characterize are the syntactically
co-safe LTL formulas. Syntactically co-safe LTL formulas
are the LTL formulas that contain only X ,F , and U as
the temporal operators, when written in positive normal
form (i.e, the negation operator ¬ occurs only in front of
atomic propositions, see [10] for more details). For the case
of syntactically co-safe LTL formulas, it has been shown
that an NFA can be constructed (with at most exponential
blowup) that describes all the finite good prefixes satisfying
a syntactically co-safe LTL formula [10].


